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Abstract 

Integrated environmental modelling is gaining momentum for addressing grand scientific 

challenges such as monitoring the environment for change detection and forecasting 

environmental conditions along with the consequences for society. Such challenges can only be 

addressed by a multi-disciplinary approach, in which socio-economic, geospatial, and 

environmental information becomes interconnected. However, existing solutions cannot be 

seamlessly integrated and current interaction paradigms prevent mainstream usage of the 

existing technology. In particular, it is still difficult to access and join harmonized data and 

processing algorithms that are provided by different environmental information infrastructures. 

In this paper we take a novel approach for integrated environmental modelling based on the 

notion of inter-linked resources on the Web. We present design practices for creating resource-

oriented interfaces, driven by an interaction protocol built on the combination of valid linkages 

to enhance resource integration, accompanied by associated recommendations for 

implementation. The suggested resource-oriented approach provides a solution to the problems 

identified above, but still requires intense prototyping and experimentation. We discuss the 

central open issues and present a roadmap for future research. 
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1. Introduction 
In a 2009/2010 survey that involved over 1000 scientists from 85 countries, the International 

Council for Science (ICSU) identified five scientific priorities, or Grand Challenges, in global 

sustainability research. Among others, the Grand Challenges include: (i) the development of 

observation systems needed to manage global and regional environmental change; (ii) the 

improvement in the utility of forecasts for future environmental conditions and their 

consequences for humans; and (iii) the investigation of institutional, economic and behavioural 

responses that can enable effective steps toward global sustainability (ICSU, 2011). A next 

generation of web-based environmental information infrastructures and services has been 

proposed as the required tool, which provides more dynamic systems, distributed sources of 

information, and stronger capacities for integration (Craglia et al., 2008).  

One key aspect to unlock the full potential of environmental information infrastructures is the 

development of scientific research and technology for advanced environmental monitoring and 

integrated environmental modelling (IEM
i
). In the early 1990s, Dolk (1993, p. 250) claimed the 

need to ‘go beyond strictly representational issues to consider how models may be linked, or 

integrated, with one another’. With the improvement of Information and Communication 

Technologies (ICT), Harris (2002) highlighted the shift in doing scientific work from smaller, 

independent research teams to massive multi-disciplinary research groups addressing global 

problems. This shift, according to Harris (2002, p. 5), posed several challenges such as ‘finding 

solutions to the problems of communication between a wide range of disciplines’ as well as ‘the 

task of building and maintaining models of various kinds’. Parker et al. (2002) agreed on 

common issues to be tackled in the future to enhance IEM. Among others, the authors 

suggested the importance of ‘open, honest and transparent modelling processes’ (p. 216) as 

well as the need of ‘new tools to achieve science and knowledge integration’ (p. 216). Rizzoli et 

al. (2008) reviewed the current status of IEM and encouraged ‘the development of open 

standards for the exchange and reuse of modelling knowledge, including datasets and models in 

order to facilitate improved communication among integrated modelling frameworks’ (p. 103). 

The authors envision that the future of IEM will be based on component-based solutions in 

combination with distributed computing technologies to enhance the sharing and reuse of 

environmental models. In such a setting, environmental information infrastructures may 

become key technological enablers for building IEM applications based on distributed, web-

based technologies. 

Environmental information infrastructures share capabilities and drawbacks with Spatial Data 

Infrastructures (SDIs), which are advocated as the primary means for geospatial data and 

services integration and sharing on the Web (Nebert, 2004; Masser, 2005). The concept of SDIs 

involves the data itself, integration technologies, policies, institutional arrangements, and 

people, in order to avoid geospatial data and services remaining hidden in silos (Masser, 2005). 

Good progress has been made in the development of agreements, policies, and open standards 
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addressing the required data models, metadata, service interfaces in addition to sharing 

philosophies (Rajabifard et al., 2006; Goodchild et al., 2007). However, the SDI – and equally the 

environmental information infrastructures – ecosystem should be thought of as a network of 

inter-linked infrastructure nodes which have not completely fulfilled the integration 

requirements. Every single node comprises a set of geospatial data and services aligned with the 

SDI principles grouped commonly by geographic or thematic criteria. For example, many 

European countries deployed national SDI, whereas the Infrastructure for Spatial Information in 

Europe (INSPIRE) (European Parliament and Council, 2007) has been put into place for 

integration on the continental level. In such a context, individual infrastructure nodes have been 

incorporated into common solutions. In other words, small to medium scale integration has 

been achieved, but the SDI community does not (yet) address the large scale, including 

stakeholders such as environmental scientists, socio-economic analysts, policy makers and 

citizens. 

Non-SDI experts cannot easily access and explore geospatial content of potentially high value 

over distributed nodes due to: (i) the inherent complexity of some geospatial data standards 

(Tamayo et al., 2012); (ii) the lack of support for proper connections and linkages between 

geospatial data and services; and (iii) the diversity of interaction paradigms. On one hand, the 

diversity of interaction paradigms and complexity of some data standards makes the 

development of geospatial applications a challenging task. On the other hand, current data and 

services seem to still be disconnected. For instance, it is difficult for a user to jump from a given 

service or dataset in one infrastructure node to alternative services deployed in other nodes. In 

practical terms this impedes the full potential of operational SDIs as a network of inter-linked 

nodes.  

In order to avoid building similar silos again, we envision a solution in which geospatial and 

environmental resources can be accessed and combined in a straight forward manner using a 

uniform interaction paradigm, independent of the type of resources deployed in an 

infrastructure node. The proposed modelling approach abstracts from diverse information 

infrastructures for environmental resources and suggests a general level integration approach. It 

includes a new way of exploiting the access, reuse, and linkages between environmental 

resources. Particularly, we address the ICT perspective because we consider technology as a 

central driver for innovation and development. One of the future targets is a simpler interface 

with environmental modelling capacities in order to combine these features with socio-

economic simulations.  

In the following section we briefly introduce an integrated modelling use case to be used 

throughout this paper. Section 3 provides a larger perspective of EIM approaches related to our 

work. Section 4 motivates the use of the resource-oriented approach
ii
 in environmental studies. 

We then discuss design practices for creating resource-oriented interfaces and application for 

actual EIM in Section 5. The applicability of the resource-oriented approach to the use case is 

described in Section 6 as a set of recommendations for its implementation. The two final 
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sections summarize the key features of our approach, on-going work, and a possible roadmap 

for IEM on the Web. 

2. Use case 
In order to assess our approach in a more illustrative manner, in this section we introduce a use 

case based on a scenario proposed by McInerney et al. (2012) to monitor and assess the impact 

of forest fires in protected areas in Europe. The proposed use case enables us to: 

• describe how the same use case can be modelled from different viewpoints, namely, 

those described in Sections 3 and 4; and  

• demonstrate on a more practical basis the application of our resource-based approach 

for an integrated modelling use case (Sections 5 and 6).  

Advance monitoring and assessment of changes, like those provoked by the impact of forest 

fires in protected areas, is necessary for effective decision-making (McInerney et al., 2012). The 

European Forest Fire Information System (EFFIS
iii
) provides users with data and tools to monitor 

forest fires in Europe. Among others, EFFIS provides models which reflect the spatial distribution 

of forest fires within protected areas. Such results may be used in other disciplines such as 

environmental health to assess, for instance, the forest fire’s emissions impact on air quality and 

its influence on the health of humans settled in the surroundings. 

 

Figure 1. Conceptual components to monitor the impact of forest fires in protected areas in Europe 
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Figure 1 illustrates a simplified architecture with the main components of the forest assessment 

use case. The first group of components addresses data collection and cataloguing. For example, 

the inputs data sets needed could be daily burnt areas coming from the European Forest Data 

Center (EFDAC
iv
), which provides up-to-date and reliable data on the state of European forest 

resources, and protected areas from biodiversity data repositories. The second group deals with 

integration, transformation and modelling activities. Components and models to assess the 

impact of forest fires in protected areas are required. Reichman et al (2011, p. 703) estimated 

that ‘less than 1% of data results of modelling activities in ecological fields are accessible’. To 

this respect, McInerney et al. (2012) propose also an additional data publication step, where 

users are allowed to publish the (final and intermediate) results of the modelling process to the 

corresponding data catalogues and core data service components (left side of Figure 1) through 

the Data Publication Process (central part of in Figure 1). The third group provides users with 

components to visualize the spatial distribution and composition of forest fires for analysis and 

decision-making (right part of Figure 1).  

The forest use case in Figure 1 is meant to introduce our resource-oriented approach in 

comparison with other modelling approaches described in Section 3. Figure 2, however, is 

further extended in Section 6 to describe how it can be modelled by means of resource-oriented 

interfaces. Figure 2 provides an overview of a workflow to monitor the impact of forest fires in 

protected areas. It is composed of two components from Figure 1. The first component, the 

Impact Forest Fire (IFF) model, takes several datasets as inputs such as the EFFIS burnt areas, 

protected areas, and the area of interest on which to compute the impact analysis. The result is 

an impact map in the chosen area accompanied with some statistics. The second component is 

the Data Publication Process (DPP) which permits publishing such an impact map in associated 

data services and data catalogues. This last step is meant to improve data sharing. 

 

Figure 2. Example of integrated modelling to monitor the impact of forest fires in protected areas 

3. Research Context 
In a broader sense, IEM technologies encompass software engineering concepts and techniques 

to simplify the integration and programming efforts required by scientists and modellers to 
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properly combine environmental data and models. From the ICT point of view, the adoption of 

software engineering techniques ensures that systems and applications are developed using a 

systematic approach (Verweij et al., 2010). Thus, environmental research communities have 

paid much attention to well-established software engineering solutions, such as component-

based and recently to service-based approaches. Both put special emphasis on characteristics 

such as modularity and reusability to build integrated modelling tools and applications (Harris, 

2002; Granell et al., 2010; Alexandrov et al., 2011). In this section we introduce component-

based and service-based modelling approaches to build IEM solutions. We briefly describe how 

the previous use case could be modelled using each of these modelling strategies.  

3.1 Component-Based Modelling 

A component is an abstraction unit that allows modellers to share and encapsulate any given 

functionality and legacy code. Such components can be combined into integrated models or 

processes. Component-based modelling frameworks address the specific needs of integrated 

models, namely robust execution environments, full user control, and data-intensive processes. 

Component-based integrated models are then designed, deployed and executed locally by these 

rich frameworks. Argent (2004) provided an overview of component-based modelling 

approaches for integrated environmental modelling, and recently Jagers (2010) complemented 

it with an updated overview of some frameworks and systems such as Kepler (Ludäscher et al., 

2006) and Taverna (Oinn et al., 2006). Although these frameworks share the same principles of 

modularity and decomposition, they also differ in their technological basis, which thereby 

impedes integrated modelling across different framework implementations (Rizzoli et al., 2008).  

One of the most relevant initiatives for coupling components in IEM is the Open Modelling 

Interface (OpenMI) standard. OpenMI was designed to overcome interoperability issues among 

component-based platforms. It enables integrated modelling between third-party components 

and models that are implemented as local, OpenMI-compliant components (Gregersen et al., 

2007). In short, OpenMI-based modelling consists of two phases. First, third-party models are 

converted into OpenMI-compliant components by inheriting from OpenMI base interfaces. 

Then, these OpenMI-compliant components are configured and combined to form integrated 

models by using the OpenMI Configurator Editor. This front-end application allows workflow 

modellers to construct IEM in a similar manner as Taverna and Kepler graphical tools do for 

scientific workflows. OpenMI has been successfully applied to various underlying models and 

component-based frameworks (Knapen et al., 2009). The authors report some examples of how 

components within ESMF and CCA frameworks have been coupled with OpenMI in hydrological 

applications. Castronova and Goodall (2010) proposed a semi-automated process for creating 

OpenMI-compliant components for modelling hydrologic processes. However, migrating local 

models and components to OpenMI interfaces remains a time consuming task because the 

technological skills and knowledge required is still a burden for many scientists. 

Returning to our use case, from the component-based modelling perspective, OpenMI would be 

suitable to couple the components needed to assess the impact of forest fires in protected 
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areas. Involved components and models could be transformed into an OpenMI-compliant 

component as commented earlier. By using the OpenMI Configurator Editor, scientists could link 

each input dataset with the corresponding components to assemble the IEM solution. Several 

strategies can be applied for coupling data sets to components (Castranova and Goodall, 2012). 

One such strategy would be to merge the required input datasets (e.g., burnt and protected 

areas) with the associated assessment components to create one integrated OpenMI-complaint 

model. The other strategy would be to exchange data among the OpenMI-compliant 

components at runtime. Regardless of the coupling strategy chosen, the set of data sets should 

be available locally for execution. Results of the model run, i.e., the spatial distribution of forest 

fires within protected areas could be locally stored for future runs. 

The provision of a robust and complete control over the integrated model run is the advantage 

of adopting component-based modelling frameworks such as Kepler and the OpenMI 

Configurator Editor. It means users actively control each run of a model step, go back and forth 

within the workflow, and may manipulate state variables of an integrated model as required. 

Component-based frameworks gain robustness as integrated models are executed locally. 

Conversely, compared with service-oriented solutions (see below), component-based 

frameworks are less flexible in terms of integrating distributed components. For instance, third-

party components should be first adapted to the corresponding interface of the target 

component-based framework. This extra transformation step may be difficult in some cases and 

limit the reuse of existing components by other component-based frameworks. 

3.2 Service-Based Modelling 

Service-based modelling implies that data and processing capabilities are exposed as network-

accessible services via standard interfaces (Lee and Percivall, 2008). Service-oriented 

architectures (SOA) are used to develop collaborative, distributed web applications. Friis-

Christiensen et al. (2009) define SOA as “open and interoperable environments based on 

reusability and standardized components and services”. Such services are then the building 

blocks for performing successful collaborative and multi-disciplinary research (Pearlman et al., 

2011). 

The previously mentioned SDIs follow the SOA paradigm and offer the possibility to access 

distributed, heterogeneous geospatial resources through a set of standards-based services that 

(in principle) allow one to connect a network of infrastructure nodes in an interoperable way. 

Most geospatial web services implement standard interfaces specified by the Open Geospatial 

Consortium (OGC) for serving, visualizing and processing data. An example is the OGC Web 

Processing Service (WPS) specification that has become the service interface of choice for 

exposing any geospatial processing capacity as a web service. Its getCapabilities and 

describeProcess methods offer service and process metadata, while the execute method triggers 

a concrete process. In this way, WPS-based services can be accessed remotely, reused and 

shared in different scenarios. 
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To meet complex user demands, SOA relies on best practices for service composition 

(Papazoglou and van den Heivel, 2007). Figure 3 depicts the main phases involved in service 

composition and workflows in SOA. Workflows are often created as a set of high-level tasks to 

achieve a certain goal. At this stage, workflow designers try to gather together all the pieces 

needed without entering into low-level implementation details. For instance the identification 

of relevant models and databases may be required to support certain socio-economic policies 

and constraints at this phase. This type of early modelling is called abstract workflow. Rather 

than being directly executable, abstract workflows capture information flow patterns, 

requirements, and constraints needed for conceptualizing and documenting workflows at a high 

level of abstraction.  

Workflow instantiation means to transform abstract workflows into executable workflow 

descriptions (Figure 3). A key actor in describing executable workflows is the WS-BPEL (Jordan 

and Evdemon; 2007) specification that, under the OASIS
v
 auspices, has turned into the de facto 

business process description language for web service workflows. WS-BPEL is supported by 

various workflow enactment engines that are either commercial like ActiveVOS
vi
 or open source 

like Apache ODEvii. 

 

Figure 3. Phases involved in modelling geospatial workflows and processes in service-based modelling 

Many attempts to integrate OGC services into service-based geospatial workflows have been 

proposed within the geospatial and environmental domains (Friis-Christiensen et al. (2009), 

Müller et al. (2010), Li et al. (2010), and Granell et al. (2010)). All these approaches aim at 

integrating and sharing geospatial content in terms of distributed web services. The use of OGC 

data and processing service interfaces demonstrates the flexibility and reliability of such services 

in operational geospatial workflows. This includes use cases from ecosystems and biodiversity 

modelling (Fook et al., 2009; Auer et al., 2011) to geospatial decision-making and map 

generalization (Brunner et al., 2009; Foerster et al., 2010).  

McInerney et al. (2012) proposed a service-based modelling approach to build the forest use 

case. For instance, the required data sets such as EFFIS burnt areas and protected areas are 
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available as features types from associated core data services (e.g., available data services 

deployed in EFDAC). Such features types are discoverable using catalogue services. The forest 

assessment models are wrapped as OGC WPS processes which can process assessments both at 

local and national scales. The results in this case may be automatically published in catalogue 

services and deployed in the associated core data services. Since the publication process is also 

wrapped as a WPS process (Díaz, L., Schade, 2011) it may be easily integrated into a geospatial 

workflow as mentioned earlier.  

Service-based solutions, however, face some limitations within IEM: the lack of mechanisms to 

control interactively each step of a service composition run. Environmental modellers and 

scientists often re-run a given process once input variables and parameters have been adjusted 

or calibrated. As mentioned in Section 3.1, robust execution environments and interactive 

execution control are commonplace in component-based solutions. 

3.3 Hybrid Approaches 

Since reusability and scalability are desirable features in IEM (Section 1), some component-

based modelling frameworks attempt to support remote web service access. The Actor concept 

of Kepler (Ludäscher et al, 2006) is a notable example. It provides mediation functionality to 

overcome interoperability issues such as different data encodings and structure (Wiederhold, 

1992), and thereby enables the integration of external components and services into a common 

workflow. Users can select components via specialized Actors (e.g. Web Service Actor) and add 

them into Kepler-compliant workflows. Pratt et al. (2010) explore how Kepler-based workflows 

can be exposed as OGC WPS services and point to several limitations, which are caused by the 

disparate declaration of input and output parameters. Similarly, Barseghian et al. (2010) suggest 

the potential integration of OGC Sensor Web Enablement (SWE) within Kepler workflows, so 

that scientists can benefit from these standards and protocols to access to environmental 

observations and measurements in IEM solutions. 

The latest release of OpenMI (version 2) also provides significant changes to simplify the 

underlying set of OpenMI base interfaces (Donchyts et al., 2010) and facilities the adoption of 

third-party components. Some authors already pointed out the need of exposing OpenMI-

compliant components as web services in order to realize the full potential of service-based 

modelling. Goodall et al. (2011) obtained inspiration from the OGC WPS specification to design a 

web service interface built upon OpenMI. However, WPS compliance has been dropped. The 

authors were able to anticipate the recent agreement
viii

 between OGC and OpenMI in promoting 

open geospatial standards related to IEM. This kind of collaborations that fosters 

interoperability between complementary standards will undoubtedly speed up the next 

generation of hybrid approaches. In essence, component-based frameworks are slowly moving 

towards a common, basic interface standard (e.g. OGC OpenMI 2.0) that would allow for generic 

single wrapper implementations optimized for the particular target environment in which the 

components are used. 
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4. A Resource-Oriented Approach 
The analysis of the related work yields some interesting conclusions. Both component-based 

and service-based modelling techniques provide distinct advantages and limitations because 

both are optimized for specific application domains and scenarios. Service-based modelling 

techniques focus on reusing distributed services to create flexible business workflows, while 

component-based modelling frameworks offer robust mechanisms and environments for 

constructing interactive, data-intensive integrated models. 

Both share the principle of communication interfaces. Standards-based interfaces have been 

successfully applied to combine a limited set of models and components in specific domains 

(Knapen et al., 2009). OpenMI provides the ability to enhance integrated modelling whenever 

backend components migrate to OpenMI-compliant interfaces. However, this kind of solution 

bears several limitations. Above all, components developed or adapted for a specific system are 

rarely compatible in practice with other frameworks (Rizzoli et al., 2008). Second, even for 

components deployed with the same framework, the task of continuously adapting components 

interfaces to new versions and emerging trends in communication protocols and technologies, 

limits considerably scalability and interoperability. For instance, new releases of the OpenMI 

interfaces or any other component interface will certainly require a tailoring of the contained 

components to updates in interface descriptions such as changes on attribute names or 

deprecated method names. Although OpenMI 2.0 interfaces, when implemented in a non-

invasive manner, should not impact the underlying component, and tight-coupled interfaces in 

general may impede the re-use of services and components in IEM solutions. 

In essence, the interface of components cannot evolve independent of the frameworks in which 

they are contained nor from client applications because such components, frameworks and 

client applications are tightly coupled to specific interfaces and communication protocols. 

Returning to our use case (Section 2), a migration from OpenMI 1.4 to version 2 would lead to 

changes in adapting the components for protected areas assessment. Similarly, from the 

service-based modelling perspective, the migration from the WPS 1.0 interface specification to 

the on-going WPS 2.0 would also require the modification of the interface descriptions for 

protected areas assessment services and client applications (e.g. Data Forest Portal). 

Furthermore, scalability and reuse get limited because of the need to continuously adapt the 

description of component interfaces to new changes. 

The very principles of the Web provide an alternative to tightly-coupled interfaces. Since its 

inception, the Web has been continuously expanding to become the largest ever information 

infrastructure and integration platform. It is a repository made up of disparate resources such as 

documents and images, as well as services, processes, and models. Yet at the same time the 

Web provides easy mechanisms to enable users the creation, publication and connection of 

resources across different application domains. The content-centric aspect of the Web 
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manifests itself in the growing popularity of Web 2.0 services and social networking services that 

enable citizen participation and user-content generation (Díaz et al., 2011). 

Based on our past experiences in modelling geoprocessing service compositions for hydrological 

models (Granell et al, 2010), architectures for distributed geoprocessing services (Friis-

Christiensen et al., 2009; Díaz et al., 2011), and the new requirements posed by sensor web in 

future environmental modelling (Havlik et al., 2011), we are now asking whether the same 

architectural principles and mechanisms that shape the Web may serve to design uniform, 

resource-oriented interfaces to enhance integrated (environmental) modelling solutions. The 

idea of exposing every piece of functionality (e.g., component, service) used in IEM solutions 

with a uniform interface is appealing enough that it is worth exploring.  

Resource-oriented and standards-based communication interfaces share the essential idea but 

differ on the approach used. Both aim at easing the access and reuse of pieces of functionality in 

integrated models. Yet, in the latter case, every single framework (e.g., OpenMI, Kepler, etc.) 

provides a specific communication interface (also called Application Programming Interface, API) 

on top of a transport protocol (usually HTTP for remote access) to enable access, discovery, and 

execution of components. In the former case, resource-oriented modelling leverages HTTP itself 

as the application protocol, i.e., HTTP takes the role of an API, to access and manipulate any 

type of resource. As the HTTP protocol is omnipresent in distributed computing on the Web, it 

seems reasonable to use it directly rather than adding overlapping APIs on top of it. Our 

suggestion is to exploit the benefits of HTTP as a uniform communication interface for 

component-based and service-based modelling frameworks.  

In the following section, we explore the design of such a resource-oriented solution in detail, 

suggest some implementation strategies, and highlight the importance of using uniform 

interfaces for enhancing integration of multi-disciplinary resources at any granularity level. We 

stick to a scenario where data providers, such as scientific institutions, expose their own 

environmental resources through an infrastructure node, following any of the technologies 

described previously. Such components and services may be used and accessed locally or 

remotely by third parties. Nevertheless, in such a scenario, building integrated models that 

involve components and services from different data providers remains a challenging task.  

5. Design of RESTful Interfaces 
After we discussed the motivations for the resource-oriented approach in the previous section, 

we now explain the way to develop a sustainable solution based on the Representational State 

Transfer (REST) architectural style (Fielding, 2000). REST imposes a set of constraints on the 

communication between clients and servers that guide software architects in designing concrete 

distributed systems and applications. In this section we look into some common aspects that 

must be considered for designing RESTful interfaces (Richardson and Ruby, 2007) and project 

those to enhance IEM. Where possible, each subsection follows a similar structure. A specific 
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interface aspect from the REST viewpoint is introduced first, followed by a discussion on its 

application within the context of IEM. Recommendations on the implementation applied to our 

use case are presented in Section 6.  

5.1 Specification of Resources 

One of the first aspects in designing resource-oriented interfaces is to define the notion of a 

resource in respect to the application domain. Initially, any information that can be of interest is 

a resource. In other words, any informational entity may be regarded as a resource in the target 

RESTful application. 

Design practices. In practice, any type of entity involved in IEM may be abstracted as a resource. 

From the engineering perspective, this is an important enhancement since the issue of dealing 

with different abstractions (component, service, process, models, etc.) adds an additional level 

of complexity to the design of IEM solutions. However, there are certain degrees of freedom in 

this statement, since the entities of interest in a specific domain may not directly match the set 

of exposed resources in the final application. Whereas components and services are regarded as 

coarse-grained entities, resources are usually considered fine-grained entities. Accordingly, a 

component or service in a given domain may get de-composed into a set of resources, 

depending on the particular application requirements. For instance, a model can be transformed 

into a set of resources (e.g., process, list of inputs, list of outputs, state, synchronous execution, 

asynchronous execution). 

The previous example may give the initial impression that the number of involved resources 

tends to be much larger than the number of components and services. However, it is a common 

design practice to accommodate varied levels of granularity of resources by organizing 

resources into collections and composites (Allamaraju, 2010). A composite resource may thus 

provide a single, logical view of a set of interrelated resources, without hindering the 

independence of the contained single resources. Each resource may be used as an individual 

entity or as part of a composite resource. However, a collection groups resources of the same 

nature. Figure 4 illustrates the mapping of a single model into a set of resources. The model 

resource is a composite resource (in dark) that gives a proxy to inner resources such as inputs, 

outputs and state, which are not hidden by the model composite resource but may be also 

accessed individually. Similarly the inputs collection resource groups the list of input resources. 

In practice, finding the right granularity level of the target resources becomes a critical design 

decision since the remaining REST principles are all based on this concept. This reinforces the 

statement that collaboration among all parties, which are involved in designing resource-

oriented interfaces for integrated modelling, is as critical as in the development of 

environmental models (Jakeman et al., 2006). 
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Figure 4. Use of composite and collection resources (in dark) to deal with multiple granularities 

5.2 Resource Identifiers  

A second aspect in REST is that every single resource must be uniquely identifiable. In general, a 

resource has to be correctly identified before it can be re-used. The Web uses the Uniform 

Resource Identifier (URI) (W3C/IETF, 2001) mechanism to name every resource. Apart from the 

purpose of identification, the use of URIs provides an extra benefit because resources are 

dereferenceable through their HTTP URI (Jacobs and Walsh, 2004). This means that client 

applications use URI identifiers for accessing the resource itself. In this way, the same 

mechanism is used for identification and physical access to the resource. 

Design practices: Users and client applications do not require prior knowledge of the set of URIs 

for accessing specific resources such as models, outputs and input resources in Figure 4. In other 

words, each resource provider may choose different URI naming conventions without breaking 

with existing client applications. They just have to provide a global identifier for each resource, 

regardless of the concrete URI syntax used. For this reason, URI naming conventions are 

transparent to the HTTP protocol provided that such a URI is well-formed. The World Wide Web 

operates in the same manner. Users follow links within a given web page to move ahead rather 

than memorizing or constructing every URI by themselves. 

Furthermore, attempts of standardizing the syntax of URIs just provoke the opposed effect, 

because a resource and its URI identifier become tightly coupled. When the URI naming 

conventions are uniquely imposed by the provider and hidden to client applications, then those 

become more independent and robust to broken links. Changes to URI naming policies can be 

easily implemented. For example, Web users suffer a recurrent case when they bookmarked a 

given HTTP URI and later fail to reach the concrete page due to slight changes in the URI naming 

conventions. Otherwise, letting client applications build a URI to access resources is an error-

prone practice. Whenever possible, client applications should be given with the exact URI to 

access such resources.  
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The recommended way to access the full range of resources in a given server is via the canonical 

or root URI (Richardson and Ruby, 2007; Allamaraju, 2010). This is the unique URI that should be 

made available in public catalogues and registries. The role of canonical URIs is similar to one-

stop geo-portals (Bernard et al., 2005; Goodchild et al., 2007), which allow efficient access to 

spatially distributed geospatial data and services offered by an infrastructure node. Client 

applications are then encouraged to bookmark the canonical URI instead of each individual 

resource’s that might change over time. Changes may be not only due to URI syntax but also to 

the resource organization (e.g., a given model is provided with a new input resource). Accessing 

through the canonical resource ensures that client applications always get an up-to-date view of 

the plethora of resources behind the scene.  

5.3 Uniform Interface to Manipulate Resources  

Complementing the resource identification mechanism of HTTP URIs, the uniform interface 

constraint in REST establishes a standard way to access and manipulate resources regardless of 

their application domain. The uniform interface is driven by the principle of generality. Each 

resource has the same interface, which is derived from the standardised HTTP methods (Fielding 

et al., 1999). Most prominently, the GET method is for retrieving resource representations, POST 

method for creating new resources, PUT for updating resources, and finally, DELETE is meant to 

eliminate a given resource. In doing so, REST raises HTTP to the level of an application protocol.  

Design practices: The use of HTTP as the unique application-level protocol means that HTTP 

methods become a kind of universal access API for any resource-oriented application. This fact 

has some important consequences. First, the semantics of the access interface is made explicit, 

due to the wide use and standardization of the HTTP protocol. Following any of the access 

interfaces described in Section 3, a client needs to understand every single access interface. If 

REST is used instead, regardless of the nature of resources in the server side, any client knows 

how to access them based on the semantics of the HTTP methods. As the interface remains 

invariable, underlying resources no longer have to be updated to new specific interface versions. 

Each resource evolves internally while it publicly exposes a uniform interface. 

The second consequence of using HTTP methods is that the access interface (HTTP uniform 

interface) becomes decoupled from the resource representation (See section 5.4). The 

representation of a given resource is irrelevant for the action of issuing a HTTP GET request 

against that resource. Conversely, this does not hold for most component-based and service-

based modelling solutions. Thinking of a WPS-based service: the response of a getCapabilites 

request, which contains the list of processes and supported operations, is described using the 

WPS schemas. Such a response is used by client applications to interact with a particular process 

(e.g., describeProcess request). In other words, the interaction protocol is not made explicit and 

is embedded to the description format used. A client thus discovers the details of the interaction 

protocol as it processes response descriptions. In REST, the access interface and the resource 

representation are independent from each other. Every single resource in Figure 5 (e.g. model, 

inputs) exposes the same uniform interface (set of HTTP methods). Most importantly, that 
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access interface does not depend on the representation format of the resource. Examples of the 

use of the uniform interface are provided in Section 6.3. 

 

Figure 5. Inter-linked resources modelled as collections and members with uniform interface. For the 

HTTP methods, grey boxes denote allowed actions and white boxes unsupported actions (an extension of 

Figure 4) 

5.4 Resource Representations  

Resources are entities that may be regarded as being a set of attributes and properties which 

are accessible and editable. For instance, a model resource in Figure 5 is on one hand a piece of 

software functionality and, on the other hand, a list of input and output parameters, keywords, 

and textual descriptions. The resource representation is actually the unique part being 

manipulated through the HTTP-based uniform interface by client applications. That is, issuing a 

GET request against the model resource does not download the computational model itself but 

a representation of that model resource. A resource representation is then an informational 

view of a resource at a given time. Considering a resource that provides real-time sensor data as 

an example, issuing various HTTP GET requests against that resource at different time periods 

would most likely lead to different measurement values. In this way, REST disjoins abstract 

resources (e.g. a sensor, an algorithm, model) and concrete and manageable representations 

through the fixed set of HTTP methods. Resource representations are then manageable 

documents serialized according to specific media types (also called MIME types), such as HTML, 

XML and JPEG. 

Design practices: The separation between resources and resource representations is not a new 

but a recurrent design principle, which is also applied to Web services and service-based 

solutions (Alonso et al., 2004; Papazoglou and van den Heuvel, 2007). A software component 

might provide a public OpenMI interface and a service a WPS-based interface description. 

Nevertheless, REST provides an additional benefit in that it enables a one-to-many relationship 
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between a resource and their representations because the access interface (HTTP methods) and 

the resource representation (description) are separated from each other. A client application 

may request the inputs resource (Figure 6) and it may have different needs in terms of 

representation formats. In one case, it may expect results in HTML format for display in a web 

browser (e.g., documentation on evaluation and use of the collection of model inputs). In 

another case, the client may expect the inputs resource representation in JSON for automatic 

processing (e.g., building a data collection web form). 

 

Figure 6. Three different resource representations (XML, JSON, HTML) for the same Inputs resource 

The ability to provide distinct media types (formats) for resource representations is an 

important design aspect when defining RESTful interfaces. The use of widely-used media types 

(e.g. HTML, XML and JSON) is recommended because they are universally understood by any 

client (Webber et al., 2010). MIME types may be used by clients to anticipate the expected 

format of a resource without the need to access the resource representation. Selecting one 

MIME type from various alternatives is then a desired capability since clients may not support 

every MIME type or they are just interested in one of them. Examples on the use of MIME types 

are provided in Section 6.4. 

5.5 Resource State 

REST relies on stateless communications between clients and services. No shared session is 

maintained or stored elsewhere (Fielding, 2000). This means that each request to the server 

must contain all of the information necessary so that a server fully understands the meaning of 

the request, without referring to any shared context. The same occurs for server responses to 

clients. Stateless communication means that every single request is independent from its 

predecessor and successor; that is, every request is self-containing and autonomous.  

However, stateless communication does not imply stateless applications. The notion of state in 

RESTful applications might cause confusion. A few observations between application state, 

resource state, and internal state may provide clarification. Any resource encapsulates an 

internal state as is done with components and services. This internal state is maintained by the 

resource provider (right part of Figure 7) that decides which part of the resource’s internal state 
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is made public to clients. This public view of the resource’s internal state is the resource state 

(central part of Figure 7). Resource representations play an important role to embody resource 

state because clients and servers communicate with each other by exchanging specific 

representations. For instance clients access the current state of a resource by retrieving its 

representation as response to a GET request. 

 

Figure 7. Relationships among internal, resource and application states in RESTful interactions 

Also a software component can expose specific methods to retrieve and update the values of 

state variables (e.g., Donatelli et al. (2008) and Janssen et al. (2009)). The underlying concept is 

essentially the same: components (or services) and resources are stateless because both hide 

their internal state, and minimize dependencies with other components and deployment 

environments. The key difference here is that the access interface to the resource state is 

uniform in REST, while each component- and service-based framework implements a different 

method, i.e., it offers an uneven interface.  

Moreover, due to stateless communication, RESTful client applications need a way to persist 

state (e.g., previous results) across several interactions with resources since the next interaction 

may depend on previous ones. This persistent state is called application state. In service-based 

approaches, statelessness is addressed by using dedicate middleware services that store and 

manage the application state shared by involved services (e.g. Kassahunm et al., 2010). Again, 

the key difference is not the role of the application state but who is in charge of managing and 

storing it. In REST, instead of using middleware, application state should be maintained 

exclusively by client applications (left part of Figure 7). This is required because the application 

state changes as a client interacts with resources in the server side. The emphasis here is that 

the management of application states in a RESTful manner is not a barrier but an opportunity to 

build decoupled resources and clients. 

It is worth noting that RESTful clients are more similar to desktop clients than current clients on 

the Web (e.g. web mapping and mash-up clients) in terms of the management of application 

state. This means that RESTful client applications should be intelligent enough to perform 
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certain actions and decide or suggest the next step to follow depending on the current 

application state. In the following we focus uniquely on the design aspects of the resource state 

since it is directly related with other design aspects such as resource representations (Section 

5.4) and hypermedia (Section 5.6). 

Design practices: A RESTful interface designer must respond to a relevant design issue: what 

part of the internal state should be projected in the resource representation as resource state? 

The answer depends on the specific resource to design and the application needs as a whole. 

Despite this, some best practices are available in mainstream ICT and therefore may be 

applicable to IEM too.  

First of all, informative data such as attributes, parameter values, and textual descriptions are 

the first candidates to be part of the resource state because clients are normally interested in 

such kind of data. Nevertheless, the informational view of a resource is only one aspect of its 

internal state. Linkages to related resources are another aspect. They may have varied meanings 

or intentions. As commented on Figure 6, the representation of the Inputs collection resource 

contains all URI identifiers of the input resource. Such linkages, which are meant for structural 

purpose, may be part of the resource state. Other linkages represent transitions, i.e., URIs to 

related resources from the current resource in terms of the “possible” next steps in the 

application-specific information flow. (The notion of linkage and hypermedia will be examined in 

the next section.) 

Additionally, the HTTP protocol itself already provides useful information about the resource 

state, which does not have to be embedded in resource representations. HTTP headers, which 

are used in the request-response communication, carry information to better understand the 

exchanged resource representation. These pieces of metadata may be considered part of the 

resource state since they help client applications to manage the resource representation. 

Delimiting the boundaries of the resource state is a vague task to a certain extent. As opposed 

to a centralized, shared session space (session state), which is common in service- and 

component-based solutions, RESTful applications rely merely on the elements involved in the 

request (e.g. HTTP headers, representations, hypermedia) to understand the state of a given 

resource. This leads to loosely-coupled, scalable systems since clients are not tied to specific 

implementations to model state (Foster et al., 2008). 

Aside from previous practices, the resource state design in IEM may face specific requirements, 

such as time based execution of models and the ability to step back to a previous state of a 

given resource. For example OpenMI supports time-dependent models, which allows scientists 

to return to a previous time-step. One may believe that such specific requirements may have 

some implications on how state is maintained and managed in resource-oriented applications. 

In Section 6.5 we give some pointers to prototype applications that support the management of 

resource states by exclusively using HTTP capabilities. Innovative ways of exploiting existing 

mechanisms can deal with specific requirements which seemed to be a priori unaffordable.  
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5.6 Hypermedia Protocol 

Just like uniform interface and identification of resources, hypermedia-driven application 

protocol (aka hypermedia) is yet another REST principle (Fielding, 2000). The term hypermedia 

refers to the interaction approach between clients and resources that is built upon the 

combination of valid state transitions. A state transition indicates a valid path between two 

resources. Returning to our use case (Figure 2), the data publication process (B) should be 

accessed only after getting the results from the impact forest fires model (A). This means that 

there is a valid transition from A to B, but not from B to A. Furthermore state transitions define 

dependences between resources that let client applications interact and navigate across 

resources keeping the application state consistent.  

Design practices: The role of hypermedia is to certain extent similar to the use of workflow 

patterns to capture control-flow dependences between distinct tasks (Russell et al., 2006). 

These patterns yield the theoretical background in most workflow engines and component-

based frameworks. While workflow patterns (sequences, conditionals, etc.) are the glue 

between components (or services), hypermedia manages the application flow between 

resources. The former is made explicit at design time and often does not require human 

intervention at run time. The latter is discovered at run time and is more flexible to changes, but 

may depend on human intervention. ‘Intelligent’ clients (see also Section 5.5) should be able to 

recommend users the next link (state) to follow according to user preferences and the 

application state. 

Apart from the differences in the control-flow the main difference is the specification of control-

flow primitives. As mentioned earlier (in Section 5.5), resource representations contain data 

(e.g. attributes values) and pointers/links to related resources. Whereas control flow primitives 

are independent in component- and service-based solutions because they are often defined in 

separated description languages, hypermedia (linkages) is an integral part of resource 

descriptions. Each single resource defines its network of related resources, such that there is no 

need for a third-party language because each resource indicates the set of potential state 

transitions. Coming back to our example (see also Figure 6), the representation of the inputs 

collection resource advertises a list of next transitions in terms of related resources (e.g. input 

resources). The linkages that are embedded in the representation of the inputs resource 

describe the inputs’ valid state transitions. Furthermore, client applications interact with the 

deployed resources by using a hypermedia protocol as follows. As the set of state transitions in 

a given resource may vary over time, clients first retrieve the resource representation so as to 

get an up-to-date list of available state transitions. Next, clients make decisions on the most 

suitable target transitions depending on the meaning of these transitions and the current 

application state. Finally, the clients proceed to the selected state transition by issuing HTTP 

requests to the corresponding resource (see Section 5.3). 

Nevertheless, RESTful client applications must be able to understand and correctly interpret 

such state transitions, as the workflow engines do with executable description languages (see 
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Figure 3). This implies each state transition must have a clear purpose and meaning, which is 

known to all client applications. A key point in designing resource-oriented interfaces is the 

identification and description of the state transitions to support linkages between resources. 

Clients need accurate information about the possible state transitions to ease integrated 

modelling. One simple mechanism to support proper state transitions is the use of typed links, 

which explicitly describe the meaning of each available transition. Typed links can be 

semantically annotated in order to provide client applications with the intended interpretation 

of links. We propose some examples of typed links for IEM in Section 6.6. 

6. Implementation Recommendations 
This section demonstrates the applicability of the design practices described in Section 5 for an 

integrated modelling use case. Practical examples throughout this section are based on part of 

the modelling use case introduced in Section 2. In particular, we stick our discussion to the 

example presented in Figure 2, which integrates an Impact Forest Fire model and a Data 

Publication Process to monitor the impact of forest fires in protected areas of interest.  

6.1 Specification of Resources 

Rather than specific technologies, the identification of the involved resources and their possible 

partonomic relations requires a clear understanding of the study problem. Resource modellers 

should rely on best practices and successful use cases when identifying the set of resources for 

particular applications (Allamaraju, 2010). Figure 8 represents the mapping of the Impact Forest 

Fire model in Figure 2 into a set of resources (Section 5.1).  

 

Figure 8. Use of composite and collection resources (in dark) in the case of the Impact of Forest Fire (IFF) 

model (an instance of Figure 4) 
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To the best of our knowledge, resource-oriented approaches in IEM are still rare. However, 

some initial examples are emerging from some service-based modelling approaches, which 

attempt to specify a set of resources for a variety of OGC geospatial services with well-known, 

standardized data models (Mazzetti et al., 2009; Gao et al., 2010; Foerster et al., 2011; Finney 

and Watts, 2011; Janowicz et al., 2012). 

6.2 Resource Identifiers  

HTTP URIs, i.e., URI mechanism using HTTP schema, are needed to identify properly each 

resource on the Web. The same technology may also be utilized for resource identification in 

IEM. Immediate benefits from being aligned with the architecture of the Web (Jacobs and 

Walsh, 2004) is that all the features already provided by the Web such as URI bookmarking, 

syndicating, browsing, and discovery through general search engines are directly available when 

building resource-oriented applications.  

Figure 9 shows a simple example of URI design of the space of public resources in the context of 

our use case
ix
. For example, http://mynode.org/resources represents the root or canonical URI 

(Section 5.2), i.e., the entry point to the public resources in an infrastructure node at 

http://mynode.org/. Client applications would discover contained resources in such a node by 

querying this public URI. The response to such a query may provide the collections of deployed 

resources grouped following a domain specific categorization, such as the spatial data services 

(SDS) categories defined by INSPIRE (European Parliament and Council, 2007). As each collection 

is actually a resource (Section 5.1), each one has a unique HTTP URI. In INSPIRE terms, the 

resource collection identified by the URI http://mynode.org/resources/sds/invoke would point 

to resources of type Invoke SDS Services, while the one pointed to by the 

http://mynode.org/resources/sds/view fragment would refer to resources of type View Services.  

We can now make a case for membership relationships between resource collections. By 

following the URI http://mynode.org/resources/sds/invoke, the invoke
x
 collection resource 

would contain the list of forest assessment models and processes. The use of a collection 

resource makes sense to group similar models and process in the forest assessment use case. 

Each individual member of the invoke collection, called member resource, is a distinct resource, 

i.e., a slope-based algorithm. The URI http://my.sdinode.org/resources/sds/invoke/iff refers for 

instance to the Impact Forest Fire model composite resource depicted in Figure 9. As 

commented in Section 5, each resource allows introspection by selecting certain outgoing links 

(Section 5.6) from its representation (Section 5.4) so as to inspect contained resources (e.g., 

inputs, outputs, and state).  
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Figure 9. Specification of resources and their URI identifiers for the use case. The resource iff represents 

the Impact Forest Fire Model composite resource in Figure 8 

In general, it is desirable to organize resources according to well-known categorizations (e.g. 

INSPIRE service types) or application-specific vocabularies. In this particular example, ‘invoke’ 

and ‘view’ are terms adhered to actual classification of SDS in INSPIRE, while ’iff’ and ’dpp’ 

should be defined in a domain-dependent vocabulary. Such terms can be used as keywords for 

browsing and searching resources. The promotion of standardized lists and shared classification 

schemes is encouraged to ease the specification of typed links (Section 6.6), as opposed to the 

standardization of URIs syntax. 

6.3 Uniform Interface to Manipulate Resources  

From the IEM’s point of view, the uniform interface provides an elegant and simple solution to 

access and manipulate any resource regardless of its nature and application domain. The HTTP 

protocol is the only technology required and, most importantly, many tools and libraries that 

abstract from the syntactical details of HTTP already exist for desktop, web and mobile 

environments. 

Figure 10 depicts the role of the HTTP methods as the unique application-level protocol. The 

degree of freedom in the definition of method names in service- and component-based 

approaches is restricted here to a fixed set of meaningful methods. This eliminates a common 

source of errors, above all in client developments, which in practice often leads to a lack of 

interoperability. Notably, a given resource does not have to support all of the HTTP methods. As 

illustrated in Figure 10 the collection resource invoke supports GET and POST. This means that 

client applications can obtain the list of member resources (iff and dpp) via GET and create new 

member resources for this collection via POST. In contrast, a member resource, for example iff, 

supports all HTTP methods. A client application can thus perform any action against this 

resource. By selecting the appropriate HTTP methods, a resource designer can simulate any 

behaviour over individual resources. 
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Figure 10. Inter-linked resources modelled as collections and members with uniform interface for the use 

case. For the HTTP methods, grey boxes denote allowed actions, white boxes unsupported actions (an 

extension of Figures 8 and 9) 

Finally, it is simple to add a new resource (input data item, process, model, etc.) into a resource-

oriented application. It is just a matter of issuing a POST or PUT request to the corresponding 

collection resource that acts as a factory (i.e., a well-known creational design pattern (Gamma et 

al., 1995)) to create new member resources. In our use case, only POST requests are allowed 

against the inputs collection resource to create a new input member resource (Figure 10). Yet, 

some additional aspects must be taken into account when adding new resources to a given 

collection. Questions such as ‘What attributes/properties should be part of the representation 

of the resource?’, ‘What representation formats to use?’, and ‘Which are the related resources 

to the current resource?’ have to be addressed (Section 5.3). 

6.4 Resource Representations  

Media type selection is supported through the HTTP content negotiation mechanism (Fielding et 

al., 1999). In short, it lets clients set preferences (format, language, etc.) of the requested 

resource representations. For example, by using the Accept header as ‘text/html, 
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application/pdf’, the client indicates that HTML is the preferred return format, although pdf is 

also acceptable. Although this mechanism is as old as the Web itself, it provides the basic 

protocol to select and receive a concrete representation format when a given single resource 

has multiple representations in different data formats (Richardson and Ruby, 2007). We revisit 

the capabilities of content negotiation in the next section. 

Again, the HTTP protocol and the use of MIME types are the required technologies to support 

multiple resource representations. Most MIME types are registered under IANA (Internet 

Assigned Numbers Authority
xi
), so this is the first place to seek for candidate MIME types in 

defining RESTFul interfaces. However, in particular applications like environmental modelling, 

other media types may be required because they are either imposed in the particular 

application or simply generic media types that are not able to specify all the semantics of a given 

resource. In such cases the use of specialized media types may solve the problem, while these 

media types are made visible and shared between clients and resource providers (for instance 

being registered under IANA). An example of specialised MIME type is agroXML
xii

, an XML-based 

language for soil data exchange in agriculture (Martini et al., 2009). A resource may advertise to 

clients the MIME type text/xml; subtype+agroxml if it comes encoded in the agroXML format.  

 

Figure 11. Different resource representations (GML, KML, JSON, agroXML) for the input resource that 

represent burnt areas in the impact of forest fire model.  

Returning to our use case, Figure 11 illustrates four different representations for the resource 

input01, that refers to the burnt areas data fed into the Impact Forest Fire model. Depending on 

their particular needs, client applications can get access to burnt areas description in various 

formats. Selecting the most appropriate MIME type through the HTTP content negotiation 

mechanism opens the door to a wider range of client applications. For instance, some 

specialized clients may support just one response format (e.g., agroXML), while others may be 

interested in widely used formats such as KML and JSON. Decoupling formats and data 

encodings from the access interface makes RESTful services scalable and flexible for future 

needs. However, most service- and component-based solutions support a limited set of formats 

(one or two). This is because details of the access interface are often embedded in the 

supported format (e.g., WPS services only support XML format according to the WPS schemas). 
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Compared with RESTful applications, service- and component-based applications have a lack of 

flexibility to support and adapt to emerging data formats needs. 

6.5 Resource State 

HTTP headers, HTTP URIs, MIME types and format representations that support links natively 

are needed technologies to support and manage resource state in resource-oriented 

applications. Designing is the most difficult, time-consuming part which consists of the definition 

of relationships between resources, how these relationships may change and evolve, the set of 

valid transitions between resources, etc. Once all these requirements are covered, the 

implementation should be straightforward. Next we provide examples to highlight how RESTful 

developments may manage resource state.  

The first example is concerned with the question we posed in Section 5.5 about what part of the 

internal state of a resource should be projected as a resource state in the resource 

representation. Michener et al. (2012) described DataONE as a network composed of inter-

disciplinary, institutional nodes to support the access, sharing and long-terms preservation of 

ecological, earth observation and environmental data to be used by different kinds of 

stakeholders. Each node in the DataONE infrastructure exposes RESTful APIs
xiii

 to allow users 

interact with available data resources. From the REST perspective, since resource state 

descriptions are exchanged between client-server communications, environmental scientists 

through ‘intelligent’ clients (called ‘Investigator Toolkit’ in DataONE terms) are able to interpret 

resource responses and manage properly related resources. Environmental scientists can 

perform several tasks such as seeking for replicas of a given data set. Essentially, appropriate 

representations of resource states ease the correct interpretation and further interaction with 

these resources without the need of a shared session (Section 5.5).  

The second example is concerned with restoring previous states of a given resource. This aspect 

is central in IEM as mentioned in Section 3. In general, de-referencing a URI does not return a 

representation of prior states but a representation of the current state of that resource. Indeed, 

HTTP protocol lacks temporal capabilities that impede getting to an archived version of a 

resource on the basis of its original URI. Van de Sompel et al. (2009; 2010) addressed this issue 

extending the HTTP protocol with temporal capabilities. The authors described ‘Memento’, a 

protocol to support the access to time-specific versions from the current resource. The 

underlying idea of Memento is to extend HTTP with content negotiation in the temporal 

dimension. As said above, the HTTP protocol supports content negotiation in the sense that it 

allows clients to express preferences according to format representation and language. Van de 

Sompel et al. (2009) introduced the concepts of memento and timegate resources, which refer 

to archived versions of a resource, and provided dedicated mechanisms to support datetime-

based negotiation. Clients looking for prior version of the current resources are provided with an 

extended Accept header that includes a specific slot for time values. Memento has been 

successfully demonstrated in several Web scenarios (Van de Sompel et al., 2010). Accordingly, 

Memento may be a suitable approach to manage time-based execution of environmental 
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models, where previous steps may be reachable through mementos resources of the current 

resource at earlier times. 

6.6 Hypermedia Protocol 

The technological subtract for the typed links consider HTTP, HTTP URIs, and Web Linking. 

Nottingham (2010) proposed a way to include links within HTTP headers. The syntax of a link 

header is a set of pairs in which the rel attribute adds semantics to the link in terms of 

established relation types. A link relation type conveys the role or purpose of the link and acts as 

an identifier for the semantics associated with the link. This approach has already been tested 

for connecting geospatial services (Schade et al., 2010). 

In the following, we elaborate on the kind of typed links needed to enable inter-connected 

resources in an infrastructure node. Given that some typed links
xiv

 are already registered under 

IANA, as in the case of MIME types (see section 6.4), the proposed set of typed links is split into 

two groups. The first group (Table 1) is taken from specifications that have already been 

registered under IANA. We argue that all of these relations can be re-used in connecting related 

resources without altering their original meaning. We distinguish three roles for a given link: 

navigational, informational, and operational. The first two are commonplace for traditional web 

navigation (Leven, 2006), while relations under the operational category are specifically 

dedicated to controlling the resource life cycle.  

Link name Specification General semantics Specific semantics (for IEM) 

service AtomPub 

RFC5023 

(Gregorio and 

de hOra, 

2007) 

Indicates a URI that can be used to 

retrieve a service document. 

[Navigational] Points to the service document 

(entry point). 

edit AtomPub 

RFC5023 

Refers to a resource that can be used 

to edit the link's context. 

[Operational] Retrieves, edits and eliminates 

metadata of an entry resource (process metadata 

in Atom). 

self Atom 

RFC4287 

(Nottingham 

and Sayre, 

2005) 

Conveys an identifier for the link's 

context. 

[Navigational] Retrieves the collection document 

again.  

up Web linking 

RFC5988 

(Nottingham, 

2010) 

Refers to a parent document in a 

hierarchy of documents. 

[Navigational] Refers form entries to feeds or from 

process description (inputs/outputs) to entry. 

latest-version Simple 

Navigation 

RFC5829 

(Brown et al., 

2010) 

Points to a resource containing the 

latest version of the context. 

[Navigational] Links to latest version of a given 

process. 

first HTML5 

(Hickson, 

2011) 

Refers to the furthest preceding 

resource in a series of resources. 

[Navigational] Links to the first process in a given 

collection. 

last HTML5 Refers to the furthest following 

resource in a series of resources. 

[Navigational] Links to the last process in a given 

collection. 
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prev HTML5 Refers to the previous resource in a 

series of resources. 

[Navigational] Links to the previous process entry 

in a given collection. 

next HTML5 Refers to the next resource in a series 

of resources. 

[Navigational] Links to the next process entry in a 

given collection. 

via Atom 

RFC4287 

Identifies a resource that is the 

source of the information in the link's 

context. 

[Informational] Refers to the original service 

through the OGC WPS getCapabilities method. 

alternate HTML5 Refers to a substitute for this context. [Informational] Refers to the source process 

description through the OGC WPS describeProcess 

method. 

describedby POWDER 

Perego and 

Archer, 2007 

Refers to a resource providing 

information about the link's context. 

[Informational] Link an Atom entry to a describe 

process resource in terms of inputs and outputs. 

related Atom 

RFC4287 

Identifies a related resource. [Informational] Not used but it is base semantics 

for the extended operational links in Table 2. 

search OpenSearch 

1.1 

(Clinton, 

2011) 

Refers to a resource that can be used 

to search through the link's context 

and related resources. 

[Operational] Enables clients to auto-discover 

search interfaces. 

Table 1. List of re-used typed links from other specifications 

Whereas the first group (Table 1) addresses mainly navigational aspects between resources, the 

second group of typed relations (Table 2) is particularly centred on resource lifecycle 

management. The suggested relations mirror the high-level activities carried out in IEM. For 

instance, after executing a given resource (e.g. a forest assessment model) through the relations 

execute, re-execute, and job, the output results are accessible via the result relation. These 

results may not be satisfactory and scientists need a second run with slightly different values for 

inputs parameters (reset). Otherwise, the output (intermediate or final) results are good enough 

to be shared with the community so that they are published as new resources (publish), 

visualized via View Services (view), or they may be combined with other processes (chained and 

composite relations) because the current process is a step in a workflow. As part of the use case 

(McInerney et al., 2012), experiments in publishing intermediate results through WPS-interfaced 

services (i.e., data publication process in Figure 2) are on-going (Díaz and Schade, 2011). 

Link name Specific semantics (for IEM) 

execute [Operational] Triggers a synchronous execution of the associated process resource. 

re-execute [Operational] Triggers a synchronous execution after execution without changing input values to repeat the 

last execution again. 

reset [Operational] Combines edit (change inputs values) and execute. 

job [Operational] Triggers an asynchronous execution. 

publish [Operational] Publishes process results using publishing services. 

view [Operational] Displays process results on-the-fly using accessing services (map service). 

chained [Operational] Creates a composite process given the current results with other process member (direct 

composition). 

composite [Operational] Creates a composite process given the current results with other collections (indirect 

composition). 

result [Informational] Refers to the result of an action (search result, process execution results, etc.). 

Table 2. List of extended typed links for resource lifecycle management  
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Figure 12 represents the hypermedia protocol, i.e., the valid interactions between clients and 

resources based on the widely used Atom Publication Protocol (AtomPub) (Gregorio and de 

Hora, 2007) and extended with the typed links in Table 1. The figure shows a directed graph 

where the nodes are resources and the edges represents the set of valid state transitions 

between such resources. For example, an instance of the generic Invoke Category Collection 

resource in Figure 12 corresponds to the invoke collection resource in Figure 10. From its 

representation, clients are able to inspect the list of forest assessment models (member 

resources) as well as the list of available typed relations (service, self, search, and edit). This 

means that only four outgoing state transitions are possible from the invoke collection resource: 

back again to the root resource (service), stay at the same resource (self), search concrete 

member resources (search) or move forward toward one entry resource (edit).  

The meaning of a state transition is not only given by the typed link relation. Other aspects, such 

as the HTTP method used, should be considered because HTTP plays the role of application 

protocol and each method brings well-defined semantics (see Section 5.3). From the Process 

Entry node in Figure 12 that corresponds to a member resource (e.g., the impact forest fire 

model), the meaning of the edit relation varies in the context of HTTP GET, PUT or DELETE 

requests. First, retrieving the resource representation implies simply to send a GET request. 

Second, updating implies issuing a PUT request including the update representation document 

within the request. This allows clients to perform partial and concise updates on a given 

resource, such as the addition of new links to related resources (e.g., publish typed link pointing 

to the data publication process). Third, deleting a resource implies sending a DELETE request. 

Depending on the state transition chose (edit relation through GET, PUT or DELETE methods), 

the resulting set of available state transitions will be distinct. For instance, clients are advised of 

the response of a HTTP GET request tagged with the edit relation with a potential list of valid 

states (edit, up, latest-version, first, last, prev, next, describedby, via, alternate, and execution), 

which is completely different from the possible state transitions (none) after issuing a DELETE 

request tagged with the same typed link.  

7. Summary and Discussion 
Resource-oriented architectures and the designing and development of RESTful web services 

(Richardson and Ruby, 2007) are recently gaining much attention. In the SDI context, most of 

the works have been devoted to adapting data models of some OGC specifications to REST 

(Lucchi et al., 2008; Mazzetti et al., 2009; Foerster et al., 2011; Finney and Watts, 2011; Janowicz 

et al., 2012), although other attempts are gradually emerging to explore the applicability of 

resource-orientation in modelling geoprocessing workflows (Chen et al., 2010) and specialized 

geospatial services like gazetteers (Gao et al., 2010). 

This paper differs from the related work in that we explore resource-based architectures in a 

broader sense as a hybrid approach for integrated modelling. We especially highlighted central 

aspects to enable interlinking resources. The definition of typed links and representation 
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formats (documents serialized according to media types) are the basis for constructing resource-

oriented applications. RESTful client applications must be intelligent enough to record the 

application state, as users interact with the set of resources, and help users in the decision-

making process. In this sense, client applications need prior knowledge to properly interact and 

interpret resource representations. The meaning of each typed link, media types and 

representation formats used should be shared and understood in advance between clients and 

resource providers. In contrast to standardize service and component interfaces, RESTful 

approaches (that already take for granted a uniform interface) attempt to standardize 

representations and typed relations, which seems more affordable.  

We have started some proof-of-concept experiment in adopting RESTful interfaces for 

geoprocessing services (Granell et al., 2012). The experiment is still very limited in scope but 

initial results suggest that RESTful interfaces are flexible enough to ease reuse and adaptation of 

geoprocessing service in varied compositions. We are not claiming with this experiment that 

RESTful services are better or worse than current component- and service-based solutions. We 

believe that resource-oriented approach may be a suitable alternative, with further 

experimentation, for supporting IEM and inter-linked web models. 

Nevertheless, several issues for designing resource-oriented interfaces in IEM such as the 

handling of large amounts of data transfers and the data-intensive computations remain yet 

challenging (Reichman et al., 2011). Cloud computing is becoming a potential solution to 

address these issues, particularly to account for the intensiveness of data, computing, 

concurrent access, and spatiotemporal and environmental data management (Yang et al., 2011). 

Several research pilots (e.g. global climate change) are being conducted to operate geospatial 

applications in cloud computing environments and determine how to best utilize available 

distributed computing resources (Yang et al., 2011b). The authors presented some preliminary 

results which anticipate the benefits of enabling cloud computing infrastructures in data and 

computing intensive scenarios. 

8. Future Roadmap  
Starting from existing integrated modelling technologies, and recent developments considering 

RESTful implementations of standard geospatial processing and sensor observation services 

(Foerster et al., 2011; Janowicz et al, 2012), prototype systems have to be established for small 

and medium scales. Once such proof-of-concept experiments have been accomplished, 

scalability to the global dimension and robustness of the provided services has to be illustrated 

in the environmental sector. Such large-scale pilots should take existing infrastructures (e.g., 

DataONE, SDIs) and standardisation bodies, such as OGC, into account, but also need to address 

wider ICT and Web standards. In the end, novel solutions to integrated modelling will only 

become useful if the targeted audience is directly and from an early stage involved in the 

experiments. We believe that any innovation in this field heavily relies on the endorsement of 

environmental modelling (and non-ICT) experts and in the engagement with other cross-cutting 
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domains, such as socio-economics or behavioural sciences. The technology solution proposed in 

this paper will have to be balanced with realistic application requirements and use cases. 

Considering the technical developments we see a major need for a spiral engineering process, in 

which initial simple prototypes grow organically to form operational large scale 

implementations. Developments should address the following six central issues, which should 

involve intense user tests, i.e., feedback experts of all involved disciplines: 

• Provision of resource-oriented use cases and experiences in environmental modelling, 

since these are still missing. 

• Use of HTTP URIs for resource identification in environmental modelling, including 

canonical URIs and IM resources categories. 

• Use of the uniform HTTP interface provides access and manipulation of any resource. 

• Establishment of a list of widely used MIME types and formats for environmental 

modelling. 

• Demonstration of the Memento-based mechanism for handling states in environmental 

models executions. 

• Cloud-based solutions for handling the large data volumes and data-intensive 

computations which appear within environmental modelling. 

• Use of Linked Data practices in resource representations to enhance inter-connected 

resources.  

The endeavours mentioned above find support in recent European policies such as the Europe 

2020 strategy (EC 2011). With this strategy, and especially under the umbrella of the Digital 

Agenda (EC 2011b) and Innovation Union (EC 2011c) flagship initiatives, the European 

Commission provided the required policy context for addressing the earlier mentioned Grand 

Challenges (Section 1) and for implementing a next generation of environmental information 

systems (Craglia et al., 2012). As part of the Digital Agenda for Europe the concept of the Future 

Internet (FIA 2011) summarizes efforts to deliver economic benefits from fast to ultrafast 

Internet and interoperable applications. The solution proposed in this paper provides valuable 

input to Future Internet developments, especially since it provides a lightweight solution for 

opening data silos, which dominate the field of environmental information sharing today. This 

new paradigm should start within a single existing infrastructure node with the purpose of 

increased connectivity between the internal resources and increasingly expand to other 

infrastructure nodes. 

First efforts in promoting the presented solution within the context of Future Internet have 

already been made (Havlik et al., 2011; Roman et al., 2011) and we expect to contribute more in 

due time. Particularly, research for including semantic technologies, such as Linked Data (Bizer 

et al. 2009; Auer et al., 2009) and ontologies (Villa et al., 2009) could help to overcome 
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heterogeneities at higher levels. We plan to follow this second line of research, mainly in order 

to connect current geospatial resources with user-contributed content (Granell at el., 2011). 
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Figure 12. The directed graph represents the valid state transitions between resources considering the typed links in Table 1. Nodes represent resources, while 

edges are transitions between resources. 
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