Mostrar el registro sencillo del ítem

dc.contributor.authorŚwiderek, Katarzyna
dc.contributor.authorTuñón, Iñaki
dc.contributor.authorMartí Forés, Sergio
dc.contributor.authorMoliner, Vicent
dc.contributor.authorBertrán, Juan
dc.date.accessioned2014-07-01T07:29:56Z
dc.date.available2014-07-01T07:29:56Z
dc.date.issued2013
dc.identifier.citationŚWIDEREK, Katarzyna, et al. Role of Solvent on Nonenzymatic Peptide Bond Formation Mechanisms and Kinetic Isotope Effects. Journal of the American Chemical Society, 2013, vol. 135, no 23, p. 8708-8719.ca_CA
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/10234/96633
dc.description.abstractBased on the hypothesis that similar mechanisms are involved in the peptide bond formation in aqueous solution and in the ribosome, the aminolysis of esters in aqueous solution has been the subject of numerous studies as the reference reaction for the catalyzed process. The mechanisms proposed in the literature have been explored in the present paper by hybrid QM/MM molecular dynamics simulations. The free energy profiles have been computed with the QM region of the system described at semiempirical AM1 level and by DFT within the M06-2X functional. According to the results, the formation of adduct zwitterion species is a preliminary step required for all possible mechanisms. Then, from different conformers of this species, four different paths were found: three of them taking place through concerted mechanisms of four-, six- and eight-membered ring transition states, and a stepwise mechanism through a neutral intermediate. Comparison of the free energy profiles indicates that the concerted mechanisms would be kinetically favored, with free energy barriers in very good agreement with experimental data. Calculations of kinetic isotope effects, when including the solute interactions with the first solvation shell, show that the 8-membered ring TS renders values in better agreement with available experimental data. Quantitative discrepancies can be attributed to different employed models in experiments and calculations.ca_CA
dc.description.sponsorShipThis work was supported by the Spanish Ministerio de Economiá y Competitividad (Project CTQ2012-36253-C03), Generalitat Valenciana for Project Prometeo/2009/053 and Universitat Jaume I BANCAIXA Foundation Project P1·1B2011-23.ca_CA
dc.format.extent12 p.ca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJournal of the American Chemical Society (2013) vol. 135, no 23ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectTransition-state structuresca_CA
dc.subjectChorismate mutaseca_CA
dc.subjectEster aminolysisca_CA
dc.subjectMethyl formateca_CA
dc.subjectDensity functionalsca_CA
dc.subjectAqueous-solutionca_CA
dc.subjectRibosomeca_CA
dc.subjectCatalysisca_CA
dc.subjectHydrazinolysisca_CA
dc.titleRole of Solvent on Nonenzymatic Peptide Bond Formation Mechanisms and Kinetic Isotope Effectsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1021/ja403038t
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://pubs.acs.org/doi/abs/10.1021/ja403038tca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem