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CHERN-OSSERMAN INEQUALITY FOR MINIMAL SURFACES IN A
CARTAN-HADAMARD MANIFOLD WITH STRICTLY NEGATIVE
SECTIONAL CURVATURES

ANTONIO ESTEVE* AND VICENTE PALMER**

ABSTRACT. We state and prove a Chern-Osserman-type Inequality rimstef the vol-

ume growth for minimal surfaceS which have finite total extrinsic curvature and are
properly immersed in a Cartan-Hadamard manifdldavith sectional curvatures bounded
from above by a negative quantiff y < b < 0 and such that they are not too curved
(on average) with respect to the Hyperbolic space with @amstectional curvature given

by the upper bound. We have also proven the same Chern-Osserman-type Inequal-
ity for minimal surfaces with finite total extrinsic curvatuand properly immersed in

an asymptotically hyperbolic Cartan-Hadamard manifdidwith sectional curvatures
bounded from above by a negative quanfifyy < b < 0.

1. INTRODUCTION AND MAIN RESULTS

In the papers. [6] and [7], a Chern-Osserman type inequality studied for a com-
pletely, properly and minimally immersed surface (cmi foog) in the Hyperbolic space,
extending the classical result originally established I&. £hern and R. Ossermanlin [4]
for cmi surfaces in the Euclidean space to this strictly tiegly curved setting.

Chern-Osserman’s result (in fact, an improvement on ttasltelue to M. T. Anderson
in [1] and to L.P. Jorge and W.H. Meeks [n_[15], see also Whiteork [29] for an ap-
proach to this problem for non-minimal surfaces in the Eledin space) relates the Euler
characteristio¢(S) of a cmi surface with finite total curvature R™ with this total cur-
vature and the (finite) supremum of the (non-decreasingjmelgrowth of the extrinsic
domains (known as thextrinsic ball £, = 52 N B%". We denote ag’" the geodesic
r-ball in K™(b), which is the simply connected real space form with conssantional
curvatureb. We also denote aS>"~! the geodesic-sphere iK™ (b). We have

2 0,n
(1.1) / 1BS|)2do — Sup, Y5 0 Br")
Vol(B%?)

In contrast to what happens with cmi surface®ih the total Gaussian curvature of
surfacesS? immersed in the hyperbolic spal# (b) is always infinite, by the Gauss equa-
tion. However, it is possible to consider surfac®sC H"(b) with finite total extrinsic
curvature|g | B¥||?do < oo, and this is what Chen Qing and Chen Yi didlin [6] and [7].

They proved, for a complete minimal surfagé (properly) immersed ifH" (b) and
such that/,, | B¥||>do < oo, the following version of the Chern-Osserman Inequality, i
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terms of the volume growth of the extrinsic balls:
Vol(S%2 N B, 1n)
Vol(B; 1?)

2 1,n
)< o [ 18P —sup, S5 L)
Vol(Br %)

The proof of these authors entails elaborate computatidmshwdepend on the prop-
erties of the hyperbolic functions, far from the complexlgsia techniques used in the
Euclidean case.

A natural question which arises in this setting is: do we havenalogous formula
when we consider complete minimal surfaces that are prpjrarhersed in a Cartan-
Hadamard manifold with sectional curvatures bounded frbova by a strictly negative
quantityb < 0? In this paper we provide a (partial) answer to this questidamely,
we have proven that this formula holds for complete minimefaces that are properly
immersed in an ambient Cartan-Hadamard manifold, with thieelt-Schmidt norm of
its second fundamental form controlled hy(r), the mean curvature (pointed inward) of
the geodesic spheréd™~! and with finite total extrinsic curvature. We also assume tha
our ambient Cartan-Hadamard manifold is not too curved y@nage) with respect to the
Hyperbolic space with constant sectional curvature giwethb upper bound.

To state the first of our main results, it must be rememberee, for example[[23])
that

Sup,.o < oo and

(1.2)

Vbcot Vor if b>0
hy(r)=1< 1/rif b=0
v —bcothv/—br if b<0

We have the following:

Theorem 1.1. Let S? be a properly immersed minimal surface in a Cartan-Hadamard
manifold NV, with sectional curvatures bounded from above by a negatiramtity K y <
b<0.

Let us suppose thdltd®||(q) < hy(r(q)) outside a compact séf C S, wherer(q) =
distn (o, q) denotes the distance gfe S to a fixed pole» € N and that

(1.3) / | A%]]2do < +o0
S
and
(1.4) /(b _ Knls)do < +o0
S

whereA? denotes the second fundamental forr§ @f V and K | s denotes the sectional
curvature ofN restricted to the tangent plarig, S, for all ¢ € S.

Then:
Vol(E;
(1) Sup;~g Vo(l)(;?g)) < 400,
(2) S? has finite topological type,

(3) —x(5) < 7= [5 [1A%]Pdo — Sup,-¢ % + 3= [s(b = Knls)do

whereE; = BN (o) N S denotes theé-extrinsic ball on surface, centered ab € N (see
definition[2.2),B} (o) is the geodesi¢-ball centered at the pole in the ambient space
N, andBY? denotes the geodesi¢all in H2(b).

Remark 1.2. The main theorem iri[7] is a corollary of Theorém]1.1. In faxite that
condition [1.4) is superfluous when the ambient manifolHfgb). On the other hand,
when the ambient manifold " (b), then condition[{T13) implies thatA®||(¢) goes
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to 0 as the distance(q) goes to infinity (see Theorem 2.1 in_[22]), so we have that
| A%|(g) < hs(r(g)) outside acompact séf C S and we recover the complete statement
of the main theorem ir [7].

Remark 1.3. By applying the Gauss formula, if the surfagé is minimal, the quantity
b — Kn|s restricted toS only depends on the poinjs € S. Hence the assumption
Js(b—Kn|s)do < +0o makes sense. We shall denotefés the restricteds v |s when
there is no risk of confusion.

Our proof of Theoreri 111 basically follows the lines of argahused in the proofs
given in [6] and [7]. A basic fact used in these proofs is thenotonicity property sat-
isfied by the volume growth of the extrinsic balls in minimatfeices that are properly
immersed in the real space fori& (b) with b < 0, namely, that the functiog\% is
a non-decreasing function ef We have the same monotonicity property when we con-
sider the extrinsic balls on a surfagethat is properly immersed in a Cartan-Hadamard
manifold NV with negative and variable sectional curvature boundet fibove by < 0.
This monotonicity property comes from certain isoperintdtrequalities satisfied by the
extrinsic balls in this context which are, in turn, basedlmmapplication of a divergence
theorem to comparisons of the Laplacian of the extrinsitadise defined on the surface.
As we can see in[9] (see also [16] ahdl[26]), this comparisseafrom the Index lemma,
which provides a formula for the Hessian of the distance tiondn terms of the index
form along the normal geodesics to the surface of the Jaedbsfsatisfying some given
initial conditions.

Following the break with the framework given by the constamt/ature of the ambient
spaceH™(b) in the works [[6] and[[[7], we have had to overcome several gicalyand
topological difficulties.

First, we have extended the Hessian analysis of the extrilisiance alluded to earlier
(whichis used in a restricted way in [6] and [7] for surfaaethie real space forni&™ (b))
to surfaces in Cartan-Hadamard manifolds by using compariesults for the Hessian
and the Laplacian of a radial function that can be found. if,[fZL], and [13]. These
results are, in turn, based on the Jacobi-Index analysitheoiHessian of the distance
function given in[[9], which we have mentioned previouslggghe results in subsection
§3.1).

Second, and based on this comparison analysis, we havedexit¢ime application of
the Gauss-Bonnet theorem (which we find[ih [7] restrictedxtniresic balls on surfaces
of Hyperbolic space) to the extrinsic balls in minimal seda in a Cartan-Hadamard
manifold in order to obtain estimates for the Euler chandstie of these extrinsic domains
(see the results in subsectigdL2).

Third, we present the following estimation of the Euler aweristic of an immersed
surface

—x(8) = Jim (~x(EY))

for a suitable exhaustion df by extrinsic balls{ E;}:~, (see Theoreri 4.3 in section
§.4). This is a key result which will allow us to argue in a sianilvay to the line taken

in [6] and [7], even though our ambient manifold has no camstairvature. Thanks
to the lower bound of the geodesic curvature of extrinsicespd0 E; and to the bound

|l A%|(q) < hs(r(q)) outside a compact, it is possible to show that the extrinisiadce

to a fixed pole, defined on surfagg has no critical points outside a compact. Hence,
we can apply classical Morse theory to conclude that, fonduaestion ofS' by extrinsic
balls {E, }+~0, x(E:) is independent of, for a sufficiently larget. Thereforex(S) =
lim;, Xx(E;). When the ambient manifold is the Euclidean or the Hypedspace, the
bound| A%||(q) < hs(r(q)) can be omitted because, in this case, the finiteness of tie tot
extrinsic curvature implies thatA®||(¢) goes to0 as the extrinsic distancdq) goes to
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infinity (for more details, see the proofs of Theorem 2.1 ig][Zoncerning cmi surfaces
in H™(b) and Theorem 4.1 i [1], about cmi submanifold&Rif).

Another appropriate observation at this point is the foltayv the upper bountion the
sectional curvatures of the ambient maniféidmust be strictly negative, because if we
use the Euclidean space as a model, the volume of the egtbia8sv(t) = Vol(E;) is
not balanced by a function of exponential growth but by theimne functionVol(BtO’Q) =

mt2 with slower parabolic growth, and hence the techniques dsedbt guarantee that

Vol(E
S0 vc?(fgftvg) < +00.

To illustrate the meaning of the expression “not too curvedeerage with respect to
the hyperbolic space”, we will refer to Cartan-Hadamard ifidats, which are asymptotic
to Hyperbolic spac&l™(b) in a sense that we define below in the following Definifiod 1.4
(seel[28)).

Definition 1.4. Let us consideN™ a complete nhon-compact Riemannian manifold with a
poleo € N. ThenN is asymptotically locally-hyperbolicof ordera (abbreviated as-
ALH) if and only if | Ky (x) — b| = O(e~*"(®)), whereK y () is the sectional curvature
of N atz € N of the radial planes from the poleandr(z) = disty (o, x) is the distance
function from the pole € N.

These ambient manifolds satisfy hypotheisisl(1.4) of Thedkel, so we have the sec-
ond of our main results, Theordm1L.5.

Theorem 1.5. Let S? be a properly immersed minimal surface in a Cartan-Hadamard
manifold N which is asymptotically locally-hyperbolic of order2 and with sectional
curvatures bounded from above by a negative quaifity < b < 0.

Let us suppose thdltd®||(q) < hs(r(q)) outside a compact séf C S and that

(1.5) / | A%]]2do < +o0
s
whereAS denotes the second fundamental fornsdfh V.
Then:
(1) Sup;s gttt < o0,

Vol(BY?)
(2) S? has finite topological type,
(3) —x(S) < g [ 1451%do — Supys Gl + 2 [5(b — Kn)do.

To conclude we have the following generalization of TheoBsim [6].

Theorem 1.6. Let S? be a properly immersed minimal surface in a Cartan-Hadamard
manifold NV, with sectional curvatures bounded from above by a neggtinamtity K y <

b < 0. Let us consider an exhaustion 8fby a family of nested extrinsic ball, =

{z € S/r(x) < t}}+>0, Wherer is the distance to a fixed polec S. Let us suppose that

Jig, coshrda
cosh? ¢

limt_,oo = %b
(i) Then,S is a minimal cone inV and x(S) = 1.
(i) If N =H"(b), thenS is totally geodesic (and we have Theorem ).

1.1. Outline of the paper. The outline of the paper is as follows. In sectig2 we

present the basic definitions and facts about the extriristartte restricted to a sub-
manifold, and about the rotationally symmetric spaces @sed model for comparison
purposes. In sectiofi3 we present the basic results concerning the Hessian csopa
theory of restricted distance function we are going to ub&ining as a corollary an esti-
mate of the geodesic curvature of the boundary of the extrivadls covering the surface
and, hence, an estimation of the Euler characteristic df sutrinsic balls. Sectiof.4
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presents the monotonicity property satisfied by the extriballs and the estimation of
the Euler characteristic of the surface in terms of the Ecleracteristic of the extrin-
sic balls. Sectiory.5 is devoted to the proof of Theorédm1l.1, sectiohto the proof of
Theoreni 16, and sectign? to the proof of Theorein 1.6.

2. PRELIMINARIES

2.1. Curvature restrictions and extrinsic balls. We assume throughout the paper that
@ : S — N is a complete, proper and minimal immersion of a non-compadace
S in a Cartan-Hadamard manifoly. Throughout the paper, we identify(S) = S
andp(x) = x forall z € S. We also assume that the Cartan-Hadamard manifsid
has sectional curvatures bounded from above by a negativeddgy < b < 0. All
the points in these manifolds are poles. Recall that a poe psinto such that the
exponential mapxp,: T,N™ — N™ is a diffeomorphism. For every € N" \ {o} we
definer(z) = disty (o, z), and this distance is realized by the length of a unique ggode
from o to z, which is theradial geodesic fronv. We also denote by the restriction
r|s : S — R4 U{0}. This restriction is called thextrinsic distance functiofftomoin S.
The gradients of in N and.S are denoted by r andV*°r, respectively. Let us remark
that Vr(z) is just the tangential component 8V r(x) in S, for all z € S. Then we
have the following basic relation:

(2.1) VNp = V9 + (V)L
where(VNr)t(z) = V1ir(x) is perpendicular td, S for all z € S.

Definition 2.1. Let o be a point in a Riemannian manifold and letx € M \ {o}.
The sectional curvatur® (o) of the two-planer,, € T,,M is then called am-radial
sectional curvaturef M atz iff o, contains the tangent vector to a minimal geodesic
fromo to z. We also denote these curvaturesiy s (o).

Definition 2.2. Given a connected and complete surfacim a Cartan-Hadamard man-
ifold N™, we denote thextrinsic metric ballof radiusR and centep € N by Er(o).
They are defined as the intersection

Er=BN(o)NS={zreS:r(z) <R}
whereBY (o) denotes the open geodesic ball of raditisentered at the polein N™.

Remark 2.3. It should be pointed out that the extrinsic domaltig(o) are precompact
sets (because the submanifélds properly immersed), with a smooth bounda®/r =
T'r(o) = {z € S: r(z) = R}. The assumption on the smoothnes§'af o) makes no
restriction. Indeed, the distance functioms smooth inN™ \ {0}, sinceN™ is assumed
to possess a polec N™. Hence the restriction|s is smooth inS and consequently the
radii R that produce smooth boundarieg (o) are dense iR by Sard’s theorem and the
Regular Level Set Theorem.

Remark 2.4. When the surfacé is totally geodesic in the ambient manifoM, the
extrinsic R-balls become geodesic balls fy B3 , and its boundaries are the distance
spheres)B%. On the other hand, whefi is a totally geodesic hyperbolic plane in the
Hyperbolic space forril" (b), the extrinsicR-ball Exr becomes the geodesitball Bﬁ’f

in H2(b), with boundar)Sj’-(;l, the geodesid-sphere ifH?(b).

For the sake of completeness, we are going to state the edearsula in these prelim-
inaries. To do so, we shall consider a prog€t functionf : M — R defined on a Rie-
mannian manifold//. The set of critical values gf is a null set ofR and the set of regular
valuesO is an open subset @. Then, fort € O, f~1(t) =T, = {pe M : f(p) =t}
is a compact hypersurface of and, giveny € 'y, VM f(q) is perpendicular td';. We
defineQ), = {p € M : f(p) <t} andv(t) = Vol(£2;). Then
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Theorem A (See [27], Theorem 5.8)Let M be a Riemannian manifold. Lé¢tbe a
properC* function defined oid/. For an integrable functiom on M the following hold:

(1) Letg; be the induced metric ob, := {p € M; f(p) =t} fromg. Then

—+o0
/uHVfHdz/g:/ dt/ u dvg,
M —o0 r

(2) The functiont — v(t) is aC function at regular valuesof f such thal/ (¢) <
+o0, and

d _
G0 = [ 1vsI

Remark 2.5. Let us consider an exhaustion 8fby a family of nested extrinsic balls
{E:}+>0, centered at a pole € N. To apply the co-area formula in this setting, we con-
sider the surfacé as the Riemannian manifold and the functjoim the above statement
is the extrinsic distance from the pofe= r. Hence, each extrinsic balf;, = Q; , the
extrinsic spheres are the cun@g; = I'; = {z € S/r(x) = t}, andv(t) = Vol(Ey) is
the volume function.

2.2. Warped products and model spacesWarped products are generalized manifolds
of revolution. We refer ta [23] for more information abouete spaces.

Definition 2.6 (See[[9], [10]) A w—modelM]} is a smooth warped product

M= [0, A[x,S7!
with baseB! = [0, A[C R (where0 < A < o0), fiber F™~1 = S~ ! (i.e., the unit
(m — 1)-sphere with standard metric), and warping function[0, A[— R U {0}, with
w(0) = 0, w'(0) = 1, andw(r) > 0 for all » > 0. The pointo,, = 7=1(0), wherer
denotes the projection oni®', is called thecenter pointof the model space. Ik = oo,
theno,, is a pole of M.

Proposition 2.7 (See [10], [[28]) The simply connected space fori8(b) of constant
curvatured are w,—models with warping functions

\/LE sin(v/br) ifb>0
(2.2) wp(r) =4 r ifb=0
\/%7 sinh(v/—br) ifb<0.

Note that forb > 0 the functionw () admits a smooth extensionitc= T

Proposition 2.8(See [9], [10] and[[23]) Let M be aw—model with warping function
w(r) and centero,,. The distance sphere of radiusand centero,, in M is the fiber

7~1(r). This distance sphere has the constant mean curvagufe) = Z;((:)). On the
other hand, the,,-radial sectional curvatures o/’ at everyx € 7=—1(r) (for r > 0)

are all identical and determined by

w” (r)
w(r)
Remark 2.9. Note that, for the space forni€™ (b), n,,, (1) = hy (7).

(2.3) Koy My, (0z) = —

3. HESSIAN ANALYSIS, GAUSS-BONNET THEOREM, AND ESTIMATES FOR THE
EULER CHARACTERISTIC OF THE EXTRINSIC BALLS

3.1. Hessian and Laplacian comparison analysisWe now assume tha? is a com-
plete, non-compact, and properly immersed surface (nassacily minimal) in a Rie-
mannian manifoldV"” that possesses a pale
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The 2nd order analysis of the restricted distance funetjgis governed by the Hes-
sian comparison Theorem A inl[9]:

Theorem B (See [9], Theorem A)Let N = N™ be a manifold with a pole, let
M = M denote aw—model with centev,,, andm < n. Suppose that everyradial
sectional curvature at € N \ {o} is bounded from above by the,-radial sectional
curvatures inM;"* as follows:

Kon(oz) > () —

for every radial two-planer,, € T, N at distancer = r(z) = disty (0, z) fromoin N.
Then the Hessian of the distance functiomNirsatisfies

Hess™ (r(z))(X, X) < (>) Hess™ (r(y))(Y,Y)
(3.1) = 1w (r) (L= (VMr(y),Y)3)
=nw(r) (1= (VVr(z), X)%)

for every unit vectoX in T, NV and for every unitvectdr” in T, M with 7(y) = r(z) =r
and (VMr(y),Y)yr = (VVr(2), X)n .

3

Remark 3.1. In [9, Theorem A, p. 19], the Hessian of; is less than or equal to the
Hessian ofry provided that the radial curvatures &f are bounded from above by the
radial curvatures ofi/ and provided thadlim M > dim N. But Hess™" (r(y))(Y,Y)

do notdepend on the dimension, as we can easily see by computing it directly (see
[26]), so the hypothesis on the dimension can be overloak#dtd comparison among the
Hessians in this case.

As a consequence of this result, we have the following Lagteinequalities (seé [20],
[26], or [13] for detailed developments):

Proposition 3.2. Let N be a manifold with a pole, let M' denote aw—model with
centero,,. Let us suppose that evevyradial sectional curvature at € N — {o} is
bounded from above by the, -radial sectional curvatures i/} as follows:

w// (7,)

w(r)

(3.2) K(o(z)) = Kon(0s) < —

for every radial two-plane, € T,, N at distance" = r(z) = disty (0, ) frompin N
Let S2? be a properly immersed surface iM. Let us consider a modified-distance
smooth functiorf o r : S — R. Then:
(A) For such a smooth functiofi(r) with f'(r) < 0 forall r, (respectivelyf’(r) >
0 for all r), and givenX € T'¢S unitary:
Hess® (f o r)(X,X) < () (f"(r) = f'(r)nu(r) (X, VVr)

3.3
53 ) ) + (VN7 A5(X, X))

(B) Tracing inequality[(313)
AS(for) < (=) (f"(r) = f'(r)nu(r)) [Vr|?
+mf'(r) (m(r) +{(VVr, H))

whereH* denotes the mean curvature vectorSoih N.

(3.4)

Another result we shall use concerning the radial functidefined on the surface is
the following:
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Proposition 3.3. Let.S? be a complete, non-compact, and properly immersed surfege i
Cartan-Hadamard manifol&™. Let us considef E; }+~, an exhaustion af by extrinsic
balls. Letf : S — R be a positiveC">° function. Then

+
/e—ﬂ"@) f(z)do < +oo ifand only if/ eVl f( ) do dt < 400
S 0

and when these integrals converge
N +00
/ e~V br@) f(z)do = / eVl f(z) do dt
S 0 Ey

Proof. Given the exhaustion of by extrinsic balls{ E; }+~(, we apply the co-area for-
mula to obtain, for each > 0:

t
eV @ f(z)do = / e~V bs / /() duds
Ey 0 s

and, on the other hand,
f(x)
d
/ fle / Vs

Ete_\/j”'(z) f(z) do = /Ot e~ Vbs (dii /ES f(x)da) ds
=Vl f(x) da—l—\/—_b/t ef‘/f_bs/ f(z) do
jo 0 E,

Taking limits whent — oo

Hence

(3.5)

t—o0

:(til?ooe - )/f da+\/_/ b Etf(x)do

and we have the result because both integrals on the rigtttdide of equatior (3.6) are
non-negative. O

/ V@) f(z)do = Jim [ eV f(2) do
(3.6)

3.2. An application of the Gauss-Bonnet theorem: geodesic curyare of the extrin-

sic curves on the surfaces. These results have been stated and proven previously in [6]
and [7], when the ambient manifold is the hyperbolic space eWend it here to minimal
surfaces in a Cartan-Hadamard manifold.

Proposition 3.4. Let S? be a properly immersed and minimal surface in a Cartan-
Hadamard manifoldV, with sectional curvatures bounded from above by a negative
quantity Ky < b < 0. Let E; be an extrinsic ball inS centered on a pole € N.
The geodesic curvature of the extrinsic sphefg, denoted ai;t is bounded from below
as follows

kt

s 2 ey O + (470 770)

(3.7) s s
ver o Vor 1

- —(Vtr, A°

b t) =V A Cs s o

whereA® denotes the second fundamental forns'@f IV, e € T'S is unitary and tangent
to I'; andn,,, (t) = hy(¢) is the constant mean curvature of the distance spheres in the
hyperbolic spacell™ (b).
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Proof. We apply Propositioh 312 t¢(r) = r to conclude that the geodesic curvati«ge
satisfies the inequality

k= ——
7 IvEr|

1
W {_77% <€7VNT>2 +77Wb + <AS(€,€)7VNT>} _

1
o] (o + (4700, 90},

Hess®r(e,e) >

(3.8)

wheree € T'S is unitary and tangent tB,..

As
1 Vor Vor
(3.9) HS == [AS e,e) + AS , } =0,
3 |4 s s
we obtain:

1 Vor Vor
3.10 | A u)t—AS—— 1 .
(10 k= sy {” (1) < G s Y >}
O

Proposition 3.5. Let S? be a properly immersed and minimal surface in a Cartan-
Hadamard manifoldV, with sectional curvatures bounded from above by a negative
quantity Ky < b < 0. Let E; be a (non-connected) extrinsic ball § centered on a
poleo € N. The volume(t) = Vol(E;) satisfies the inequality

Vir VvSr Vo
277E>wtv’t—/ , A5 , do
B 20O [ s 4 s s e

(3.11)

+ KS do
E;

whereK s denotes the Gaussian curvaturesf

Proof. Applying the Gauss-Bonnet theorem

(3.12) / k:;d,u + Kgdo = 2nx(E}),
AE, E,

Now, using Proposition 3.4
2rx(Ey) >

1 Vor  Vor
——— {7, (t) — AS v+ d
(3.13) /aE Vo7 {’“” < TS Tos >} o

+ Kgdo.
E;

O

Proposition 3.6. Let S? be a properly immersed and minimal surface in a Cartan-
Hadamard manifoldV, with sectional curvatures bounded from above by a negative
quantity Ky < b < 0. Let E; be an extrinsic ball inS centered on a pole € N.
Then, given the non-negative real numbers s > 0, we have
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fEt coshv/—brdo [, cosh/—brdo

(3.14) cosh? /=0t cosh? v/—bs
' / 1 4 sinh? v/—br|| VL r|?
> 3 do
E,—E, cosh® v/ —br

Proof. As K < b by applying[(3.%) to the radial functiofi(r) = cosh +/—br, and asS
is minimal, we have,

(3.15) AS cosh v—br > —2b coshv/—br

We integrate inequality (3.15) withi#’,, and then we apply the divergence theorem to
obtain

(3.16) \/—bsinh\/—bu/ |VSr||do, > —2b/ cosh v —br do
Ty E.

Therefore

" 1 sinh v/—bu
(3.17) / cosh vV—br do < —7/ Vr||do,
. 2 V3 [Vor|

Deriving and using the inequality above

d <fEu cosh \/brda> -

du cosh? V—=bu
1 {/ cosh? v/—br — sinh® \/—_erVSrHQdJ }
cosh® V—=bu w V7 “
/ 1 {1+sinh2 \/—_br||er||2da }
Ty HVSTH cosh?® V—=bu “
Now, integrate the inequality above betweeandt and apply the co-area formulall

4. EXTRINSIC ISOPERIMETRY VOLUME GROWTH, AND TOPOLOGY OF SURFACES

As mentioned in the Introduction, two key ingredients for puoof of the Chern-
Osserman inequality are the following results: an isopetiio inequality established in
[25] for the extrinsic balls of minimal submanifolds in CamtHadamard manifolds (and
also a monotonicity result which is derived from it and frdma to-area formula (see [18]
and [2])), and a result which relates the Euler characterigta surface with the limit
value of the Euler characteristic of the sets of an exhau$tyoconnected extrinsic balls
of such a surface.

The first of these results is stated as follows:

Theorem C. (se€]2], [18], [25]) Let P™ be a minimal submanifold properly immersed
in a Cartan-Hadamard manifold™ with sectional curvaturd{y < b < 0. LetE, be an
extrinsicr-ball in P™, with center at a poind which is also a pole in the ambient space
N. Then

Vol(OF,) S Vol(S§bm—1)

4.1 forall » >0
@4 Vol(E:) — Vol(BY'™)
and
Vol(OF,)
. — " > _
4.2) Vol(E,) = (m —1)hy(r) forall r>0

Furthermore, the functiorf (r) = —2l:)_

= VoI5 is monotone non-decreasing:in
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Moreover, if the equality in inequality (4.1) holds for sofbed radiusrg thenE,, is
a minimal cone in the ambient spad&’, so if N" is the hyperbolic spac&” (b), b < 0,
thenP™ is totally geodesic iK™ (b).

Remark 4.1. In [19] there is a comparison among the lower bounds for thpdsmetric
quotientin[4.1) and{412), depending on the sectionalatureb < R.

A particularization for cmi surfaces in a negatively cure@attan-Hadamard manifold
gives the following monotonicity result:

Corollary 4.2 (Minimal Monotonicity). LetS be a properly immersed and minimal sur-
face in a Cartan-Hadamard manifoly, with sectional curvatures bounded from above
by a negative quantitk y < b < 0.

; v(t) v(t) ) Lo
Then, the functions oy v and oV vy are non-decreasing ift), +00),
wherev(t) = Vol(E}).

On the other hand, we also have the following theorem: as we heentioned in the
Introduction, this is a key result which will allow us to argas in [6] and([7], applying
classical Morse theory to conclude thdtS) = lim;_, ., x(E;) for an exhaustion of by
extrinsic balls{ E; } ;~¢.

Recall that an exhaustion of the surfagedy extrinsic balls is a sequence of such
subsets, centered at the same péifit C S};~0, such that:

e £, C E,whens >t
o UpsoFy =8
Recall too that the Euler characteristic of a (pre) competcissfinite.

Theorem 4.3. Let S be an complete minimal surface properly immersed in a Cartan
Hadamard manifoldV with sectional curvature bounded from above by a negatianeu
tity Ky < b < 0. Let us suppose thaf, || A%||*do < oo and that|| A%|(q) < hs(r(q))
outside a compact st C S, wherer(q) = distn(o,q), the distance to a fixed pole
o€ N.Then

(i) S is diffeomorphic to a compact surfad® punctured at a finite number of points.

(i) For all sufficiently larget > Ry > 0, x(S) = x(E:) and, hence, giveRE:}:~¢
an exhaustion of by extrinsic balls centered at the palec N,

—x(5) = lim inf(—=x(E;)) < o0
Proof. Let us considef E, }:~¢ an exhaustion of by extrinsic balls, centered at the pole
o € N. We apply Proposition_34 to the smooth curgds, = T';. As
—[1A%] < (A%(e,€), V1) < || A7)
we have, on the points of the curyec T';,
IV 7ll(a) - kg (@) = ho(rp(@) + (A5 (e, €), V1) ()
> iy (rp(q)) — 1 4%](q)

As ||A%](q) < h(r(q)) Vg € S\ K, we have, for all the pointg € T; and for suffi-
ciently larget,

(4.3)

(4.4) IV 7rll(q) - ky*(q) >0

Hence,| V¥ r|| > 0in T, for all sufficiently larget. By fixing a sufficiently large radius
Ry, we can conclude that the extrinsic distamgéas no critical points it$ \ Er,,.

The above inequality implies that for this sufficiently larfixed radiusRy, there is a
diffeomorphism:
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®: S\ Egr, > ', x[0,00]

In particular,S has only finitely many ends, each of a finite topological type.

To prove this we apply Theorem 3.1 in_[17], concluding thatttae extrinsic annuli
Ar, r(0) = Er(0) \ Eg,(0) contains no critical points of the extrinsic distance fumct
T, 1 S — R because of inequality(4.3), thdtr (o) is diffeomorphic toEr, (o) for all
R > Ry.

The above diffeomorphism implies that we can const&idtom Er, by attaching
annuli and thag (S \ E:) = 0 whent > Ry. Then, for allt > Ry,

X(8) = x(Er U (S\ Et)) = x(Er)

5. PROOF OFTHEOREM[IL]

In this Section we are going to prove our main result, (TheaEel), which generalizes
the main theorem i [7].

Let us conside{ E, }:~o an exhaustion of by extrinsic balls centered at the pole
o € N. By adding the quantityv(t) on both sides of inequality (3.111), using the Gauss
formula to replaceK’s by Ky — 1||A%||? in this same inequality and defining(t) :=
[z, 1A%]|do, we have

Mo (D0 (0) +b0(0) < = [ (K = 5145 |P)dor+

E;
1 Vor  Vor
A LrVd 21y (E,
/aE o5 AR oSV e 2mx ()
(5.1) i X
+/ bda:—/ (Kx — b)do + 2R(1)
E} Ey 2
1 Vor  Vor
+/ A ,  VEirydo, + 2mx(Ey).
o, ToS7] AGs sy Y e+ 2mx(Er)
From now on, we denote
1 VSr  Vor
(52) I t :/ TMT—ao 11 <AS <—a—) ;VLT> do—;
=], TS V5 V5] t

It is straightforward to check that

cosh?(y/—bt) d o)
sinh(v/=bt) dt cosh(v/—bt)

(5.3) N, ()0 (8) + bo(t) = V—=b

Then, inequality[(5]1) becomes
d o) < 1 sinh(yv/—bt)
(5.4) dt cosh(yv/=bt) ~ v/—b cosh?(v/—bt)
I(t) 4+ 2mx(Ey)}
On the other hand, for atl> 0 we have:

(5.5) Sinb(Vb)

cosh?(v/=bt) ~

{ /E (Ky — b)do + %R(m

and hence
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i v(t) 1 e~ Vbt — o Le Vb
e T (e o+ )
' Sinh(\/jbt) VBt
+ coshz(\/—_l)t)I(t)+4e X (E)}

By Theoreni 4B, for all sufficiently large> Ro, x(E:) = x(S). Now, we integrate
both sides of inequality (5.6) betweérand a fixed > Rg, and taking into account that
COZE?()O) = 0, the definition ofI(t), applying the co-area formula and using the fact that,
by Theoreni 413y (E;) < |x(Es)| = |x(S)| < oo Vs > Ry:

coshqz(\t/)_bt) = \/i—b {Q/Ot eV /Es(b—KN)dO'ds

t67¢5b5 $\ds ! sinh(y/—bs) S\ds
+/0 R(s)d Jr/0 coshQ(\/—_bs)I( )d

t
(5.7) +47r/ X(Ee V5ds }
0

! /t #f—b/ R
< —=12 e s b— KN)dads—i—/ e *R(s)ds
V=>b { 0 E( 0 (®)
N /t sinh(v/—bs)
0

I(s)ds + C(0)}

cosh?(v/—bs)
where
R() o0
0<C(0)= 47T/ X(E e V=ds + 4r|x(9)] e Vs
0 Ro
Fo 4r|x (S
= 47T/ X(Es)e_\/jbsds + Arx(S)] )le_‘/jbp”" < 0
0 Vb
We are going to estimateup, . —)__ ysing the above inequality. To do so, we

cosh(y/—bt)
proceed as follows.

As [4 | A%|2do < 400, then [ e~ V=0 || A%|2do < +oc.
Then, applying Propositidn 3.3 to the non-negative fumctfo= || A%||2, using hy-
pothesis[(1.13), we have:

+oo
(5.8) / e"V7UR(t) dt < 400
0

By also applying Proposition 3.3 to the non-negative fuoretf(z) = b — Ky(z)
defined onS, and using hypothesig (1.4) we know that:

—+oo
(5.9) / e‘mt/ (b — Ky)dodt < +00
0 E;

With these estimates we can conclude, by applying the cafarenula and definition

(5.2), that:

v(t) 1 " sinh(v/~bs) S\ds

(5.10) cosh(y/—bt) =G0+ vV=bJo coshQ(\/—_bs) I(s)d
' B 1 sinh(v—=br) , o V5r VI L\ de
=GO+ 75 L, e (v A s s Y e
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whereCy(0) = —{C(0) + [, e™Y= [ (b — Kn)dodt + [ e™V="R(t) dt}
is a positive and finite constant.
To obtain the result, we need the following:

Lemma 5.1. There is a constant, > 0 satisfying

inh — S S

/ sin 2(\/ br) <AS( VST , Vsr ),VJ_T> do <
2, cosh”(v/=br) Vo) Vo
v(t)
cosh(v/—bt)

Proof. Let us considefes, ez} an orthonormal basis df,S, (p € S), beinge; = \VSTH
Then

(5.11)

v VO
(5.12) A (——, ——)|I> < ||A5]?
14 sy sy < 1471
S0
ver Vo
5.13 AS (T, =), V) < | A5 ||V
Applying Cauchy-Schwartz Inequality to the functions
145y sinh(V=B)V
(cosh(v/—br))1/2 (cosh(v/—br))3/2 '
we obtain:
inh — S S
/ sin 2(\/ br) <AS( VST , Vsr ),Vlr>da§
2, cosh”(v/=br) Vo [ Vo
[ sy Ay <
sh™(v/—br)

/ _1AS][2da / sinh?(v/=br) || VLr||2do
B, cosh(y/—br) B, cosh3 (v —br) '

Takings = 0 in Propositiod 3.6 we obtain

/ 1 4 sinh?(v/ —br)||VLrH2dU - fEt cosh(v/—br)do
E, cosh®(v/—br) ~  cosh?(V/—bt)

As, on the other handpsh(v/—br) is non-decreasing, then

[, cosh(v/=br)do _ cosh(V=Bo(t) _ w(t)

cosh®(v/=bt)  ~ cosh®(v/—bt) cosh(y/—bt)

/ sinhQ(\/—_br)HVJ‘rHQdU < v(t)
E; cosh®(v/—br) ~ cosh(y/—bt)

Hence

and therefore:
VSr Vor
(VS| V7|

), Vir) <

/ sinh(y/—br) (AS(
E,

cosh? (v/—br)

% / 1452 % v(t)
5, cosh(v/—br) \| cosh(v/—bt)

< 2¢=V=bt it > 0, we have

As cosh \/_t
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s|2
\// V}ll |*do \// 2e—V=r||AS||2do = Cy < o0
B, COS

becausd/ e~ V=I||A%|]2do < oo as we have seen before. O

Returning to[(5.10), and using Lemmal5.1, we have

v(t) v(t)
———— < C1(0)+ Oy | ———.
cosh(+v/—bt) — 10 +C cosh(v/—bt)
By puttingh(t) = % the inequality above becomes:

R*(t) — Cyh(t) — C1(0) <0

and hence the values aft) lie between the zeroes of the functi¢tw) = 2% — Cox —
(4 (0), which are real and distinct numbers (becatisé)) > 0 andC> > 0 and it is not
possible that’; (0) = Cy = 0). Hencei(t) (and alsah?(t)) are bounded.

v(t) v(t) .
We have proven thatﬁ < oo and thereforew < 00, SO assertion

(1) of the Theorem is proven.

To prove assertion (2), we remember equation (5.2) so teguiality [5.1) becomes

1
(5.14) —2wx(Fy) < —/ (Kn — b)do + iR(t) + I(t) — nu, (E)V'(£) — bo(t)
E;
We now need the following
Lemma 5.2. [ cosh(v/=bs) v/ (s)ds > R0, )

U(t) . - .
Proof. As prvavassmell SRLCIL decreasing, we know that

(5.15) (cosh(\/—_bt) - 1) V' (t) > v(t)v/—bsinh(v—bt)
Hence, integrating both sides of the inequality above:
/0 t cosh(v/—bs) v'(s)ds =
o(t) cosh(v/=Bt) — /=B / ) sinh(v/=bs)ds >
o(t) cosh(v/=ht) — /0 ' (cosh(v/TBs) — 1)v/(s)ds
o(t)(cosh(v/=Bt) + 1) — /0 " cosh(v/TBs) v/ (s)ds.
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Again, using the definition of (¢), inequality [5.1B), and the arithmetic-geometric
mean inequalityry < ”52;“/2 , we have

1
s [ a0 IV_rll 4,
OFE;

V57|
_ 14%] Vi @IVl
S S —
(5.16) 0B, /My OV TV /110, (/Y]]

1 AS 2 » 1.2
Y (R WCT, S P
2 Jor, \ M, IVl IVor|

1 / | A%]1? [V-r|?
+ 7 (t)/ do
N (1) Jog, IV57]| " Jop, VST

But, by applying the co-area formula,

1 1 AS|2
R = / [ENG.
o)

Ny, () Ny () Jom, [IVST]
so we have
R'(t) V7|2
(5.17) I(4) < . t/ do
< T | s

On the other hand, by using the co-area formula, inequ@ifif4), and Lemmpa5.2 we

obtain:
| V-r|? 1—[|Vor|?
Ty () / dp = 14, (t) — = du
7 Jom, IVOT N Jom, IV

(B (1) — 1y (1) /6 IVErdo

<N, (B)V'(8) — 21, ()b Wb cosh(ﬂr)do
sinh(v/—bt) Jg
549 20, ()
=N, (L)V'(t) — smh(\/_t) cosh(\/—_bs) v'(s)ds
<Ny (V' (£) — %— (cosh vV—bt +1)
= TNy, (t)'U/(t) — Ny, (t)2’U(t) - \/zglwz/(t_—)zt(t)
Finally, from (5.17) y [5.1B) we obtain:
/ / 2 V=i, (£)u(t)
(519)  I0) < R0+ (O0/(0) ~ i (0P0(0) - Y2,
Now considering[(5.14), and applyirig (51 19):
—2mx(E;) < /E (b— Ky)do + %R(t) + ; l(t) R'(t)
P (0 0) = 1 (7000 = (0 (0010) + b)) — YD)

(5.20)

1 /
/Et(b Kn)do + R() RO
V=bn., (t)v(t)

+0()(=b — 1, (1)) = sinh /= bt
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Itis straightforward to see, taking into account thiat( B.%) = =27 (cosh v/—bt—1),

(5.21) (B =1 (t)2) a \/ile/(t_):t(t) - cosh b\/v(ilzt —1 - \;)??Bflg?)

and hence

1 2mo(t)
5.22 —27x(E g/ = R -2
(5:22) x(Er) B, Mooy (£) ) Vol(B!?)
Aswe defineR(t) = [}, [|A%]|°do, then[q || A%]|do = lim; 0o R(t) = SR (t)dt <
+oo. Therefore, there is a monotone increasing (sub)sequenie , tending to infinity
(namelyt; — oo wheni — oo), such thatR’(¢;) — 0 wheni — oo, and hence

1 0
lim ———R'(t;) = — =
i~>+0077wb (tl) \/—b
Let us consider the exhaustion fby these extrinsic balls, namelyE;, }°,. Since
{E, }52, is a family of precompact open sets exhausithghen the sequence

{inf({—x(Er, ) }izi i
is monotone non-decreasing. Then we have, by repladiogt; and taking limits when
1 — oo in inequality [5.2P), that

T inf({—x(Er,)17%)

(b Kn)do + 5R(1) +

1 v(t)
< b— K d0+—/ A%|%do — 27 Su —— = < 0
/s( N) 2 /s A~ Pt>0 Vol(B"2)
and hence, by applying Theoréml43, has finite topology and
1 v(t)
5.23 — 2y (S S/b—K da—i——/ AS 2do—271'Sup R —_
623)  —2u(8) < [(b- Ko+ [ 14°) 0

6. PROOF OFTHEOREM[L.H

We are going to apply Theordm 1.1, and to do so it is enougheolcthat hypothesis
(I.4) in Theoreri 111, i.e., inequality

/(b — Ky)do < o0

s

is satisfied in our setting. By Definitidn 1.4, we have thity|g — b] < Ke2V~br(@),
forallz € S— E(0), En(0) being an extrinsic ball centered at one pole N. Hence,

if we consider{ E}; };~o an exhaustion of by extrinsic balls centered at the pale N,
we have,

/(b—KN|S)da§/|b—KN|s|da:/ b— Kylsldo
S S En (o)

+/ b— Kyl|s|do
S—FE (o)

<Ci+K e~ 2V gy
S*E]\/](O)

< JrK/ e 2Vl
S

and, applying the co-area formula as[in {3.5) (3.6), wiainb

(6.1)
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/(bems)do < / b— Klsldo
S S

(6.2) <Ci+ K/ e 2V g — Ci + Ktli}m v(t)e_Q‘/jbt
S oo

t
+2KvV-b lim v(s)eiQ‘/f_bsds
t—o0 0
To prove the theorem, we must check that,_, ., v(t)e =2V~ < o0 and that
f0°° v(s)e~2V=P5ds < oo. To do so, let us consider the non-decreasing funcfigi

ez(f%t (see Corollarj4]2). We shall see thyt) is bounded, that is, théitn; ., f(t) <
0

Taking into account the fact that,, (t) = v—bcoth(v/—=bt) > v/—b V¢ > 0, we
obtain

(6.3) V=bv' (t) + bu(t) < nu, (00 () + bo(t) VE>0
On the other hand,
(6.4) Vo' () + bu(t) = v—beV (1)

s0, using inequalityf (5]1) in the proof of TheorEml1.1,
/ 1 —v—bt 1
e — —
f(t) < ¢ { . (b~ Kn)do + 5 R(¢) + 1(t) + 2mx(Ee)}
1 1
—+/—bt
e — —
< \/__be { . |b — Knl|do + 2R(t) + I(t) + 2mx(Ey)}

Now, we integrate both sides of inequality (6.5) betweéemdt > R, as in the proof
of Theoreni LIlL. Then:

1 t
ft S—/e—ﬁ”/ b— Kyl|dods
( ) \/jb{ o . | N|
t t
—|—/ ef‘/j’sR(s)ds—i—/ eﬂF_bSI(s)ds
0 0

+ C2(0)}
where, as in the proof of Theordm11.1,

(6.5)

(6.6)

Ro o)
0 < Cy(0) = 47r/ X(E)e V= ds + 4x|x(S)| e Vs
0 Ro

fio Ve Arx(S) v
= 47r/ (Es)e™V0ds + e VbR <
RS -

With the same arguments as in the proof of Thedrerh 1.1 and) isipothesis[(1]3),
we have

L e [ e
f(t)g\/jb{/oe /Es|b K |dods

(6.7) .
Jr/ ef‘/f_bsf(s)ds + Cs}
0

where0 < C5 = C3(0) + [g e~ V=0 A%|do < oo

Now, we are going to prove the following Lemma:
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Lemma 6.1. There is a constanty, > 0 satisfying
t
(6.8) / eV I(s)ds < Can/FO) ¥t > 0
0

Proof. We argue as in Lemnia5.1: by applying Cauchy-Schwartz idégaad the co-
area formula, and using inequalify (5. 13), we obtain

t t s s
—+/—bs _ —+/—bs S Vor Vor
e I(s)dsf/ e / <A ( ),V 7’> dosds
/0 0 op, \ VST IV

t 1 AS 1
O ey | e Py g i

HVST” * Et \/eJTbT\/e\/TbT

/ |AS||2do / (IVLr||2do / (IVLr||2do
< < Cy —
B, e\/?bT B, e\/?b’!' B, e\/?b’l‘

because < [, ”As#fc* < o
To conclude the proof of the Lemma, we are going to see thaalifo > 0,
|VLr||2do v(t)
. <
(6 10) /Et emT - emt

By inequality [3.Ib), we have, for atl > 0

(6.11) AS cosh vV—br > —2bcoshv/—br > —beV 0"
Integrating two sides of(6.11) and applying Divergencetbe, we have
inh \/—bt
(6.12) L/ IVSr|do, > | eV do
v=b Jog, Ey
Deriving the functlon% and using inequality (6.12):
oV b
d do Ly)12
615 Ly g S
du v OE., [VEr|

So, by integrating both sides ¢f (6]113) betw@esndt and using the co-area formula,
and the fact that¥ =" is non-decreasing:

fEt eV=tdo < v(t)

6.14 —V=br|y7L,2
(6.14) Etev [V4Lr|2do < T S
Then, there exist€’, > 0 such that
¢ N v(t)
(6.15) / e VU I(s)ds < Cy eV ||Vdr|2do < Cy
0 2, eV —bt

Now, using inequality{(6]7) and Lemrhab.1 we have

t
(6.16) £t) < \/%_b{/o ¢=V/Fs [E b— Kxldods + Car/T(D) + Cs}



20 A. ESTEVE AND V. PALMER

We are now going to see that

t t
(6.17) / e*ﬁ“/ |b7KN|des§C5+K/ e*ﬁ“/ e V" dods
0 0

s

As |b— Kn(z)| = O(e=2V=t(®)) namely, there existd/ > 0 andK > 0 such that
Ib— Ky(z)] < Ke 2V=tr@) < Ke=V=tr(@ forall 2 € S — Ep(0), then

t M
/e_\/__bs/ |b—KN|dads§ V_b/ b — Ky|dods
0 E; Eg
t
+/ e*ﬁ“/ b — Ky|dods
M FEs
t
§C5+/ e Vb
M

t
§C5—|—K/ e‘ms/ e V= dods
0

Now, using equalityl(315) in Propositidn 8.3, and from thet that given a fixed > 0,
e~V < e=V=brforallr < t, we have

(6.18)
|b*KN|dO'+/ |b*KN|dO'}dS

ES—E]u E]\l

t
\/—b/ ef‘/j’s/ eiﬂrdods:/ e~ 2Vt
0 Eg Ey

/bt e*\/f_brdo_g/ NS

(6.19) E( B
7\/_t 72\/7_175
e\/_t =2V / ds
= 2\/_/ F(s)e™V=ds

and hence, from inequality (€]16) and with == K > 0,C; := Cs + C3 > 0 and
C3:=Cy >0

(6.20) £(t) {201/ f(s)e V"% ds + Co + Ca/F(1)}

On the other handf(t) = eﬂ(f%t > 0 forall ¢t > 0 and, asS is minimal, using
inequality [4.2) in TheoremICf’(¢) > 0 for all ¢ > 0. Moreover, we can assume that
there existsy > 0 such thatf(t) > 1 forall t > ¢, (in contrastf( ) < 1Vt > 0and
the theorem is proven using inequalify (6.2)). Hentg) > /f(¢) for all ¢ > ¢, and
inequality [6.20) becomes (for all> 0 because () is bounded |r{O to]):

(6.21) fit) < —{201 / F(s)e=Y o ds + Co + Ca £(1)}

Now, let us denote(t) fo V=bsds. Then,y'(t) = f(t)e~ V=" andy(0) =
0. Therefore[(6.21) becomes the dlfferentlal inequality:

(6.22) AeV=y/ (1) — By(t) < C

withdA=1-Cs, B = \2/% > 0andC = Cs > 0.
Let us suppose that £ 0 (if A = 0, then we have the result usirig(6.22)).
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Then we now have the differential inequality

(6.23) Y (t) < %e*ﬁ’t + %e*ﬁ’ty(t) = F(t,y(t))

As F(t) is continuous and locally Lipschitz, if we consider
C
ug(t) = = (eF01

1

B )

the solution ofy/(t) = F(t,y(t)) with y(0) = 0, by applying Theorem 1.4 in [14], we
have that for alt > 0,

B ef\/fbt)

e~V

(6.24)  y(t / f(8)e V0 ds < ug(t) = %(e%(l_ -1)<C<x
so now inequality[(6.20) becomes,
(6.25) ft) < \/_{Al + Ao/ f (1)}

with A; =2C,C +Cy >0andA; =C3 >0
Let us denotg/(t) = 4/ f(t) and inequality[(6.25) becomes

(6.26) G (t) — Apg(t) — A1 <0 VE>0
Therefore,g(t) lies between the zeroes of the functioh — A,z — Ay, which are
real and distinct numbers, becaude > 0 and A, > 0, and it is not possible that

Ay = As = 0. Henceg(t) (and alsag?(t) = f(t) = ”(t —=) is bounded, so the Theorem
is proven by using inequality (8.2).

7. PROOF OFTHEOREM[I.G

This proof is modeled on the proof of Theorem 3[in [6]. A$s minimal, we apply
Theoreni T, the fact that the center of the extrinsic haks S, and the co-area formula
to obtain (se€ [25] for detailed proof), that the functign) = Vol(E;) satisfies

(7.1) v(t) > Vol(BP'?) vt >0
Now, using the co-area formula again and the fact that thetiom f (¢) = % is
monotone non-decreasingirand hence/’ (t) > \/2—% sinh v/ —bt Vt > 0), we have
1 2 *° sinh v/ —
(7.2) / i 70 sin 3\/ bt g =
5 cosh® v/— \/ cosh”® v/—b —b
As, on the other hand,
coshrdo
(7.3) lim 1}372 < Jim 2O _
t—0 cosh” t t—0 cosht
by applying Proposition 316, we have:
T [, coshrdo 1 4 sinh® v/~ ’I“HVL’I“HQ
— = lim ————— > lim 3 do
—b  t—oc  cosh’t t—oo Jp cosh” \/—br
1 1 4 sinh?® v/=br ||V r||?
(7.4) :/ 37d0+/ + sin v || Ve o
s cosh® v/ —br cosh” v/ —br
> 14_/ 1 4 sinh? \3/—br||VJ‘T||2dU
—b cosh” /—br
so [, ”S“i‘;;l/s_\/ifﬂ” do = 0 and hence{V-+r|| = 0 on S. Thereford|Vr|| = 1 on

S andS$ is a minimal cone inV. Moreover, by applying Theorem 3.1 in [1}(E;) =
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x(S) forall ¢ > 0. As, for sufficiently smalk, the extrinsic and the geodesic balls are
diffeomorphic,E, = B*?, theny(S) = 1.
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