Mostrar el registro sencillo del ítem

dc.contributor.authorNavarrete Argilés, Nuria
dc.contributor.authorLa Zara, Damiano
dc.contributor.authorGoulas, Aristeidis
dc.contributor.authorValdesueiro, David
dc.contributor.authorHernandez, Leonor
dc.contributor.authorvan Ommen, J. Ruud
dc.contributor.authorMondragon, Rosa
dc.date.accessioned2020-04-09T21:47:49Z
dc.date.available2020-04-09T21:47:49Z
dc.date.issued2020-03-31
dc.identifier.citationNAVARRETE, Nuria, et al. Improved thermal energy storage of nanoencapsulated phase change materials by atomic layer deposition. Solar Energy Materials and Solar Cells, 2020, vol. 206, p. 110322ca_CA
dc.identifier.issn0927-0248
dc.identifier.issn1879-3398
dc.identifier.urihttp://hdl.handle.net/10234/187443
dc.description.abstractRenewable energy has become of great interest over the past years in order to mitigate Global Warming. One of the actions gaining attention is the enhancement of the thermal energy storage capacity of Concentrated Solar Power plants. The addition of nanoencapsulated phase change materials (core-shell nanoparticles) to the already used materials has been proposed for that purpose, due to the possibility of increasing thermal storage through the contribution of both core latent heat and sensible heat. In this work, Atomic Layer Deposition has been used to synthesise SiO2 and Al2O3 nanoscale coatings on tin nanoparticles. The multi-encapsulated phase change materials have been characterised in terms of chemical composition, crystalline structure, particle size, thermal stability and thermal storage capacity. Sn@Al2O3 nanoparticles present the best thermal behaviour as they show the lowest reduction in the phase change enthalpy over 100 cycles due to the oxidation barrier of the coating. Moreover, the specific heat of both nanoparticles and solar salt-based nanofluids is increased, making the nanoencapsulated phase change material suitable for thermal energy storage applications.ca_CA
dc.format.extent36 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.isPartOfSolar Energy Materials and Solar Cells, 2020, vol. 206, p. 110322ca_CA
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectphase change materialca_CA
dc.subjectnanoencapsulationca_CA
dc.subjectthermal energy storageca_CA
dc.subjectatomic layer depositionca_CA
dc.titleImproved thermal energy storage of nanoencapsulated phase change materials by atomic layer depositionca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.solmat.2019.110322
dc.relation.projectIDThe authors want to thank the financial support from Ministerio de Economía y Competitividad (MINECO) (project ENE2016-77694-R) and Universitat Jaume I (project UJI-B2016-47). Nuria Navarrete thanks Universitat Jaume I for a pre-doctoral fellowship (Ref. PREDOC/2016/28) and a research mobility grant (Ref. E-2018-10) that made possible the research carried out in this work. Authors thank Servicios Centrales de Instrumentacion Científica (SCIC) of Universitat Jaume I for the use of TEM (Maria del Carmen Peiro), FT-IR (José Miguel Pedra), XRD (Gabriel Peris), TGA and DSC (Cristina Zahonero). This work has been developed by participants of the COST Action CA15119 Overcoming Barriers to Nanofluids Market Uptake (NANOUPTAKE).ca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S0927024819306506ca_CA
dc.date.embargoEndDate2022-03-31
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional