Mostrar el registro sencillo del ítem

dc.contributor.authorMassague, Jordi
dc.contributor.authorEscudero Tellechea, Miguel
dc.contributor.authorAlastuey, Andres
dc.contributor.authorMonfort, Eliseo
dc.contributor.authorGangoiti, Gotzon
dc.contributor.authorPetetin, Hervé
dc.contributor.authorPérez García-Pando, Carlos
dc.contributor.authorQuerol, Xavier
dc.date.accessioned2024-02-16T08:49:46Z
dc.date.available2024-02-16T08:49:46Z
dc.date.issued2023
dc.identifier.citationMassagué, J., Escudero, M., Alastuey, A. Monfort, E., Gangoiti, G., Petetin, H., Pérez García-Pando, C., Querol, X. Drivers of divergent trends in tropospheric ozone hotspots in Spain, 2008–2019. Air Qual Atmos Health (2023). https://doi.org/10.1007/s11869-023-01468-0ca_CA
dc.identifier.issn1873-9318
dc.identifier.issn1873-9326
dc.identifier.urihttp://hdl.handle.net/10234/205911
dc.description.abstractThis study aimed to investigate the causes of contrasting ozone (O3) trends in Spanish O3 hotspots between 2008 and 2019, as documented in recent studies. The analysis involved data on key O3 precursors, such as nitrogen oxides (NOx) and volatile organic compounds (VOCs), among other species, along with meteorological parameters associated with O3. The dataset comprised ground-level and satellite observations, emissions inventory estimates, and meteorological reanalysis. The results suggest that the increasing O3 trends observed in the Madrid area were mostly due to major decreases in NOx emissions from the road transport sector in this urban VOC-limited environment, as well as variations in meteorological parameters conducive to O3 production. Conversely, the decreasing O3 trends in the Sevilla area likely resulted from a decrease in NOx emissions in a peculiar urban NOx-limited regime caused by substantial VOC contributions from a large upwind petrochemical area. Unchanged O3 concentrations in other NOx-limited hotspots may be attributed to the stagnation of emissions from sectors other than road transport, coupled with increased emissions from certain sectors, likely due to the economic recovery from the 2008 financial crisis, and the absence of meteorological variations favorable to O3 production. In this study, the parameters influencing O3 varied distinctively across the different hotspots, emphasizing the significance of adopting an independent regional/local approach for O3 mitigation planning. Overall, our findings provide valuable insights into the causes of contrasting O3 trends in different regions of Spain, which can be used as a basis for guiding future measures to mitigate O3 levels.ca_CA
dc.format.extent19 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherSpringerca_CA
dc.relationCambios en la composición de los aerosoles y sus implicaciones en calidad del aire y clima en el NE de Españaca_CA
dc.relationMonitoreo y diagnostico de la formación de ozono desde el espacioca_CA
dc.relation.isPartOfAir Quality, Atmosphere & Health, 2023ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/ca_CA
dc.subjectair qualityca_CA
dc.subjecttropospheric ozoneca_CA
dc.subjecttrendsca_CA
dc.subjectO3 precursorsca_CA
dc.subjectsatellite tropospheric NO2 HCHOca_CA
dc.subjectemissionsca_CA
dc.titleDrivers of divergent trends in tropospheric ozone hotspots in Spain, 2008–2019ca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1007/s11869-023-01468-0
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://link.springer.com/article/10.1007/s11869-023-01468-0ca_CA
dc.description.sponsorshipThe present work was supported by the Spanish Ministry of Ecological Transition and Demographic Challenge (Spanish National Ozone Plan); European Union’s Horizon 2020 research and innovation program under grant agreement; the “Agencia Estatal de Investigación,” from the Spanish Ministry of Science and Innovation, and FEDER funds under the project CAIAC (PID2019-108990RB-I00); the Generalitat de Catalunya (AGAUR 2021 SGR 00447); and the Ministerio de Ciencia e Innovación through the MITIGATE project (grant no. PID2020-113840RA-I00 funded by MCIN/AEI/10.13039/501100011033).This work was also supported by the Autonomous Government of Valencia (GVA) through the Valencian Institute for Business Competitiveness (IVACE) by means of the project Gaia (IMAMCA/2022/1). Carlos Pérez García-Pando acknowledges the support of the AXA Research Fund. We would like to thank NASA and the QA4ECV project for providing satellite-based data and the Climate Data Store (CDS) from the Copernicus Program for the ERA5 meteorological data.
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.identifierhttp://dx.doi.org/10.13039/501100011033ca_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidadesca_CA
project.funder.nameGeneralitat de Catalunyaca_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameAXA Research Fundca_CA
oaire.awardNumberMICIU/ICTI2017-2020/PID2019-108990RB-I00ca_CA
oaire.awardNumberMICIU/ICTI2017-2020/PID2020-113840RA-I00ca_CA
oaire.awardNumberAGAUR 2021 SGR 00447ca_CA
oaire.awardNumberIMAMCA/2022/1ca_CA
dc.subject.ods10. Reducción de las desigualdadesca_CA
dc.subject.ods11. Ciudades y comunidades sostenibles


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como: http://creativecommons.org/licenses/by/4.0/