Mostrar el registro sencillo del ítem

dc.contributor.authorAstrain, David
dc.contributor.authorMerino, A.
dc.contributor.authorCatalán, L.
dc.contributor.authorAranguren, Patricia
dc.contributor.authorAraiz, Miguel
dc.contributor.authorSánchez García-Vacas, Daniel
dc.contributor.authorCabello López, Ramón
dc.contributor.authorLlopis, Rodrigo
dc.date.accessioned2019-07-02T07:20:58Z
dc.date.available2019-07-02T07:20:58Z
dc.date.issued2019-06-05
dc.identifier.citationASTRAIN, D., et al. Improvements in the cooling capacity and the COP of a transcritical CO2 refrigeration plant operating with a thermoelectric subcooling system. Applied Thermal Engineering, 2019, vol. 155, p. 110-122ca_CA
dc.identifier.issn1359-4311
dc.identifier.urihttp://hdl.handle.net/10234/183085
dc.description.abstractRestrictive environmental regulations are driving the use of CO2 as working fluid in commercial vapour compression plants due to its ultra-low global warming potential (GWP100 = 1) and its natural condition. However, at high ambient temperatures transcritical operating conditions are commonly achieved causing low energy efficiencies in refrigeration facilities. To solve this issue, several improvements have been implemented, especially in large centralized plants where ejectors, parallel compressors or subcooler systems, among others, are frequently used. Despite their good results, these measures are not suitable for small-capacity systems due mainly to the cost and the complexity of the system. Accordingly, this work presents a new subcooling system equipped with thermoelectric modules (TESC), which thanks to its simplicity, low cost and easy control, results very suitable for medium and small capacity plants. The developed methodology finds the gas-cooler pressure and the electric voltage supplied to the TESC system that maximizes the overall COP of the plant taking into account the ambient temperature, the number of thermoelectric modules used and the thermal resistance of the heat exchangers included in the TESC. The obtained results reveal that, with 20 thermoelectric modules, an improvement of 20% in terms of COP and of 25.6% regarding the cooling capacity can be obtained compared to the base cycle of CO2 of a small cooling plant refrigerated by air. Compared to a cycle that uses an internal heat exchanger IHX, the improvements reach 12.2% and 19.5% respectively.ca_CA
dc.format.extent13 p.ca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.isPartOfApplied Thermal Engineering, 2019, vol. 155ca_CA
dc.rightsCopyright © Elsevier B.V.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectCO2ca_CA
dc.subjectsubcoolingca_CA
dc.subjectR744ca_CA
dc.subjectthermoelectricityca_CA
dc.subjecttranscriticalca_CA
dc.subjectCOPca_CA
dc.subjectcomputational modelca_CA
dc.titleImprovements in the cooling capacity and the COP of a transcritical CO2 refrigeration plant operating with a thermoelectric subcooling systemca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2019.03.123
dc.relation.projectIDSpanish Ministry of Science, Innovation and Universities under the FPU Program: FPU16/05203ca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S1359431118368698#!ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem