Mostrar el registro sencillo del ítem

dc.contributor.authorPerini, Deborah Aurora
dc.contributor.authorParra-Ortiz, Elisa
dc.contributor.authorVaró, Inmaculada
dc.contributor.authorQueralt-Martín, María
dc.contributor.authorMalmsten, Martin
dc.contributor.authorAlcaraz, Antonio
dc.date.accessioned2023-04-17T07:09:19Z
dc.date.available2023-04-17T07:09:19Z
dc.date.issued2022
dc.identifier.citationLangmuir 2022, 38, 14837−14849ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/202177
dc.description.abstractAlthough nanoplastics have well-known toxic effects toward the environment and living organisms, their molecular toxicity mechanisms, including the nature of nanoparticle−cell membrane interactions, are still under investigation. Here, we employ dynamic light scattering, quartz crystal microbalance with dissipation monitoring, and electrophysiology to investigate the interaction between polystyrene nanoparticles (PS NPs) and phospholipid membranes. Our results show that PS NPs adsorb onto lipid bilayers creating soft inhomogeneous films that include disordered defects. PS NPs form an integral part of the generated channels so that the surface functionalization and charge of the NP determine the pore conductive properties. The large difference in size between the NP diameter and the lipid bilayer thickness (∼60 vs ∼5 nm) suggests a particular and complex lipid−NP assembly that is able to maintain overall membrane integrity. In view of this, we suggest that NP-induced toxicity in cells could operate in more subtle ways than membrane disintegration, such as inducing lipid reorganization and transmembrane ionic fluxes that disrupt the membrane potential.ca_CA
dc.format.extent13 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherACS Publicationsca_CA
dc.relation.isPartOfLangmuir 2022, 38, 48.ca_CA
dc.rightsCopyright © 2022 American Chemical Societyca_CA
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/ca_CA
dc.titleSurface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrityca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acs.langmuir.2c02487
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/full/10.1021/acs.langmuir.2c02487ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameAgencia Estatal de Investigaciónca_CA
project.funder.nameUniversitat Jaume Ica_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameSwedish Research Councilca_CA
project.funder.nameIndependent Research Fund Denmarkca_CA
project.funder.nameLEO Foundation Center for Cutaneous Drug Deliveryca_CA
oaire.awardNumber2019-108434GB-I00ca_CA
oaire.awardNumberIJC2018-035283-Ica_CA
oaire.awardNumberUJI-B2018-53ca_CA
oaire.awardNumberUJI-A2020- 21ca_CA
oaire.awardNumberGRISOLIAP/2018/061ca_CA
oaire.awardNumberAICO/ 2020/066ca_CA
oaire.awardNumberBEFPI/2020/040ca_CA
oaire.awardNumber2016-05157ca_CA
oaire.awardNumber2021-05498ca_CA
oaire.awardNumber9040-00020Bca_CA
oaire.awardNumber2016-11-01ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Copyright © 2022 American Chemical Society
Excepto si se señala otra cosa, la licencia del ítem se describe como: Copyright © 2022 American Chemical Society