Estimates of the first Dirichlet eigenvalue from exit time moment spectra
comunitat-uji-handle:10234/9
comunitat-uji-handle2:10234/43662
comunitat-uji-handle3:10234/43643
INVESTIGACIONMetadatos
Título
Estimates of the first Dirichlet eigenvalue from exit time moment spectraFecha de publicación
2016Versión del editor
http://link.springer.com/article/10.1007/s00208-015-1316-7ISSN
0025-5831; 1432-1807Editor
Springer VerlagResumen
We compute the first Dirichlet eigenvalue of a geodesic ball in a rotationally symmetric model space in terms of the moment spectrum for the Brownian motion exit times from the ball. As an application of the model ... [+]
We compute the first Dirichlet eigenvalue of a geodesic ball in a rotationally symmetric model space in terms of the moment spectrum for the Brownian motion exit times from the ball. As an application of the model space theory we prove lower and upper bounds for the first Dirichlet eigenvalues of extrinsic metric balls in submanifolds of ambient Riemannian spaces which have model space controlled curvatures. Moreover, from this general setting we thereby obtain new generalizations of the classical and celebrated results due to McKean and Cheung–Leung concerning the fundamental tones of Cartan–Hadamard manifolds and the fundamental tones of submanifolds with bounded mean curvature in hyperbolic spaces, respectively. [-]
Cita bibliográfica
Hurtado, A., Markvorsen, S. & Palmer, V. Math. Ann. (2016) 365: 1603. doi:10.1007/s00208-015-1316-7Tipo de documento
info:eu-repo/semantics/articleDerechos de acceso
© Springer-Verlag Berlin Heidelberg 2015. "The final publication is available at Springer via http://dx.doi.org/10.1007/s00208-015-1316-7"
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Aparece en las colecciones
- INIT_Articles [293]