Mostrar el registro sencillo del ítem

dc.contributor.authorUdroiu, Cosmin-Mihai
dc.contributor.authorNavarro-Esbrí, Joaquín
dc.contributor.authorGiménez-Prades, Pau
dc.contributor.authorMota-Babiloni, Adrián
dc.date.accessioned2024-02-16T12:42:17Z
dc.date.available2024-02-16T12:42:17Z
dc.date.issued2024-04-01
dc.identifier.citationC.-M. Udroiu, J. Navarro-Esbrí, P Giménez-Prades, A. Mota-Babiloni, Towards sustainable process heating at 250 °C: Modeling and optimization of an R1336mzz(Z) transcritical High-Temperature heat pump, Appl. Therm. Eng. 242 (2024) 122521. https://doi.org/10.1016/j.applthermaleng.2024.122521ca_CA
dc.identifier.issn1359-4311
dc.identifier.issn1873-5606
dc.identifier.urihttp://hdl.handle.net/10234/205922
dc.description.abstractFossil fuel boilers typically produce high-temperature process heating due to the impossibility of current renewable technologies. Vapour compression heat pump systems have been proposed up to 200 °C with subcritical cycles. To increase the heating production level, this paper proposes heating up to 250 °C through a transcritical high-temperature heat pump (THTHP) using R1336mzz(Z), which is not thermally degraded till this temperature, according to existing data. Computational models of a transcritical vapor compression cycle with and without an internal heat exchanger are developed for this work. The input cycle parameters, such as evaporation, production temperature, gas cooler output temperature, and the superheating degree, have been modified through iteration to consider possible scenarios in different industrial sectors. Moreover, the impact of using waste heat to increase evaporation temperature or superheating degree has been studied to optimize the cycle. The internal heat exchanger has also been considered for superheating the compressor suction. Other relevant parameters, such as compression ratio or volumetric mass flow rate, have also been assessed. The results show that a heat pump is feasible to reach 250 °C temperature using waste heat at 120 °C (evaporation at 100 °C and 20 °C of superheating degree), reaching a COP of 3.3. The variation of evaporator temperature from 80 °C to 140 °C increases COP from 2.5 to 5.9, while the increase of superheating degree from 20 °C to 100 °C increases COP from 3.2 to 7. Waste heat use optimization proves that it is more efficient to prioritize the increase of the evaporation temperature. If the industry requires lower production temperatures, the COP can reach a value of 7.0 at 180 °C. The decrease in gas cooler outlet temperature impacts less the COP than other input parameters. At baseline conditions, an optimum superheating degree with an internal heat exchanger of 45 K produces a maximum COP of 4.0. THTHP emissions are less than gas boilers for the same application, and in countries with greener electricity generation, these emissions can be 50 times lower.ca_CA
dc.description.sponsorShipFunding for open access charge: CRUE-Universitat Jaume I
dc.format.extent11 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.isPartOfApplied Thermal Engineering, 2024, vol. 242ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/ca_CA
dc.subjecttranscriticalca_CA
dc.subjectR1336mzz(Z)ca_CA
dc.subjectgas coolerca_CA
dc.subjectIHXca_CA
dc.subjectoptimizationca_CA
dc.titleTowards sustainable process heating at 250 °C: Modeling and optimization of an R1336mzz(Z) transcritical High-Temperature heat pumpca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2024.122521
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://www.sciencedirect.com/science/article/pii/S1359431124001893ca_CA
dc.description.sponsorshipThis scientific publication is part of the project UJI-B2018-24 and UJI. > LAB IMPULS/2022/02, funded by Universitat Jaume I. Adrián Mota-Babiloni acknowledges contract IJC2019-038997-I, funded by MCIN/AEI/10.13039/501100011033. Cosmin Mihai Udroiu acknowledges grant PRE2021-097369 funded by MCIN/AEI/10.13039/501100011033 and FSE + . Pau Giménez-Prades acknowledges the CIACIF/2021/182 grant, funded by the Generalitat Valenciana (GV) and the European Social Fund (ESF).
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.identifierhttp://dx.doi.org/10.13039/501100011033ca_CA
project.funder.nameMinisterio de Ciencia e Innovaciónca_CA
project.funder.nameUniversitat Jaume Ica_CA
project.funder.nameGeneralitat Valencianaca_CA
oaire.awardNumberIJC2019-038997-Ica_CA
oaire.awardNumberPRE2021-097369ca_CA
oaire.awardNumberUJI-B2018-24ca_CA
oaire.awardNumberUJI. > LAB IMPULS/2022/02ca_CA
oaire.awardNumberCIACIF/2021/182ca_CA
dc.subject.ods7. Energia asequible y no contaminanteca_CA
dc.subject.ods9. Industria, innovación e infraestructura
dc.subject.ods13. Acción por el clima


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como: http://creativecommons.org/licenses/by-nc-nd/4.0/