Show simple item record

dc.contributor.authorBarreneche, Camila
dc.contributor.authorMondragón Cazorla, Rosa
dc.contributor.authorVentura Espinosa, David
dc.contributor.authorMata Martínez, Jose A
dc.contributor.authorCabeza, Luisa F.
dc.contributor.authorFernández, A. Inés
dc.contributor.authorJuliá Bolívar, José Enrique
dc.date.accessioned2018-04-25T07:21:43Z
dc.date.available2018-04-25T07:21:43Z
dc.date.issued2018-01-05
dc.identifier.citationBARRENECHE, Camila, et al. Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change material. Applied Thermal Engineering, 2018, vol. 128, p. 121-126.ca_CA
dc.identifier.issn1359-4311
dc.identifier.issn1873-5606
dc.identifier.urihttp://hdl.handle.net/10234/174314
dc.description.abstractNanoparticles with different morphologies were added to water to study if the morphology of the nanoparticles affects the main parameters of water used as phase change material (PCM). Considered morphologies were spherical, tubes and sheets in the form of spherical carbon black nanoparticles (CB), multiwalled carbon nanotubes (MWCNT), and graphene oxide nanosheets (GO). Results demonstrate that effectively the morphology of nanoparticles affect the thermophysical properties of the nano-enhanced PCM (NePCM). Depending on the morphology of the added nanoparticle, the final NePCM will have different subcooling and thermal conductivity, whereas its phase change enthalpy is not affected and, therefore, is the same for all produced NePCM.ca_CA
dc.format.extent6 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.relation.isPartOfApplied Thermal Engineering, 2018, vol. 128ca_CA
dc.rightsCopyright © Elsevier B.V.ca_CA
dc.subjectphase change materialca_CA
dc.subjectnanoparticlesca_CA
dc.subjectmorphologyca_CA
dc.subjectdispersionca_CA
dc.subjectwaterca_CA
dc.titleInfluence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change materialca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2017.09.014
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S1359431117303320#!ca_CA
dc.date.embargoEndDate2020-01-05
dc.contributor.funderThe research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement No 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123), DIOPMA (2014 SGR 1543). This work has been partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). Dr. Camila Barreneche would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva FJCI-2014-22886. This work has been developed by participants of the COST Action CA15119 Overcoming Barriers to Nanofluids Market Uptake (NANOUPTAKE).ca_CA
dc.type.versioninfo:eu-repo/semantics/submittedVersionca_CA


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record