Show simple item record

dc.contributor.authorQueralt-Martín, María
dc.contributor.authorPerini, Deborah Aurora
dc.contributor.authorAlcaraz, Antonio
dc.date.accessioned2021-06-02T12:24:03Z
dc.date.available2021-06-02T12:24:03Z
dc.date.issued2020-12-11
dc.identifier.citationQueralt-Martín, M., Perini, D. A., & Alcaraz, A. (2020). Specific adsorption of trivalent cations in biological nanopores determines conductance dynamics and reverses ionic selectivity. Physical Chemistry Chemical Physics.ca_CA
dc.identifier.issn1463-9084
dc.identifier.issn1463-9076
dc.identifier.urihttp://hdl.handle.net/10234/193251
dc.description.abstractAdsorption processes are central to ionic transport in industrial and biological membrane systems. Multivalent cations modulate the conductive properties of nanofluidic devices through interactions with charged surfaces that depend principally on the ion charge number. Considering that ion channels are specialized valves that demand a sharp specificity in ion discrimination, we investigate the adsorption dynamics of trace amounts of different salts of trivalent cations in biological nanopores. We consider here OmpF from Escherichia coli, an archetypical protein nanopore, to probe the specificity of biological nanopores to multivalent cations. We systematically compare the effect of three trivalent electrolytes on OmpF current–voltage relationships and characterize the degree of rectification induced by each ion. We also analyze the open channel current noise to determine the existence of equilibrium/non-equilibrium mechanisms of ion adsorption and evaluate the extent of charge inversion through selectivity measurements. We show that the interaction of trivalent electrolytes with biological nanopores occurs via ion-specific adsorption yielding differential modulation of ion conduction and selectivity inversion. We also demonstrate the existence of non-equilibrium fluctuations likely related to ion-dependent trapping–detrapping processes. Our study provides fundamental information relevant to different biological and electrochemical systems where transport phenomena involve ion adsorption in charged surfaces under nanoscale confinement.ca_CA
dc.format.extent26 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherRoyal Society of Chemistryca_CA
dc.relation.isPartOfPhysical Chemistry Chemical Physics. Issue 2, 2021ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/CNE/1.0/*
dc.subjectselectivity inversionca_CA
dc.subjectcurrent modulationca_CA
dc.subjection channelca_CA
dc.subjectequilibrium and nonequilibrium fluctuationsca_CA
dc.subjectcharge regulationca_CA
dc.titleSpecific adsorption of trivalent cations in biological nanopores determines conductance dynamics and reverses ionic selectivityca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1039/D0CP04486E
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA
project.funder.nameAgencia Estatal de Investigaciónca_CA
project.funder.nameGeneralitat Valencianaca_CA
project.funder.nameUniversitat Jaume Ica_CA
oaire.awardNumberPID2019-108434GB-I00/AEIca_CA
oaire.awardNumberIJC2018-035283-I/AEIca_CA
oaire.awardNumberGRISOLIAP/2018/061ca_CA
oaire.awardNumberAICO/2020/066ca_CA
oaire.awardNumberUJI-B2018-53ca_CA


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record