Mostrar el registro sencillo del ítem

dc.contributor.authorHERNÁNDEZ-BALAGUERA, ENRIQUE
dc.contributor.authorMuñoz-Díaz, Laura
dc.contributor.authorBou, Agustín
dc.contributor.authorRomero, Beatriz
dc.contributor.authorIlyassov, Baurzhan
dc.contributor.authorGuerrero, Antonio
dc.contributor.authorBisquert, Juan
dc.date.accessioned2023-11-09T08:36:35Z
dc.date.available2023-11-09T08:36:35Z
dc.date.issued2023-05-26
dc.identifier.citationHernández-Balaguera, E., Munoz-Díaz, L., Bou, A., Romero, B., Ilyassov, B., Guerrero, A., & Bisquert, J. (2023). Long-term potentiation mechanism of biological postsynaptic activity in neuro-inspired halide perovskite memristors. Neuromorphic Computing and Engineering, 3(2), 024005.ca_CA
dc.identifier.issn2634-4386
dc.identifier.urihttp://hdl.handle.net/10234/204811
dc.description.abstractPerovskite memristors have emerged as leading contenders in brain-inspired neuromorphic electronics. Although these devices have been shown to accurately reproduce synaptic dynamics, they pose challenges for in-depth understanding of the underlying nonlinear phenomena. Potentiation effects on the electrical conductance of memristive devices have attracted increasing attention from the emerging neuromorphic community, demanding adequate interpretation. Here, we propose a detailed interpretation of the temporal dynamics of potentiation based on nonlinear electrical circuits that can be validated by impedance spectroscopy. The fundamental observation is that the current in a capacitor decreases with time; conversely, for an inductor, it increases with time. There is no electromagnetic effect in a halide perovskite memristor, but ionic-electronic coupling creates a chemical inductor effect that lies behind the potentiation property. Therefore, we show that beyond negative transients, the accumulation of mobile ions and the eventual penetration into the charge-transport layers constitute a bioelectrical memory feature that is the key to long-term synaptic enhancement. A quantitative dynamical electrical model formed by nonlinear differential equations explains the memory-based ionic effects to inductive phenomena associated with the slow and delayed currents, invisible during the 'off mode' of the presynaptic spike-based stimuli. Our work opens a new pathway for the rational development of material mimesis of neural communications across synapses, particularly the learning and memory functions in the human brain, through a Hodgkin–Huxley-style biophysical model.ca_CA
dc.format.extent16 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherIOP Publishingca_CA
dc.relationSINFOTON2-CM Research Programca_CA
dc.relation.isPartOfNeuromorphic Computing and Engineering, Vol. 3, Number 2 (2023)ca_CA
dc.relation.urihttps://doi.org/10.7910/DVN/7JOSNP
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/ca_CA
dc.subjecthalide perovskiteca_CA
dc.subjectpotentiationca_CA
dc.subjectsynapseca_CA
dc.titleLong-term potentiation mechanism of biological postsynaptic activity in neuro-inspired halide perovskite memristorsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1088/2634-4386/accec4
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameComunidad de Madridca_CA
project.funder.nameUniversidad Rey Juan Carlosca_CA
project.funder.nameMCIN / European Union NextGenerationEUca_CA
project.funder.nameGeneralitat Valencianaca_CA
oaire.awardNumberS2018/NMT4326-SINFOTON2-CMca_CA
oaire.awardNumberM2607 | M2993ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como: http://creativecommons.org/licenses/by/4.0/