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Synthesis of nonlinear controller for wind turbines stability when
providing grid support

I. Peñarrocha, D. Dolz, N. Aparicio and R. Sanchis∗

Departament d’Enginyeria de Sistemes Industrials i Disseny, Universitat Jaume I, 12071 Castelló, Spain.

SUMMARY

This paper presents a new nonlinear polynomial controller for wind turbines that assures stability and
maximizes the energy produced while imposing a bound in the generated power derivative in normal
operation (guarantees a smooth operation against wind turbulence). The proposed controller structure also
allows eventually producing a transient power increase to provide grid support, in response to a demand from
a frequency controller. The controller design uses new optimization over polynomials techniques, leading to
a tractable semidefinite programming problem.
The ability of the wind turbine to increase its power under partial load operation has been analysed. The
above optimization techniques have allowed quantifying the maximum transient overproduction that can
be demanded to the wind turbine without violating minimum speed constraints (that could lead to unstable
behaviour), as well as the total generated energy loss. The ability to evaluate this shortfall has permitted the
development of an optimization procedure in which wind farmoverproduction requirements are divided into
individual turbines, assuring that the total energy loss inthe wind farm is minimum, while complying with
the maximum demanded power constraints. Copyrightc© 2012 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Power generation control; wind power generation; transient grid support; polynomial
control; sum of squares.

1. INTRODUCTION

Wind energy penetrations have reached significant levels inmany power systems. It has forced many

system operators to change their grid codes in order to ask wind generators for additional duties,

including grid support to improve frequency control [1]. These new requirements take into account

the specific characteristics of wind energy.

Therefore, for the case of contributing to frequency control, it is typical to require the provision

of downward regulation through the implementation of an asymmetrical droop control that only acts
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during over-frequency events [2,3]. This is always possible for any wind turbine technology since

all of them can curtail the generated power when ordered to doso.

On the contrary, contribution to upward regulation presents some limitations depending on the

operating point of the wind generators. It does not present problems when working either at full

load (i.e. the pitch angle is not at its optimum value) because there is extra energy available in

the wind that can be extracted just by changing the pitch angle; or deliberately deloaded because

there is an amount of reserves available [4]. At partial load, however, only variable speed wind

generators can increase the generated power beyond its mechanical input since this is only possible

by increasing the electromagnetic torque, and that can onlybe achieved through the use of power

electronics, allowing access to power controller reference. The extra power needed is extracted

from the kinetic energy stored in the blades. Thus, the wind generator starts to decelerate leaving

the optimum speed. The new electromagnetic torque reference is usually the result of the sum of the

reference torque that comes from the speed controller (looks for the maximum production speed)

plus an additional term fixed by the frequency controller [5]. Before reaching the minimum speed,

the generated power must be reduced below the captured powerin order to accelerate the machine

so it recovers its original operating point.

The most widely used configuration found in the literature isa PI controller for speed control and

a PD controller for frequency control [5,6]. In the latter, the proportional gain is just a droop control,

needed for the provision of primary frequency regulation, whereas the derivative gain is for inertia

emulation, needed in variable speed wind generators to provide frequency response as their power

converters decouple machine and grid frequencies.

Many authors have shown how this, or similar configurations,can contribute to the reduction in

frequency variations; the methods differ primarily in how to deal with the wind generator speed

reduction. The decrease in speed produces a significant reduction in the power extracted from the

wind, leading to instability if the electromagnetic reference is not changed before reaching the

minimum speed. In [7] it is assumed that the speed control helps in maintaining stability since it

tries to keep wind generator speed within the limits. However, it recognizes that it is not possible for

all the cases and gives an example of a wind generator becoming unstable after providing support

for frequency control. In [8] a speed controller is designed to act slow enough to minimize the

variation of its output during the initial transient of an under-frequency event. The response of

the wind generator only during the transient is guaranteed by adding a washout filter before the

droop control. A washout filter is known as a transient droop in hydro turbines. Wind turbines from

General Electric offer primary regulation and inertia emulation separately [9]. Primary regulation

is only possible if the wind turbine is previously deloaded.Inertia emulation is always possible

but is only used during under-frequency. When inertia emulation is enabled, the speed control is

programmed far slower and a first order filter is added at its output. There are grid codes that require

inertial emulation, which is met for instance by defining a given amount and duration of the extra

power that must be generated [10].

Neither of the previously proposed solutions demonstratesglobal closed loop system stability.

Furthermore, the performance is only evaluated ex post facto. This means that the controller designs

are not developed in an optimal way.

More complex controllers have been recently proposed for wind turbines [11–13], using a linear

parameter varying controller that is designed using a linearized system model, and the wind speed as

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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time varying parameter. They have produced some improvement in performance as their controllers

are computed with an optimization procedure trying to fulfill some given constraints on the machine

operation (viaH∞ controller design). Nonetheless, there is still the need tofind a control scheme

that optimizes the generated power at the same time that it provides grid support to contribute to

system frequency control, as it is stated in [14].

The present work develops a new strategy for nonlinear polynomial controller design that

translates the goals and restrictions that a wind turbine must satisfy, including limitations in both

ramp rates and stresses and fatigue in mechanical components, into a computationally tractable

optimization problem. The proposed strategy allows us to determine ex ante the machine behaviour

when it provides grid support (transient overproduction),and the limit of the operating conditions in

which the stability is assured. Furthermore, it allows us topredict on line the total generated energy

loss after overproduction transients (including the subsequent recovery). Using these predictions,

a wind farm controller is proposed to dispatch the power demands via an optimization procedure

that minimizes the total energy loss. This proposal clearlyimproves other simpler strategies, like

proportional ones [15], that may result in a higher total energy loss and may cause instability in the

wind turbines.

The structure of the work is as follows. First, Section2 presents the models considered for both

the wind generator and the wind farm. Section3 develops the proposed state and wind observer.

Section4 presents the proposed controller design including strategies to compute the admissible

bounds on the overproduction demand, and the total energy loss during overproduction transients.

Section5 presents a power dispatch function, while in Section6 the proposed strategies are tested

and some simulation results are shown. Finally, Section7 summarizes the main conclusions.

LIST OF SYMBOLS

List of Parameters Meaning

Ht Wind turbine inertia constant

Hg Generator inertia constant

Dtg Friction constant

Ktg Elastic constant

cij Coefficients of the aerodynamical torque polynomial

τem Electromagnetic constant time of the generator

τv Constant time of the wind generator model

ωg,min, ωg,max Limits of the allowed speed

v̄min, v̄max Considered limits on the mean wind speed

K(x̃, ω̃⋆
g) Controller function

Q Tuning gain matrix for Kalman filtering

R Measurement noise covariance matrix

List of Variables Meaning

Tt Torque due to wind action

Tem Generator’s electromagnetic torque

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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T ⋆
em Desired generator’s electromagnetic torque

ωt Slow shaft (blades) rotational speed

ωg Fast shaft (generator) rotational speed

ω⋆
g Desired fast shaft (generator) rotational speed

ω⋆
g(v̄) Rotational speed that maximizes generation

ω̄⋆
g ω⋆

g in steady state

ω̃⋆
g Variations ofω⋆

g around the steady state

θ Angular difference between equivalent masses

β Blade pitch angle

v Wind speed

v̄ Mean wind speed
ˆ̄v Mean wind speed estimation

ṽ Wind’s turbulence component

P Generated electric power

Pt Available wind power

∆P ⋆ Desired transient power generation increase

∆T ⋆ Incremental electromagnetic torque

∆T ⋆
max Maximum allowed incremental electromagnetic torque

xk Discrete time state for Kalman filtering

I Controller integral error

w White noise for wind modelling

x Continuous time state for controller design

x̄ State at the equilibrium point

x̃ State variations around the equilibrium point

T̃ ⋆
em Incremental control action (the output of the controller)

V (x̃), W (x̃) Lyapunov functions

e(t) Electrical energy deviation from the optimal production

L Total energy loss

L(∆P ⋆) Total energy loss function depending on incremental power demand

i Grid point for computational issues

j Number of turbine in the wind plant

2. PROBLEM STATEMENT

2.1. Wind turbine mathematical model

Doubly fed induction generators (DFIG) are the most widely used until now [16] so the analysis

is focused on these machines. A mathematical model for a DFIGwind turbine connected to an

electrical grid will be developed including the drive train, the aerodynamic effects, and the electronic

converter. This is a simplified but complex enough model to achieve with sufficient accuracy the

proposed goals (performance quantification). The drive train is modeled by means of two inertias

connected through a spring and a shock absorber [9], leading to equations (the dependence on time

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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t is omitted for brevity):

Htω̇t = Tt −Dtg (ωt − ωg)−Ktg θ (1)

Hgω̇g = Dtg (ωt − ωg) +Ktg θ − Tem (2)

θ̇ = ωt − ωg (3)

whereωt is the slow shaft rotational speed (i.e., the wind turbine),ωg the rotational speed of the

fast shaft connected to the generator rotor,Ht the wind turbine inertia constant,Hg the generator

inertia constant,Tt the torque developed by the wind turbine due to wind action and Tem the

electromagnetic torque of the generator. Speeds and torques are expressed in p.u. units (i.e. relative

values with respect to their nominal value, meaning 1 the nominal value and 0.5 half the nominal

value).θ is the angular difference between equivalent masses. The torque developed by the wind

turbine can be expressed approximately by means of static functions of the wind speed,v, rotor

rotational speed and blade pitch angle,β. Several functions for this torque can be found in the

literature. In this work, this torque has been approximatedby a polynomial function as

Tt =

4∑

i=0

4∑

j=0

cijv
iωj

t , (4)

where the pitch blade angle is assumed to be zero, as, in this work, only low and medium wind

speeds (the more probable ones) are assumed.

The wind can be characterized by means of its mean value and a turbulence component, as stated

in the IEC-standard [17–19]

v(t) = v̄(t) + ṽ(t).

The mean value of the wind̄v(t) is assumed to change slowly in time (in a scale of hours) and it

can be modelled by Van der Hoven’s spectral model plus a Weibull probability distribution. For the

turbulence part a Kaimal model can be used. In the short-terma periodic variation due to tower

shadow can also be added. Those models have been implementedin order to generate the wind used

in the simulation verification of the proposed analysis and prediction methods explained later, but

the details are omitted for brevity (they can be found in [18,19]).

The electromagnetic torque is achieved by means of a currentcontrol loop in the power electronics

converter that presents a much faster dynamics than the one being analysed. It can be approximately

modelled by a first order model that depends on the generator speed (as in [11]) as

Ṫem =
ωg

τem
(T ⋆

em − Tem). (5)

The generated electric power is given by

P = Temωg. (6)

2.2. Wind turbine and farm control objectives

The wind turbine operation requires a controller that decides the electromagnetic torque to be

applied at each instant of time. The objectives of the controller are divided into two groups. First, the

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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goals related to the normal operation and the behaviour withrespect wind variations, and second,

the goals related to the transient grid support capabilities.

Objectives related to normal operation (behaviour with respect wind variations):

• Maximize the generated electrical power, tracking as fast as possible the optimal generation

speed as a function of the mean wind speed.

• Bound the generated power derivative through all the operating range. For example according

to standard 61400-21 [20], i.e. a rate limitation of 10% of the rated nominal power in one

minute (|Ṗ | ≤ 0.1/60 p.u./s).

• Guarantee that the generator speed remains in a safe range (ωg ∈ [ωg,min, ωg,max], usually

ωg,min = 0.8 p.u., andωg,max = 1.2 p.u.).

Objectives for the wind turbines related to grid support demand events:

• To be able to produce a transient increase in the generated power, with a prescribed peak

value, to provide grid support.

• To be able to compute off line, for the designed controller, the maximum power increase

that can be demanded to the wind turbine, as a function of the mean wind speed, while

guaranteeing that the generator speed remains inside the safe operating range.

Objectives for the wind farm related to grid support demand events:

• To minimize the total energy loss, distributing the transient power demand between the wind

turbines in an optimal way.

About the ability of producing a transient increase in the generated power, the idea is to help

the grid to restore faster its nominal frequency when some failure occurs in any conventional

electrical source. The power generated by the wind turbine can be transiently increased by means

of decelerating the machine and injecting its stored kinetic energy.

The following considerations must be taken into account with respect to transient overproduction

demands. First, in this work, the considered situations arethose in which the wind speed is equal or

below rated. Second, the power increment is achieved by means of a machine deceleration, and it

must be assured that the machine does not exceed the limits ofthe operating range, or to an unstable

behaviour. Also, the higher transient production is (for wind speeds equal or below rated) followed

by a recovery transient in which the machine is restored to its normal operation and, during that

recovery, needs to capture wind power to accelerate [6,21]. During this process, the total amount of

electrical energy produced is always lower than the one generated if no power overproduction were

demanded. Both the injected energy during the initial poweroverproduction transient and the total

energy loss depend on the demanded power, but the relation isnonlinear (as it will be shown later

in Section4.4 and numerically in Section6). Therefore, an optimization procedure is proposed to

assure that the demanded overproduction is satisfied by the wind farm at the same time that the total

electrical energy loss is minimized.

2.3. Wind turbine and farm control structure

The proposed controller for each wind turbine and the wind farm controller have the structure shown

in Fig. 1. An existing grid frequency control system (that is outsideof the scope of the paper) is

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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Lj(∆Pj) 
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P∆

∆P1,max L1(∆P1) 

to the 

power system 

Wind turbine j 

j
x̂

j
v̂

O

O

O

O

O

O

O

O

Figure 1. Proposed control structure.

assumed to eventually ask the wind farm for a transient increase in the generated power, defined by

a given peak value,∆P ⋆. The dashed arrows indicate signals that are not continuous, but instead,

are only defined in the discrete instant when a transient increase event is produced by the frequency

controller. The wind turbine controller has the following structure (for each of thej = 1, . . . , N

wind turbines in a farm). First, a wind and state observer is implemented using the measurement of

the generator speed and the applied electromagnetic torque. The observed wind speed is filtered in

order to obtain a soft mean wind speed estimationˆ̄vj . The wind mean speed is then used to obtain

the speed generator referenceω⋆
g that leads to the maximum power generation. This is obtainedby

maximizing the available wind power (given byPt = Tt ωt), within the allowed range ofwt, and

taking into account that in steady stateωt = ωg, leading to an static functionω⋆
g(v̄).

The optimal generator speed reference and the estimated state are the only inputs of the speed

controller during normal operation. This controller computes the control actionT ⋆
em by means of a

polynomial controller (see Section4), whose structure includes a PI controller as a particular case

(i.e., traditional PI controller can also be handled with this structure).

In order to be able to respond to the eventual grid support demand, the peak incremental

power demand received by the wind farm from the frequency controller, ∆P ⋆, is split into several

incremental overproduction demands that are dispatched toeach wind turbine controller,∆P ⋆
j , that,

divided by the speed reference, results in a peak value of incremental electromagnetic torque,∆T ⋆
j :

∆T ⋆
j =

∆P ⋆
j

ω⋆
g

(7)

This torque is an eventual signal that takes a value different from zero only at the instant when the

overproduction is demanded. The controller incorporates this eventual signal such that a transient

incremental torque (and hence generated power) with a peak value of∆T ⋆
j is generated, vanishing

with time as it is compensated by the controller (due to the integral action), finally recovering the

previous steady state value. A detailed description of how the controller deals with this signal can

be found in Section 4.3.

The incremental power demand must be bounded by a function ofthe wind speed,∆Pj,max(v̄),

in order to assure that the machine is not taken out of the safeoperating range at any instant,

or destabilized, as it will be shown in Section4.3, where a procedure to compute that bound is

developed.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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A power dispatch function is proposed, as shown in Fig.1, whose objective is to satisfy the total

demanded overproduction with the minimum possible energy loss. In order to make the assignment

decision, the maximum possible overproduction demand (∆Pi,max) as well as the energy loss related

to the production demand (Lj(∆Pj)) are assumed to be known for each turbine (the procedures to

compute them are developed in Section4.3and4.4).

In the following sections, the observer, the controller andthe dispatch function design procedures

are detailed. In Section3 and4 one single turbine is considered and, therefore, the index numbering

the turbine inside the wind farm will be omitted.

3. STATE AND WIND OBSERVER

For the state and wind observer, a simple random walk is used for the wind generation modelv̇ =

wv, wherewv is white Gaussian noise. With this wind model, a forward difference approximation

of the DFIG model is defined with a sufficiently small periodT , leading to

xk =











vk

ωt,k

ωg,k

Tem,k

θk











=











vk−1 + T wv,k−1

ωt,k−1 +
T
Ht

(Tt,k−1 −Dtg∆ωk−1 −Ktgθk−1)

ωg,k−1 +
T
Hg

(−Tem,k−1 +Dtg∆ωk−1 +Ktgθk−1)

Tem,k−1 +
T ωg,k−1

τem
(T ⋆

em,k−1 − Tem,k−1)

θk−1 + T ∆ωk−1











ωg,k =
[

0 0 1 0 0
]

xk (8)

where∆ωk−1 = ωt,k−1 − ωg,k−1, andTt,k−1 =
∑3

i=0

∑3
j=0 cijv

i
k−1ω

j
t,k−1. Let us now express the

previous model as

xk = f(xk−1, T
⋆
em,k−1) + wk−1 (9)

ωg,k = C xk + νk, (10)

wherewk−1 is assumed to be a white noise disturbance vector taking intoaccount the wind speed

variations and possible model errors, andνk is the measurement noise, assumed to be a white noise

signal with known varianceE{ν2k} = R. The proposed algorithm, based on the Extended Kalman

Filter, that must be computed at each sampling period to estimate the wind speed, its mean and root

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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mean square value is

x̂−
k = f(x̂k−1, T

⋆
em,k−1) (11a)

P−
k = Fk−1Pk−1F

T
k−1 +Q (11b)

Lk = P−
k CT (C P−

k CT +R)−1 (11c)

x̂k = x̂−
k + Lk(wg,k − C x̂−

k ) (11d)

Pk = (I − Lk C)P−
k (11e)

ˆ̄vk = p · ˆ̄vk + (1 − p) · v̂k (11f)

σ̂v2,k = p · σ̂v2,k−1 + (1− p) · (ˆ̄vk − v̂k)
2 (11g)

σ̂v,k =
√

σ̂v2,k (11h)

whereQ is used as a tuning parameter (see Section6), p is a slow discrete time pole (0 < p . 1)

chosen to be the discrete-time equivalent of a continuous-time pole similar to the model that

generates the mean wind speed variations (about1/600s−1, hencep ≈ e−
T

600 ). The matrixFk−1

is given by

Fk−1 =
∂f

∂x

∣
∣
∣
∣
x̂k−1,T

⋆
em,k−1

.

Note that this algorithm is useful for both wind estimation and state observation, and can be used

to implement wind control algorithms based on polynomial state feedback control, or to address

optimization procedures that depend on the working conditions of different wind turbines. This

idea is explored in the following sections. From now on, it will be assumed that the wind and state

observer has been tuned properly and, therefore proper estimates of the state and wind are available.

For that reason, and in order to avoid an abuse of notation, the estimated state (x̂) will be rewritten

asx, and the estimated mean wind speed (ˆ̄v) asv̄.

4. CONTROLLER DESIGN

4.1. Control system modeling

In this section, the procedure to obtain the speed controller for normal operation is explained.

The design strategy has been developed by using Lyapunov methods and applying optimization

techniques over polynomials (see [22] for the details on the technique, and [23–27] for other recent

applications). For these techniques a dynamical polynomial model of the system is assumed to be

available, fulfilling

ẋ = f(x) + g(x)w, f(0) = 0 (12)

wherex is the state vector,w are the inputs, andf(x) and g(x) are given polynomial vectorial

functions. For design purposes, the wind will be modelled asa slowly time varying mean valuēv

plus a signal generated by a bounded white noisew filtered by a first order system with a low time

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
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constant, leading to

˙̃v =
1

τv
(w − ṽ), (13)

v = v̄ + ṽ. (14)

The system model used for the design procedure is defined as













˙̃v

ω̇t

ω̇g

θ̇

İ

Ṫem













︸ ︷︷ ︸

ẋ

=













1
τv
(w − ṽ)

1
Ht

(Tt(v, ωt) +Dtg(ωt − ωg)−Ktθ)
1
Hg

(−Tem −Dtg(ωt − ωg) +Ktθ)

ωt − ωg

ω⋆
g − ωg

ωg

τem
(T ⋆

em − Tem)













(15)

whereTt(v, ωt) is the polynomial defined in (4), I is the integral of the generator speed tracking

error, andT ⋆
em = K(x, ω⋆

g) is the control action to be defined. The controller can be a polynomial

function of the statex (including the integral error), and reference inputω⋆
g . This is a polynomial

dynamic model with inputsw and ω⋆
g . The proposed control scheme fixes the speed reference

as a function of the estimated mean wind speed. In order to analyse the tracking behaviour

of the controlled system with respect to changes in the speedreference, it will be written as

ω⋆
g = ω⋆

g(v̄) + ω̃⋆
g , whereω⋆

g(v̄) is the optimal speed reference, andω̃⋆
g represents a possible change

in this reference. Introducing this concept into dynamics equation it leads to

ẋ = f(x, v̄) + gw w + gP ω̃
⋆
g + gT (x)T

⋆
em, (16)

wherev̄ can be considered as a time varying parameter whose slow variation will be neglected (note

that the dynamics of the mean wind speed is much slower than the rest of the dynamics considered

in the model). As model (16) does not fulfill the conditionf(0, v̄) = 0, as needed, new incremental

variables̃x must be defined fulfillingx = x̄+ x̃, wherex̄ is the value that makesf(x̄, v̄) = 0. From

this equation it is easy to derive the following expressionsfor the equilibrium points

ω̄t = ω̄g = ω⋆
g(v̄), T̄em = Tt(v̄, ω

⋆
g(v̄)) = Tt(v̄), θ̄ =

Tt(v̄)

Kt

.

This has two consequences. The first one is that the electromagnetic reference torque (the control

action) must take a non-zero value at the equilibrium point (T̄ ⋆
em = T̄em)† that must be taken

into account in the change of variables, that now will be expressed asT ⋆
em = T̄ ⋆

em + T̃ ⋆
em, with

T̃ ⋆
em = K(x̃, ω̃⋆

g) andω̃⋆
g = ω⋆

g − ω̄⋆
g . With these changes of variables, the model can be expressed

as
˙̃x = f(x̃, v̄) + gww + gP ω̃

⋆
g + gT (x̃)T̃

⋆
em, (17)

†In practice, this value will be achieved by the controller thanks to the integral error termI.
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Figure 2. Optimal speed generator reference as a function ofmean wind speeds.

The second one is that the non-polynomial relationshipω⋆
g(v̄) (introduced in Section2.3and Fig.1,

and detailed in Section4.2and Fig.2) appears, and, therefore the previous model cannot be written

with a polynomial dependency of̄v (if ω⋆
g(v̄) were a polynomial, the result would be a polynomial

parameter varying system). For this reason, an approximative method is proposed using a grid of

n different mean wind speeds̄vi betweenv̄min and v̄max (normally v̄min = 6, v̄max = 10 for low

wind applications) fulfillingv̄min = v̄1 < v̄2 < · · · < v̄n = v̄max. The number of points in the grid

is a trade-off between fitting the nonlinear behaviour with sufficient precision and the required

computational cost for the algorithms to come. With this grid, we assume from now on that we have

a set ofn possible polynomial models

˙̃x = fi(x̃) + gw w + gP ω̃⋆
g + gT,i(x̃)T̃

⋆
em, (18)

wherew is the wind turbulence, and̃x = [ṽ, ω̃t, ω̃g, θ̃, Ĩ , T̃em]T andω̃⋆
g are the variations of the state

and reference from the equilibrium point, defined as a function of the mean wind speed̄vi by

ω̄t,i = ω̄g,i = ω⋆
g(v̄i), T̄em,i = Tt(v̄i, ω

⋆
g(v̄i)), θ̄i =

Tt(v̄i)

Kt

.

4.2. Optimization based controller design

The previous controller depends on the mean wind speed by means of the optimal speed reference

ω⋆
g(v̄). Then, before computing the controller, the optimal speed reference function must be obtained

assuring that the operation of the machine in steady state generates the maximum power. This can

be obtained as a result of the following optimization problem, that must be solved for each mean

wind speed (i = 1, . . . , n):

ω⋆
g(v̄i) = arg max

T⋆
em,ωg

Tt ωt

s.t. f(x, v̄i) + gT (x)T
⋆
em = 0,

ωt,min ≤ ωt ≤ ωt,max.

Figure2 shows the functionω⋆
g(v̄) obtained for the wind turbine analyzed in Section6.
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As previously described in Section2.2, the objectives of the controller during normal operation

are to smooth the generated power (i.e., to assure that|Ṗ | is lower than the imposed limit for a wind

with a given turbulence), at the same time that the optimal generation speed is tracked as fast as

possible (when a change on the mean wind speed is detected). In order to attain these objectives,

one must take into account that in a given wind farm, the turbulence intensities can be bounded.

This bound will lead to different covariance of the fast windvariations depending on the mean

wind speed, as stated in standard IEC 61400-1 [17]. With that covariance, a maximum value of the

turbulence can be obtained with the3σ confidence interval. Let us call that boundw̄i for each mean

wind speed.

Also, it must be noted that the nonlinear polynomial model has been obtained for a given operation

range in which the controller must work. For this reason, theproblem of finding a controller that

attains the stated goals will be solved locally using state region constraints. For the case of the wind

turbine generator, these are the known limits of the speeds and electromagnetic torque. This region

will be defined in terms of the incremental variablesx̃ and, therefore it will depend on the mean

wind speed. It will be denoted asDi and defined as follows:

Di =







x̃ :

ωg,min ≤ ω̄g,i + ω̃g ≤ ωg,max

ωt,min ≤ ω̄t,i + ω̃t ≤ ωt,max

Tem,min ≤ T̄em,i + T̃em ≤ Tem,max







.

The following theorem is useful to find a controller that assures that the power variations do not

violate the established constraints at each of the mean windspeeds (|Ṗ | < ¯̇P ), and that the integral

speed tracking error is minimized.

Theorem 4.1

For all i = 1, . . . , n points in the gridding, if there exist a positive real numberγ, 2n Lyapunov

functionsVi(x̃), Wi(x̃) and a functionK(x̃, ω̃⋆
g) fulfilling,

Vi(x̃) > 0, x̃ 6= 0, Vi(0) = 0, ∀x̃ ∈ Di (19a)

V̇i(x̃) ≤ 0, ∀w2 < w̄2
i , ∀ x̃ ∈ {x̃|Vi(x̃) = 1}, ∀x̃ ∈ Di (19b)

Ṗ 2
i ≤ ¯̇P 2, ∀ x̃ ∈ {x̃|Vi(x̃) ≤ 1}, ∀x̃ ∈ Di (19c)

Wi(x̃) > 0, x̃ 6= 0, Wi(0) = 0, ∀x̃ ∈ Di (19d)

Ẇi(x̃) ≤ ω̃⋆ 2
g , ∀ x̃ ∈ {x̃|Wi(x̃) ≤ 1}, ∀x̃ ∈ Di (19e)

I2 < γ, ∀ x̃ ∈ {x̃|Wi(x̃) ≤ 1}, ∀x̃ ∈ Di (19f)

with

V̇i(x̃) =
∂Vi(x̃)

∂x̃

(
fi(x̃) + gw w + gT,i(x̃)K(x̃, ω̃⋆

g)
)
,

Ẇi(x̃) =
∂Wi(x̃)

∂x

(
fi(x̃) + gP (x)ω̃

⋆
g + gT,i(x̃)K(x̃, ω̃⋆

g)
)
,

Ṗi = ω̇g Tem + ωg Ṫem = ˙̃ωg(T̄em,i + T̃em) + (ω̄g,i + ω̃g)
˙̃T em,

then, under null initial conditions, a constant speed reference and wind disturbances bounded

by ‖w‖∞ < w̄i, the power derivative is bounded by‖Ṗ‖∞ < ¯̇P . Furthermore, under null wind
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disturbances, the reference tracking error is bounded by‖I‖∞ <
√
γ for reference changes bounded

by ‖ω̃⋆
g‖2 < 1.

Proof

Constraints (19a) and (19b) indicate thatVi(x̃) is a Lyapunov function such that decreases on the

boundary defined byVi(x̃) = 1 for all inputs fulfilling |w| ≤ w̄i, and, therefore, the state will always

be contained in the setVi(x̃) ≤ 1 under null initial conditions. Condition (19c) indicates that the

inclusion of the state in that set implies‖Ṗi‖∞ < ¯̇P .

Now, if null initial conditions are assumed (x̃(0) = 0), and both sides of inequality (19e) are

integrated assuming that
∫ T

0
ω⋆
g
2 dt ≤ 1, it leads toWi(x̃(T )) ≤ 1 (asWi(x̃(0)) = 0). On the other

hand, under null reference input (ω̃⋆
g = 0), constraint (19e) leads toẆi(x̃) ≤ 0, ∀Wi(x̃) ≤ 1, i.e.,

the Lyapunov function decreases for allx̃ inside the set defined byWi(x̃) ≤ 1. Therefore,Wi(x̃) ≤ 1

is the reachable set for all reference inputsω̃⋆
g bounded in energy by 1. Finally, constraint (19f) states

that the integral error is bounded by‖I‖∞ <
√
γ for all x̃ inside the mentioned set.

Remark 4.1

The previous theorem allows us to find a controller fulfillingthe proposed constraints, and,

furthermore, if a minimization ofγ is addressed, the fastest feasible controller can be obtained.

However, it is difficult to solve the minimization problem ifthe Lyapunov function, controller

functions, and set membership functions (Di) are not first restricted to a predefined structure.

If these functions are forced to be polynomials of a given order, then the previous problem

can be converted to an optimization over polynomials one. Besides, that optimization can be

further simplified to reach a computationally tractable numerical problem, if the positivity of the

polynomial functions over the different sets is restrictedto sum of squares constraints using the

Positivstellensatz result [22] that can be found in the appendix. This simplified problem (sum of

squares optimization) can be reduced to a semidefinite program problem that can be efficiently

solved with well-known interior-point algorithms. Of course, the price paid is the introduction of

some degree of conservativeness.

To find the (local) controller that assures that the reference tracking speed is maximized and that

the power derivative is bounded, the following optimization problem is proposed:

min
Vi,Wi,K,γ

γ (20)

s.t. ∀i = 1, . . . , n :

Vi(x̃)− ǫx̃T x̃− p1,i(x̃) ∈ Σ

− V̇i(x̃)− si(x̃)(w̄
2
i − w2) + qi(x̃)(Vi(x̃)− 1)− p2,i(x̃) ∈ Σ

¯̇P
2
− Ṗ 2 − ri(x̃)(1 − Vi(x̃))− p3,i(x̃) ∈ Σ

Wi(x̃)− ǫx̃T x̃− p4,i(x̃) ∈ Σ

ω⋆
g
2 − Ẇi(x̃)− li(x̃)(1−Wi(x̃))− p5,i(x̃) ∈ Σ

γ − I2 − ti(x̃)(1−Wi(x̃))− p6,i(x̃) ∈ Σ

si(x̃), ri(x̃), ti(x̃), li(x̃) ∈ Σ, γ > 0,
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whereVi(x̃), Wi(x̃), qi(x̃), ri(x̃), si(x̃), ti(x̃) andK(x̃, ω̃⋆
g), are polynomials to be obtained during

optimization problem,Σ is the set of sum of squares polynomials,ǫ is a small positive constant,

and where the derivative functionsV̇i(x̃), Ẇi(x̃), Ṗi must be expressed as indicated in theorem4.1.

Polynomialspk,i(x̃) (k = 1, . . . , 6) are formed as in

pk,i(x̃) =αk,i,1(x̃)(ω̃g − (ω̄g,i − ωg,min))((ωg,max − ω̄g,i)− ω̃g) (21)

+ αk,i,2(x̃)(ω̃t − (ω̄t,i − ωt,min))((ωt,max − ω̄t,i)− ω̃t)

+ αk,i,3(x̃)(T̃em − (T̄em,i − Tem,min))((Tem,max − T̄em,i)− T̃em)

whereαk,i,l ∈ Σ, l = {1, 2, 3} are polynomials to be obtained during optimization problem. These

polynomialspk,i(x̃) are used to solve the problem locally, allowing us to find a feasible solution on

the previously defined setDi.

Note that this optimization problem is non-convex as products of decision variables appear. For

that reason, a solver for bilinear matrix inequalities, an iterative procedure, or more recent strategies

(see [28]) are required. The numerical aspects of this optimizationproblem are out of the scope of

this paper.

4.3. Bounding the overproduction demand

The controller designed in the previous section for normal operation maximizes the tracking speed

while bounding the power derivative. However, this controller must also be capable of responding

to eventual grid support demands defined as an incremental power peak,∆P ⋆. To cope with this

requirement, the incremental peak power demand received bythe wind generator,∆P ⋆, is converted

into a peak incremental electromagnetic torque signal of constant value∆T ⋆ that is an eventual

input of the speed controller. The simplest way of generating a peak of value∆T ⋆ in the torque is

to add this value as a constant (step) disturbance to the output of the previously designed speed

controller. The controller reacts producing a transient incremental torque (and hence generated

power) with a peak value of∆T ⋆, that vanishes with time after a transient, as it is compensated

by the controller (due to the integral action), finally recovering the previous steady state value.

The behaviour during this transient can be observed in the Fig. 10. During the initial part of this

transient, the machine is decelerated transferring the blades’ kinetic energy to the grid. Then, the

machine is accelerated again, reducing the generated power, until the equilibrium point is recovered.

This strategy has a minor implementation problem: each timean overproduction event occurs,

the disturbance signal is incremented, and as a result, the integral term of the speed controller

grows. This could produce numerical issues in the long term.This problem can be easily solved

by implementing a mathematically equivalent strategy: instead of adding a step disturbance of∆T ⋆

at the controller output, an impulse signal of the necessaryvalue should be added once to the integral

term of the controller. This would produce an instantaneousincrease in the controller output, that

would be compensated after a transient, returning the controller to its previous steady state. The

exact value of the impulse to be added to the integral term canbe easily computed from the controller

equation, as the value that produces an instantaneous increase of∆T ⋆ on the controller output. As

both strategies are equivalent, in the sequel, the first one is assumed to be applied for analysis

purposes.
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During the transient, the generator speed reaches a minimumvalue that depends on the value of

incremental torque,∆T ⋆. It will be useful to compute which is the maximum incremental torque that

can be added to the controller output while guaranteeing that the generator speed remains inside the

safe operating range (it is not decelerated too much, i.e.,ωg > ωg,min). In this way, the incremental

torque added as a disturbance can be limited to remain insidethe safe speed range. Obviously,

the maximum torque will depend on the operating point (i.e. on the wind mean speed). Another

aspect that should be analysed when studying the behaviour under overproduction demands is the

effect of the transient overproduction on the overall electrical energy generation, as a function of the

operating point.

Once the controller has been obtained (T̃ ⋆
em = K(x̃, ω̃⋆

g)), some assumptions are taken on the

modelled dynamics, in order to formulate the closed loop system model. First, the dynamics of the

wind turbulence signal is assumed to be negligible (ṽ = 0), and, therefore,v = v̄. As a consequence,

it is also assumed that the speed referenceω⋆
g(v̄) will not change during this transient and, therefore,

ω̃g = 0. Moreover, it is assumed that the incremental torque signalwill appear when the wind turbine

is operating on its optimal point̄ωg = ω⋆
g(v̄) and, therefore, the difference between the present speed

and the limit one (ωg = ωg,min) is given by the known quantityω⋆
g(v̄)− ωg,min (i.e., the incremental

speed|ω̃g| must be bounded by|ω⋆
g(v̄)− ωg,min|). Finally, the electromagnetic reference torque

is assumed to include the external incremental signal∆T ⋆. With these assumptions, the system

model (18) with the controller is reformulated in closed loop for eachpoint of the grid, taking into

account the disturbance input∆T ⋆, leading to

˙̃x = fCL,i(x̃) + gT,i(x̃)∆T ⋆, (22)

The following theorem allows us to bound the incremental speed ω̃g signal under a step input

input on the incremental torque signal.

Theorem 4.2

For each point in the grid,i = 1, . . . , n, if there exists a Lyapunov functionVi(x̃) fulfilling,

Vi(x̃) > 0, x̃ 6= 0, ∀x̃ ∈ Di (23a)

V̇i(x̃) ≤ 0, ∀∆T ⋆2 < ∆T ⋆
i,max

2, ∀ x̃ ∈ {x̃|Vi(x̃) = 1}, ∀x̃ ∈ Di (23b)

ω̃2
g ≤ (ω̄g,i − ωg,min)

2, ∀ x̃ ∈ {x̃|Vi(x̃) ≤ 1}, ∀x̃ ∈ Di (23c)

with

V̇i(x̃) =
∂Vi(x̃)

∂x
(fCL,i(x̃) + gT,i(x)∆T ⋆) , (24)

then, under incremental torque demands bounded by‖∆T ⋆‖ < ∆T ⋆
i,max, the rotor speed fulfills

ωg ≥ ωg,min.

Proof

Similar to Theorem4.1, the first two constraints indicate that the state will always be contained in the

setVi(x̃) ≤ 1 under null initial conditions and input torque signals bounded by|∆T ⋆| < ∆T ⋆
i,max.

Condition (23c) implies the following bound on the incremental speed‖ω̃g‖∞ < ω̄g,i − ωg,min, i.e.

the absolute speed will fulfillωg > ωg,min.
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Remark 4.2

If one finds the maximum∆T ⋆
i,max such that conditions (23) are fulfilled, then the maximum

admissible∆T ⋆ is obtained. As explained in Remark4.1, this problem can be simplified to a

numerically tractable one if it is reformulated as a sum of squares problem. In this case, the following

optimization problem leads to the maximum torque step valuethat assures that the generator speed

does not go belowωg,min p.u. for a given mean wind speedv̄i (i = 1, . . . , n):

max
Vi,τi

∆T ⋆
i,max (25)

s.t. Vi(x̃)− ǫx̃T x̃− p1,i(x̃) ∈ Σ

−V̇ (x̃)−si(x̃)(∆T ⋆
i,max

2−∆T ⋆2) + qi(x̃)(Vi(x̃)− 1)− p2,i(x̃) ∈ Σ

((ω̄g,i − ωg,min)
2 − ω̃2

g)− ti(x̃)(1 − V (x̃))− p3,i(x̃) ∈ Σ,

si(x̃), ti(x̃) ∈ Σ, ∆T ⋆
i,max > 0,

whereVi(x̃), si(x̃), qi(x̃) and ti(x̃) are polynomials to be obtained during optimization problem,

Σ is the set of sum of squares polynomials,ǫ is a small positive constant, and where the derivative

functionV̇i(x̃), must be expressed as indicated in Theorem4.2. Polynomialspk,i(x̃) (k = 1, . . . , 3)

are included to restrict the search on the setDi, and they are formed as in (21), whereαk,i,l ∈ Σ,

l = {1, 2, 3} are polynomials to be obtained during optimization problem.

After computation of this optimization problem over then gridding points, a smooth function is

proposed to be defined by interpolating the obtained values,leading to a bound of the maximum

allowable torque as a function of the estimated wind mean speed

∆T ⋆ ≤ ∆T ⋆
max(v̄). (26)

If the incremental electromagnetic torque is obtained as proposed in equation (7) (as a result of a

demanded incremental power∆P ⋆), the maximum allowable value for the incremental power as a

function of the wind mean speed is given by

∆P ⋆
max(v̄) = ∆T ⋆

max(v̄)ω
⋆
g(v̄). (27)

This function is represented in Fig.1 above the dispatch function block, and in Fig.6 in the

numerical example section.

4.4. Evaluating the total energy loss

As shown in Fig.10, when an incremental torque disturbance is added to the output of the speed

controller (or an equivalent impulse is added to the integral term of the controller), while working

in steady state on an optimum generation equilibrium point,the electrical power is increased during

a short period, but then the power decreases, falling below the optimum point, and finally the power

increases again until the machine recovers its optimum equilibrium point. Due to the nonlinear

nature of the wind power capture (that depends on the turbinespeed), during this operation, the total

produced electrical energy is lower than the one that would have been obtained if no incremental

power had been required.
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Let us introduce a new variablee defined as

e(t) =

∫ t

0

(
P (τ)− P̄

)
dτ, (28)

that is the integral along time of the difference between thereal generated power and the optimal

generated power in steady state for a given mean wind speed (with no transient overproduction).

This variable can be viewed as the total electrical energy deviation from the optimal production. If,

at a given instant, the quantitye is positive, it means that the produced electrical energy islarger

than the one that would be obtained if operating in steady state in the optimal equilibrium point.

Note that this situation (e(t) > 0) is only possible during the transient time in which the machine

is being decelerated and the electrical power is increased thanks to transformation of the stored

kinetic energy on electrical one. Let us define the total injected energy as the value ofe(t) when

P (τ)− P̄ = 0, i.e. whene(t) reaches its maximum positive value (see Fig.7). If at a given instant

of time t, e(t) < 0, then the total generated electrical power until timet is lower than the one that

would have been obtained if operating at the optimal regime.

Let us also define the total energy loss as the quantity

L = − lim
t→∞

e(t) = − lim
t→∞

∫ t

0

(
P (τ)− P̄

)
dτ (29)

In order to analyse the benefits of attending overproductiondemands, the total energy loss should

be evaluated for different operating conditions and incremental power signals∆P ⋆ (bounded by

∆P ⋆
max(v̄) if speeds under the lower allowed limit must be avoided), leading to an evaluation

function L(v̄,∆P ⋆). In order to find this function, let us consider the state space nonlinear

differential equation formed by (22) plus state equation

ė = P − P̄ = ω̄g,iT̃em + ω̃gT̄em,i + ω̃gT̃em, (30)

whereω̄g,i andT̄em,i are the equilibrium speed and torque values for a given wind mean speed̄vi of

the previously defined grid.

The following numerical approximation is proposed. For each mean wind speed in the grid̄vi, m

different incremental power valuesδi,k (for k = 1, . . . ,m) fulfilling

0 < δi,1 < · · · < δi,m = ∆P ⋆
i,max

are taken (with∆P ⋆
i,max the resulting maximum power demand obtained from optimization

problem (25) and equation(27)). For this grid of the incremental power values, the loss function

is calculated through numerical approximate integration‡ of the resulting system of differential

equations includinge, leading to a matrix of loss function valuesLi,k = L(v̄i, δi,k) for i = 1, . . . , n,

k = 1, . . . ,m. The total energy loss function is proposed to be a smooth function L(v̄,∆P ⋆) that

‡Note that this value cannot be obtained analytically due to the nonlinear behaviour of the system of differential equations
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approximates and upper bounds the previous points with a polynomial form as

L(v̄,∆P ⋆) = a(v̄) + b(v̄)∆P ⋆ + c(v̄)∆P ⋆2, (31)

wherea(v̄), b(v̄) andc(v̄) > 0 are polynomials functions on̄v (see Section5 for the necessity of

the positivity condition onc(v̄)). In order to obtain this upper bounding function, the following

optimization problem is proposed

min
a(v̄),b(v̄),c(v̄)

γ

s.t. γ ≥ 0,

n∑

i=0

m∑

k=0

ǫi,k ≤ γ, ǫi,k ≥ 0, ∀i, k

c(v̄)− s(v̄)(v̄ − v̄min)(v̄max − v̄) ∈ Σ, s(v̄) ∈ Σ (32)

wherea(v̄), b(v̄) andc(v̄) are polynomials to be obtained during the optimization (seeFig. 9) and

where

ǫi,k = a(v̄i) + b(v̄i)∆P ⋆
i,k + c(v̄i)∆P ⋆

i,k − Li,k, i = 1, . . . , n; k = 1, . . . ,m

is the residual error of the polynomial approximation that wants to be minimized. Note that for

a given mean wind speed, the loss function can be representedas a function of the incremental

demanding power (see Fig.8, leading toL(∆P ⋆) (this is the right block above the dispatch function

block in Fig.1, representing a different second order polynomial for eachvalue of the mean wind

speed).

5. POWER DISPATCH FUNCTION

The wind farm eventually receives from the frequency controller a desired total incremental power

demand∆P ⋆ that must be achieved adding the powers of all wind turbines in the farm. Let us

assume that a wind farm is formed byN wind turbines, and let us use the indexj to enumerate each

of the turbines. The dispatch function objective in Fig.1 is to decide the optimal overproduction

demand (in the sense of minimum total energy loss) to be sent to each wind generator controller.

To achieve this goal, an optimization problem is proposed, taking into account that the following

quantities or functions are available for the present operating point (the procedure to obtain them

has been explained on previous sections): the maximum possible overproduction demand that can

be supported by each generator (∆P ⋆
j,max), and the total energy loss evaluation function due to the

overproduction demand (Lj(∆P ⋆
j )).

For the given operating equilibrium point, as the mean wind speed is assumed to be known, the

loss functionLj(∆P ⋆
j ) is upper bounded by the second order polynomial

Lj(∆P ⋆
j ) = aj + bj∆P ⋆

j + cj∆P ⋆
j
2
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whereaj, bj , cj are the evaluations of polynomialsa(v̄), b(v̄) andc(v̄) at the incident mean wind

speed over turbinej, and wherecj is always a positive constant asc(v̄) has been restricted to be

positive.

The optimum overproduction demand for each one of theN turbines that are present in a wind

farm is obtained by solving the following optimization problem:

min
∆Pj

N∑

j=1

Lj(∆P ⋆
j ) (33)

s.t. 0 ≤ ∆P ⋆
j ≤ ∆P ⋆

j,max,

N∑

j=1

∆P ⋆
j = ∆P ⋆

where∆P ⋆
j are the decision variables,Lj(∆P ⋆

j ) is the loss function and∆P ⋆
j,max is the maximum

admissible overproduction demand for wind generatorj that depends on the estimated mean wind

speed for that turbine (defined in Section4.3). With this, the previous optimization problem can be

rewritten as

min
x

xT H x+ f x

s.t. Ax ≤ b, C x = d

that is a standard quadratic optimization problem [29] in which matrix§

H = diag{c1, . . . , cN}

is positive definite, and therefore, a finite optimal solution can be found for the decision variables

xj = ∆P ⋆
j (j = 1, . . . , N ), with standard optimization tools¶.

This optimization problem should be solved each time a new transient incremental power is

required from the frequency controller. The computationaltime needed to solve this kind of standard

optimization problems depends polynomially on the number of decision variables (i.e. the number

of wind turbines), and on the processor capacity. After several experiments with an Intel i5 processor

it has been determined that the computational time is in the order of tenths of a second when the

number of decision variables is below one hundred (hence forthe number of wind turbines in usual

wind farms).

6. SIMULATION RESULTS

The techniques developed in the previous sections have beentested for a given wind turbine whose

parameters are as follows. First, the coefficients of the function (4) that generates the mechanical

§“diag” refers to a diagonal matrix with the indicated entries in its main diagonal.
¶As H is a positive definite matrix, this problem is convex, and so the minimum is a global minimum.
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torque as a function of the rotational and wind speed are

c00 = −0.02239, c01 = 0.0939, c02 = −0.4654, c03 = 0.5032, c10 = −0.0046,

c11 = 0.0545, c12 = −0.1784, c20 = 0.0075, c21 = 0.0219, c30 = −9.0580 · 10−4

The parameters of the mechanical model and the actuators are

Ht = 4.66 s, Hg = 1.92 s, Ktg = 218 p.u., Dtg = 2.3 p.u., τv = τem = 0.02 s

First, a simulation model has been implemented, including all the effects considered in this work

and also a wind generation model as stated in Section2. Then, a wind and state observer has been

implemented as explained in Section3. The tuning parameters of the observer (elements of matrix

Q) have been obtained as follows. First, a noise measurement with a variance ofR = 0.01 has been

assumed. As an starting point, the disturbance covariance matrix has been initially set atQ = Q0:

Q0 = diag{42, 0.42, 0.42, 1.22, 0.012},

where each diagonal entry has been initially fixed to the square of the range of the corresponding

variable (mean wind speed:v ∈ [6, 10], wind turbine and generator speeds:ωt, ωg ∈ [0.8, 1.2],

electromagnetic torque:Tt ∈ [0, 1.2], and angular difference:θ ∈ [−0.005, 0.005]). Then, the

Kalman filter has been tested with matrixQ0 and the elements corresponding to the states that

presented a lower a priori error have been decreased accordingly to that a priori error. With this, a

new matrix gain has been obtained:

Q1 = diag{42, 0.42, 0.22, 0.012, 0.012}.

Note that the decreased elements are the ones related to the generator speed and electromagnetic

torque because their equations are not directly related to the wind speed or the wind captured torque,

the elements more responsible for the a priori error. Finally matrixQ1 has been scaled leading to

Q = k ·Q1, where the parameterk has been set by trial and error to achieve a compromise between

settling time of the observer due to wind variations, and covariance error on steady state, leading to

k = 0.3, i.e.:

Q = diag{4.8, 0.048, 0.012, 3 · 10−5, 3 · 10−5}, R = 0.01.

Fig. 3 shows a five-hour wind speed simulation where the two components can be appreciated:

a slowly time varying mean, and the turbulence. On the left isillustrated the mean wind speed

estimate, while on the right a zoom in a reduced time intervalis shown in order to appreciate the

instantaneous wind speed estimation. As it can be seen, the estimation error is low, leading to a

estimation error covariance of1.9 · 10−4.

Then, using the Yalmip parser [30] for defining optimization problems subject to sum of squares

constraints, and the solver PENBMI‖ [31–33], a polynomial controller has been found via the

‖PENBMI can handle optimization problems with bilinear matrix inequalities, as required by the proposed optimization
problem.
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Figure 3. Five-hour wind speed estimation, where (’−−’): wind speed, (’-’): estimated wind speed, (’-’):
estimated mean wind seed.

optimization problem (20) in order to fulfill the condition that the power derivativesdo not exceed

the maximum allowable value of0.1/60 p.u./s, leading to an optimization indexγ = 20.25. The

control action (including the polynomial controller) is implemented as∗∗:

ω⋆
g(t) = ω⋆

g(v̄(t)),

ω̃g(t) = ω⋆
g(t)− ωg(t),

T ⋆
em(t) = −0.0872ω̃g(t) + 0.0018ω̃g(t)

2 − 0.0249

∫ t

0

ω̃g(τ)dτ. (34)

If a PI controller is designed instead of a polynomial one, via the optimization problem (20), with

the same restrictions, the following PI controller is obtained

T ⋆
em(t) = −0.0136ω̃g(t)− 0.0078

∫ t

0

ω̃g(τ)dτ, (35)

that leads to the optimization indexγ = 39.69. As it can be appreciated, using a polynomial

controller improves significantly the performance of the control system.

The observer plus controller scheme has been tested in the developed simulation model, showing

its effectiveness, as it can be observed in Fig.4, where a simulation of the wind turbine with a mean

wind speed of 8 m/s in a normal operation controlled by the polynomial controller (34) is shown.

The fulfillment of the bound in the power derivative can be observed and the maximum value of the

quadratic estimation error ((x − x̂)T (x− x̂)) is 0.003. Moreover, for the same wind speed, Fig5

shows the performance comparison between the polynomial controller in (34) and the PI controller

in (35). As it can be observed, the polynomial controller leads to aless conservative result as the

power derivative values are higher than for the PI controller, i.e., closer to the imposed bounds. The

polynomial controller leads to an1% increase of generated power due to the more efficient optimal

generator speed tracking.

∗∗We assume that the observer is properly tuned, and, therefore, both the mean wind speed (v̄), and the generator
rotational speedωg are available.
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Figure 4. Wind turbine generator behavior in normal operation when v̄ = 8 m/s for the polynomial
controller (34) showing: the wind speed and its mean (’··’), the estimation wind speed error, the generator
rotational speed and its reference (’··’), the electromagnetic and aerodynamic (’−−’) torques, the generated
power and its derivative with the imposed bounds. Maximum value of the quadratic estimation error

((x− x̂)T (x− x̂)) of 0.003.

With the obtained polynomial controller and the resulting closed loop system model, the bound

on the maximum allowable incremental power demand inputs has been obtained as a function of

the mean wind speed with the help of optimization problem (25) and equation (27), leading to the

bounds shown in Fig.6. It can be appreciated that the theoretical obtained boundsare close to

bounds obtained in simulation and always below them. Then, the total injected energy and energy

loss have been obtained as a function of the mean wind speed and demanding power as explained in

Section4.4, leading to the respective curves that can be observed in Fig. 7 and Fig.8 for different

mean wind values. Moreover, in Fig9 the parametersa(v̄), b(v̄), c(v̄) obtained in (32) of the second

order polynomial proposed in (31) that model the loss energy functionL(v̄,∆P ⋆) are shown.

A simulation of the system behaviour, starting at the equilibrium point defined by a constant wind

speed of̄v = 8m/s, under an impulse input∆P ⋆ = 0.2 (the maximum allowed power increase that

has been predicted) is shown in Fig.10. It can be appreciated how the previous functions have been

able to predict that for the maximum allowed power overproduction: (i) the rotor speed reaches a

minimum value close toωg,min = 0.8 p.u., (ii) the total injected energy is 2.2 p.u.·s (see Fig.7) and

(iii) the total energy loss is 4 p.u.·s (see Fig.8).
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Figure 5. Performance comparison between the polynomial controller (34) (’-’), and the PI controller (35)
(’−−’) showing: the generator rotational speed, the electromagnetic torque, the generated power and its

derivative with the imposed bounds.

With these functions, the proposed dispatch strategy explained in Section5 has been tested for the

following case. Let us assume that a wind farm is formed by25 wind turbines (N = 25) controlled

with the previously computed controller. Let us also assumethat the turbines are being affected by

winds with a different mean speed depending on their location on the farm and those mean wind

speeds are equally spaced within the rangev̄ ∈ [6, 10]. Consider that, initially, the wind turbines are

operating in steady state at their equilibrium point. Consider now that an incremental power demand

∆P ⋆ of 10% of the actual total generated power in the farm is required by a frequency controller,

and has to be dispatched within the farm. Let us compare the proposed dispatch strategy (solving

optimization problem (33)) with a proportional approach [15] in which each wind turbinej receives

an incremental power demand proportional to its contribution to the global power production in the

farm as

∆P ⋆
j =

Pj
∑N

k=1 Pk

∆P ⋆. (36)

The comparative results of the power dispatch strategies are shown in Fig.11, where it can be

observed that the optimization approach proposes a lower power increase to the wind turbines

turning faster as compared to the proportional approach. Furthermore, the proposed optimization

approach fits the power contribution of the slow wind turbines to its maximum allowable value
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Figure 6. Maximum power overproduction that can be sent to a wind generator, where∆ represents the
values calculated using the optimization problem (25) and equation (27), and∗ represents the values obtained

from simulations.
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Figure 7. Injected energy as a function of the power overproduction demand for different mean wind speeds.
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Figure 9. Parametersa(v̄), b(v̄), c(v̄) of the total energy loss modeled by a second order polynomial
L(v̄,∆P ⋆) (see (31)), obtained from the optimization problem (32).
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Figure 10. Wind turbine generator behaviour after a power increase demand of∆P ⋆ = 0.2 starting from
the operating point defined by a constant wind speedv̄ = 8m/s, showing: the peak power overproduction
demand (’-’) and the resulting incremental torque, the electromagnetic (’ -’) and aerodynamic torque, the

generator rotational speed and its optimal value (’··’), the generated power and the generated energy.

compatible with the required speed range, while the proportional approach leads to an excessive

deceleration of the slowest turbines (leading to rotational speed below the minimum allowed speed).

Finally the total loss function has been evaluated with bothstrategies, leading to a total loss of 12.88

p.u.·s in the proposed approach, while the total loss in the proportional dispatch approach [15] is

19.22 p.u.·s. A save of the 33% of the total energy loss produced by the required overproduction

transient is achieved by the proposed approach with respectto proportional approaches.

7. CONCLUSION

In this work, an advanced control strategy for wind turbineshas been proposed maximizing the

electrical power generation while bounding the power variations in normal operation. The proposed

controller structure allows eventually providing grid support by producing transient power increases

(using the stored kinetic energy) in response to an eventualdemand from a frequency controller.

A polynomial model for a doubly fed induction generator has been first developed. Based on

that model, a wind and state observer has been proposed, leading to an algorithm that estimates the
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Figure 11. Power overproduction distribution for 25 turbines in a farm to respond to a 10% incremental
power demand using two strategies:◦ for the proposed approach solving the optimization problem(33), and
× for the proportional approach in [15] using (36). The continuous line represents the maximum allowable

power increment without violating minimum velocity constraints.

mean and variance of the wind speed in real-time during wind turbine operation. For the proposed

model, a polynomial controller guaranteeing some given constraints on the variations with time on

the generated power has been designed. With the designed controller, bounds on the maximum non

destabilizing allowable incremental torque or power demand for transient overproduction operation

have been obtained. A total electrical loss function has also been defined, allowing us to quantify

the negative effect that overproduction transients cause on the total produced energy.

Finally, this loss function has been used to develop a dispatch strategy that decides the power

increment that is demanded to each wind turbine on a farm whena frequency controller demands a

transient effort to the plant to provide grid support. The proposed dispatch strategy minimizes the

total electrical loss on the wind farm due to the overproduction transient.

All the proposed strategies have been translated to numerically tractable problems and their

effectiveness have been demonstrated through several simulations.

APPENDIX

The following result justifies the simplifications of the optimization problems presented in

sections4.2 and4.3, needed to obtain the controller and the quantities that allow us to describe

the behaviour. They can be derived from the called Positivstellensatz result [22] which states that

feasibility conditions over polynomials can be dealt with by looking for some sum of squares. On

the other hand, it can be demonstrated that the feasibility problem of expressing a polynomial as
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a sum of squares is equivalent to solve a Semidefinite Programming Problem with Linear Matrix

Inequalities constraints.

Lemma 7.1

If there exist sum of squares polynomialssi(x) (i = 1, . . . , n, x ∈ Rn) and polynomialq(x) such

that

f(x)−
n∑

i=1

si(x) gi(x) + q(x) l(x) ∈ Σ,

beingΣ the set of sum of squares polynomials inRn, then, the following condition holds

f(x) ≥ 0, ∀ gi(x) ≥ 0, l(x) = 0.
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