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We follow Bogoyavlensky’s approach to deal with Bianchi class B cosmological models. We

characterize the analytic integrability of such systems. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4790828]

Bianchi models are cosmological models that describe

space-times which are foliated by homogeneous hyper-

surfaces of constant time and are divided into two classes,

Class A and Class B. There are many studies about the

integrability of Class A. Here, we study the integrability

of Class B. For the homogeneous cosmological models of

Class B, Einstein’s system of differential equations

reduces to a dynamical system of dimension seven

according to Bogoyavlensky’s approach. We show that in

order to study the integrability of such systems, it is suffi-

cient to deal with homogeneous polynomial differential

systems of dimension six. Concretely, Bianchi V is the

simplest model and can be written as a homogeneous

polynomial differential system of degree 2. Bianchi IV is

dealt as a homogeneous polynomial differential system of

degree 3 and the rest of the models, Bianchis III, VI, and

VII are of degree 5. Due to the fact that all Bianchi class

B models have been reduced to homogeneous polynomial

differential systems, the study of their analytic integrabil-

ity reduces to analyze their homogeneous polynomial first

integrals. We show that Bianchi model V admits polyno-

mial first integral, and we prove that the corresponding

homogeneous polynomial differential systems that repre-

sent models Bianchi IV, III, VI, and VII do not admit

polynomial first integrals. The fact that these Bianchi

models are not completely integrable with analytic first

integrals facilitates that they can have chaotic behavior.

I. INTRODUCTION AND STATEMENT OF THE
RESULTS

Einstein’s equations relate the geometry of the space-

time with the properties of the matter which occupied it. The

matter occupying the space-time is determined by the stress

energy tensor of the matter. In our study, we follow3 and we

consider the hydrodynamical tensor of the matter. We will

work with an equation of state of matter of the form p ¼ ke,

where e is the energy density of the matter, p is the pressure

and 0 � k < 1.

We can found in the literature some methods in order to

construct some Hamiltonians for the Bianchi class B models,

see, for example, Ref. 4 and references therein. Here, we fol-

low Bogoyavlensky’s approach, see Ref. 3. So according to

Bogoyavlensky, for the homogeneous cosmological models

of Class B Einstein’s system of equations reduces to the fol-

lowing dynamical system in the phase space pi; qi; pu;u,

i¼ 1, 2, 3,

dqi

ds
¼ @H

@pi
;

dpi

ds
¼ � @H

@qi
� hi;

du
ds
¼ @H

@pu
;

dpu

ds
¼ � @H

@u
� hu;

(1)

where the function H is

H ¼ 1

ðq1q2q3Þ
1�k

2

TðpiqiÞ þ VGðqiÞð Þ; (2)

with

Tðpi; qi; puÞ ¼ 2
X

1�i<j�3

pipjqiqj �
X3

i¼1

p2
i q2

i �
p2

uq1q2

ðn1q1 � n2q2Þ2
;

VGðqiÞ ¼ �
1

4
ð12a2q1q2 þ ðn1q1 � n2q2Þ2Þ;

and

h1 ¼
a2q2

ðq1q2q3Þ
1�k

2

; h2 ¼
a2q1

ðq1q2q3Þ
1�k

2

;

h3 ¼
�2a2q1q2

q3ðq1q2q3Þ
1�k

2

; hu ¼
aðn1q1 � n2q2Þ2

ðq1q2q3Þ
1�k

2

:

The constants a 6¼ 0; n1; n2 determine the type of model

according to Table I, see also Refs. 1–3. System (1) in an

explicit form writes as
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dq1

ds
¼ �2q1ðq1q2q3Þðk�1Þ=2ðp1q1 þ p2q2 � p3q3Þ;

dq2

ds
¼ �2q2ðq1q2q3Þðk�1Þ=2ðp1q1 þ p3q3 � p2q2Þ;

dq3

ds
¼ �2q3ðq1q2q3Þðk�1Þ=2ðp1q1 þ p2q2 � p3q3Þ;

dp1

ds
¼ �ðq1q2q3Þðk�1Þ=2

 
2p1ðp2q2 þ p3q3 � p1q1Þ

þ
p2

uðn1q1 þ n2q2Þ
ðn1q1 � n2q2Þ3

q2 �
1

2
n1ðn1q1 � n2q2Þ � 2a2q2

!

þ 1� k

2q1

H

dp2

ds
¼ �ðq1q2q3Þðk�1Þ=2

 
2p2ðp1q1 þ p3q3 � p2q2Þ

�
p2

uðn1q1 þ n2q2Þ
ðn1q1 � n2q2Þ3

q1 �
1

2
n2ðn1q1 � n2q2Þ � 2a2q1

!

þ 1� k

2q2

H;

dp3

ds
¼ �ðq1q2q3Þðk�1Þ=2

�
�

2p3ðp1q1 þ p2q2 � p3q3Þ � 2a2 q1q2

q3

�
þ 1� k

2q3

H;

du
ds
¼ �ðq1q2q3Þðk�1Þ=2 2q1q2pu

ðn1q1 � n2q2Þ2
;

dpu

ds
¼ �ðq1q2q3Þðk�1Þ=2aðn1q1 � n2q2Þ2; (3)

with �H ¼ T þ VG.

System (1) applies in the subspace defined by Einstein’s

equation

R ¼ p1q1 þ p2q2 � 2p3q3 þ
pu

2a
¼ 0; (4)

for more details see Ref. 3. Additionally, if X is the associ-

ated vector field to system (3) we have that XðRÞ ¼ 0 and so

R is a first integral of system (3). On the other hand, easy

computations shows that

XðHÞ ¼ �4a2 ðq1q2q3Þk

q3

R;

and so the function H given by Eq. (2) is a first integral of

system (3) when this system is restricted to the hypersurface

R¼ 0.

We notice that for Bianchi V we have pu ¼ 0 and

_u ¼ 0, so for this model we obtain a simplest model of six

equations. After the change of coordinates and time

xi ¼ qi; xiþ3 ¼ piqi; i ¼ 1; 2; 3; ds0 ¼
ðq1q2q3Þ

k�1
2

2
ds;

the Bianchi V model writes as a homogeneous polynomial

differential system of degree 2:

_x1 ¼ x1ð�x4 þ x5 þ x6Þ;
_x2 ¼ x2ðx4 � x5 þ x6Þ;
_x3 ¼ x3ðx4 þ x5 � x6Þ;

_x4 ¼ x1x2 þ
k � 1

4
ð3x1x2 þ KÞ;

_x5 ¼ x1x2 þ
k � 1

4
ð3x1x2 þ KÞ;

_x6 ¼ x1x2 þ
k � 1

4
ð3x1x2 þ KÞ;

(5)

where

K ¼ x2
4 þ x2

5 þ x2
6 � 2ðx4x5 þ x4x6 þ x5x6Þ: (6)

The condition stated in Eq. (4) reduces to x4 þ x5 � 2x6 ¼ 0

for Bianchi V model. The function (2) becomes the first

integral

ðx1x2x3Þ
k�1

2 ð3x1x2 þ KÞ:

For Bianchi models III, IV, VI, and VII we notice that

n1 ¼ 1. Moreover, system (3) is defined on the subspace (4),

hence we can eliminate the momentum pu. So we can reduce

the dimension of system (3) to seven. Note also that in order

to study the integrability of system (3) we do not need to

consider Eq. (7). In short, for studying the integrability of

system (3), it is sufficient to deal with a differential system

of dimension six.

For Bianchi IV after the change of coordinates and time

xi ¼ qi; xiþ3 ¼ piqi; i ¼ 1; 2; 3;

ds0 ¼
q1ðq1q2q3Þ

k�1
2

2
ds;

and the above considerations we get the six-dimensional ho-

mogeneous polynomial differential system of degree 3

_x1 ¼ x2
1ð�x4 þ x5 þ x6Þ;

_x2 ¼ x1x2ðx4 � x5 þ x6Þ;
_x3 ¼ x1x3ðx4 þ x5 � x6Þ;

_x4 ¼
x3

1

4
þ x2

1x2 � 2x2ðx4 þ x5 � 2x6Þ2 þ
k � 1

4
R;

_x5 ¼ x2
1x2 þ 2x2ðx4 þ x5 � 2x6Þ2 þ

k � 1

4
R;

_x6 ¼ x2
1x2 þ

k � 1

4
R;

(7)

where

TABLE I. The classification of Bianchi class B cosmologies.

Type III IV V VI VII

a 1 1 1 a 6¼ 1 a

n1 1 1 0 1 1

n2 �1 0 0 �1 1
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R ¼ x3
1=4þ 3x2

1x2 þ 4x2ðx4 þ x5 � 2x6Þ2 þ x1K:

The function (2) becomes the first integral

ðx1x2x3Þ
k�1

2
x2

1

4
þ 3x1x2 þ

4x2ðx4 þ x5 � 2x6Þ2

x1

þ K

 !
:

In the rest of the cases, i.e., for the Bianchi models III,

VI, and VII after the change of coordinates and time

xi ¼ qi; xiþ3 ¼ piqi; i ¼ 1; 2; 3;

ds0

ds
¼ N3ðq1q2q3Þ

k�1
2

2
;

where N ¼ x1 � n2x2, and the above considerations we

obtain the six-dimensional homogeneous polynomial differ-

ential system of degree 5

_x1 ¼ x1N3ð�x4 þ x5 þ x6Þ;

_x2 ¼ x2N3ðx4 � x5 þ x6Þ;

_x3 ¼ x3N3ðx4 þ x5 � x6Þ;

_x4 ¼
1

4
x1N4 þ a2x1x2N3 þ k � 1

4
NS

� 2a2x1x2ðx1 þ n2x2Þðx4 þ x5 � 2x6Þ2;

_x5 ¼
1

4
N5 � 1

4
x1N4 þ a2x1x2N3 þ k � 1

4
NS

þ 2a2x1x2ðx1 þ n2x2Þðx4 þ x5 � 2x6Þ2;

_x6 ¼ a2x1x2N3 þ k � 1

4
NS;

(8)

where

S ¼ N4=4þ 4a2x1x2ðx4 þ x5 � 2x6Þ2 þ N2ð3a2x1x2 þ KÞ:

The function (2) becomes the first integral

ðx1x2x3Þ
k�1

2
N2

4
þ 3a2x1x2 þ Kþ 4a2x1x2ðx4 þ x5 � 2x6Þ2

N2

 !
:

A study of the integrability of Bianchi models using its

symmetries has been done in Ref. 5, but no information is

given there on the analytic integrability of these systems.

The analytic integrability of Class A has been studied in pre-

vious works by several authors.5–10,12–17 Here, our aim is to

study the analytic integrability of all Bianchi models of class

B in the variables ðx1; x2; x3; x4; x5; x6Þ. In our study, we will

use the following result, see Ref. 12.

Proposition 1. Let F be an analytic function and let
F ¼

P
i Fi be its decomposition into homogeneous polyno-

mials Fi of degree i. Then F is an analytic first integral of a
homogeneous differential system if and only if for all i Fi is a
homogeneous polynomial first integral of the homogeneous
system.

Due to Proposition 1 and the fact that all Bianchi class B

models have been reduced to homogeneous polynomial dif-

ferential systems, see the systems (5), (7), and (8), the study

of their analytic integrability reduces to analyze their homo-

geneous polynomial first integrals. Our main result is the

following.

Theorem 2. The following statements hold

(a) System (5) has the two independent first integrals x4 �
x5 and x4 � x6. These two first integrals become the
same when we restrict system (5) to (4), i.e.
x4 þ x5 � 2x6 ¼ 0, and any other polynomial first inte-
gral is a polynomial in the variable x4 � x5.

(b) System (7) has no polynomial first integrals.
(c) Systems (8) have no polynomial first integrals.

Section II provides some technical lemmas that we will

use for the proof of Theorem 2. In Sec. III, we prove the first

statement of Theorem 2, namely, we study Bianchi V. In

Sec. IV, we deal with Bianchi IV. The integrability of Bian-

chi III, VI, and VII is studied in Sec. V.

II. SOME AUXILIARY RESULTS

Lemma 3. Let xk be a one-dimensional variable,
k 2 f1;…; ng; n > 1 and let f ¼ f ðx1;…; xnÞ be a polyno-
mial. For l 2 f1;…; ng and c0 a constant let
fl ¼ f ðx1;…; xnÞjxl¼c0

. Then there exists a polynomial
g ¼ gðx1;…; xnÞ such that f ¼ fl þ ðxl � c0Þg (see Ref. 11).

The next two lemmas are proved in Ref. 8.

Lemma 4. Let g ¼ gðx4; x5; x6Þ be a homogeneous poly-
nomial solution of the homogeneous partial differential
equation

ða1x4 þ a2x5 þ a3x6Þgþ
k � 1

4
K

@g

@x4

þ @g

@x5

þ @g

@x6

� �
¼ 0;

(9)

where a1; a2; a3 2 R are such that ða1 � a2Þ2 þ ða1 � a3Þ2
6¼ 0. Then g � 0.

Lemma 5. Let g ¼ gðx4; x5; x6Þ and h2 ¼ h2ðx4 � x5;
x4 � x6Þ be homogeneous polynomials of respective degrees
n – 2 and n such that

2ðx4 � x5 þ x6Þgþ
k � 1

4
K

@g

@x4

þ @g

@x5

þ @g

@x6

� �
þ @h2

@x5

¼ 0:

(10)

Then h2 ¼ h2ðx4 � x6Þ and g � 0.

III. PROOF OF STATEMENT (A) OF THEOREM 2

It is clear that system (5) has the first integrals x4 � x5

and x4 � x6. We shall prove in this section that under the

restriction x4 þ x5 � 2x6 ¼ 0 system (5) has only one inde-

pendent first integral and it is x4 � x5.

Suppose that system (5) has a homogeneous polynomial

first integral h of degree n. According to Lemma 3 we can

write h ¼ h1ðx2; x3; x4; x5; x6Þ þ xj
1g1ðx1; x2; x3; x4; x5; x6Þ,

with x1-g1 and j 2 N: Suppose that g1 6� 0. System (5) on

x1 ¼ 0 writes

013119-3 Ferragut, Llibre, and Pantazi Chaos 23, 013119 (2013)
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_x2 ¼ x2ðx4 � x5 þ x6Þ;
_x3 ¼ x3ðx4 þ x5 � x6Þ

_x4 ¼
k � 1

4
K;

_x5 ¼
k � 1

4
K;

_x6 ¼
k � 1

4
K:

(11)

Since h is a first integral of system (5), we have that h1 is a

first integral of system (11). System (11) admits the two

polynomial first integrals x4 � x5 and x4 � x6 and the two

non-polynomial first integrals

x
3
2
ðk�1Þ

2 K
x4 þ x5 þ x6 � 2

ffiffiffiffi
D
p

x4 þ x5 þ x6 þ 2
ffiffiffiffi
D
p

 !x4�2x5þx6ffiffi
D
p

and

x
3
2
ðk�1Þ

3 K
x4 þ x5 þ x6 � 2

ffiffiffiffi
D
p

x4 þ x5 þ x6 þ 2
ffiffiffiffi
D
p

 !x4þx5�2x6ffiffi
D
p

;

where

D ¼ x2
4 þ x2

5 þ x2
6 � x4x5 � x4x6 � x5x6: (12)

As these four first integrals of system (11) are independent

and h1 is a polynomial first integral of Eq. (11), we get, tak-

ing into account the equality x4 þ x5 � 2x6 ¼ 0, that

h1 ¼ C1ðx4 � x5Þn, where C1 2 R. Now since h and x4 � x5

are first integrals of system (5) we have that xj
1g1 is also a

first integral of system (5). Therefore

jð�x4 þ x5 þ x6Þg1 þ x1ð�x4 þ x5 þ x6Þ
@g1

@x1

þ x2ðx4 � x5 þ x6Þ
@g1

@x2

þ x3ðx4 þ x5 � x6Þ
@g1

@x3

þ x1x2 þ
k � 1

4
K

� �
@g1

@x4

þ @g1

@x5

þ @g1

@x6

� �
¼ 0:

Let �g1 ¼ g1jx1¼0 6� 0. On x1 ¼ 0 we have

jð�x4 þ x5 þ x6Þ�g1 þ x2ðx4 � x5 þ x6Þ
@�g1

@x2

þ x3ðx4 þ x5 � x6Þ
@�g1

@x3

þ k� 1

4
K

@�g1

@x4

þ @�g1

@x5

þ @�g1

@x6

� �
¼ 0:

Write �g1 ¼ xl
2g2, with l 2N [ f0g; x2-g2 and g2 6� 0. Then

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ�g2

þx2ðx4 � x5 þ x6Þ
@g2

@x2

þ x3ðx4 þ x5 � x6Þ
@g2

@x3

þ k � 1

4
K

@g2

@x4

þ @g2

@x5

þ @g2

@x6

� �
¼ 0:

Set �g2 ¼ g2jx2¼0 6� 0. Then on x2 ¼ 0 we have

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ��g2

þx3ðx4 þ x5 � x6Þ
@�g2

@x3

þ k� 1

4
K

@�g2

@x4

þ @�g2

@x5

þ @�g2

@x6

� �
¼ 0:

Now let �g2 ¼ xm
3 g3, with m 2N [ f0g; x3-g3 and g3 6� 0.

We have

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ

þmðx4 þ x5 � x6Þ�g3 þ x3ðx4 þ x5 � x6Þ
@g3

@x3

þ k � 1

4
K

@g3

@x4

þ @g3

@x5

þ @g3

@x6

� �
¼ 0:

Let �g3 ¼ g3jx3¼0 6� 0. On x3 ¼ 0 we obtain

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ

þmðx4 þ x5 � x6Þ��g3 þ
k � 1

4
K

@�g3

@x4

þ @�g3

@x5

þ @�g3

@x6

� �
¼ 0:

We are under the hypotheses of Lemma 4, hence, we have

�g3 � 0, which is in contradiction with the assumptions.

Therefore, h ¼ C1ðx4 � x5Þn and the proof follows.

IV. PROOF OF STATEMENT (B) OF THEOREM 2

We study in this section the analytic integrability

of Bianchi model IV. We consider system (7). Let

h ¼ hðx1;…; x6Þ be a homogeneous polynomial first integral

of degree n of system (7). Using Lemma 3 we can write

h ¼ h2ðx1; x3;…; x6Þ þ xl
2g2ðx1;…; x6Þ, with l 2N and h2

and g2 homogeneous polynomials such that x2-g2. Assume

that g2 6� 0: On x2 ¼ 0 system (7) becomes, after canceling a

common factor x1, doing a change in the independent

variable,

_x1 ¼ x1ð�x4 þ x5 þ x6Þ;
_x3 ¼ x3ðx4 þ x5 � x6Þ;

_x4 ¼
x2

1

4
þ k � 1

4

x2
1

4
þ K

� �
;

_x5 ¼
k � 1

4

x2
1

4
þ K

� �
;

_x6 ¼
k � 1

4

x2
1

4
þ K

� �
:

(13)

We notice that h2 is a first integral of system (13). We write

h2 ¼ h3ðx3;…; x6Þ þ xj
1g3ðx1; x3;…; x6Þ, with j 2N and h3

and g3 homogeneous polynomials such that x1-g3. Assume

that g3 6� 0: System (13) on x1 ¼ 0 writes

_x3 ¼ x3ðx4 þ x5 � x6Þ;

_x4 ¼
k � 1

4
K;

_x5 ¼
k � 1

4
K;

_x6 ¼
k � 1

4
K:

(14)
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Straightforward computations show that system (14) has the

three independent first integrals x4 � x5; x4 � x6 and

x
3
2
ðk�1Þ

3 K
x4 þ x5 þ x6 � 2

ffiffiffiffi
D
p

x4 þ x5 þ x6 þ 2
ffiffiffiffi
D
p

 !x4þx5�2x6ffiffi
D
p

;

where D is given by relation (12). As h3 is a polynomial first

integral of system (14), we have h3 ¼ h3ðx4 � x5; x5 � x6Þ.
The following lemma shows that indeed h ¼ h3ðx5 � x6Þ
þ xl

2g2ðx1;…; x6Þ.
Lemma 6. We have that h3 ¼ h3ðx5 � x6Þ and g3 � 0.

Proof. As h2 ¼ h3 þ xj
1g3 is a first integral of system

(13), we have

xj
1 jð�x4 þ x5 þ x6Þg3 þ x1ð�x4 þ x5 þ x6Þ

@g3

@x1

�

þ x3ðx4 þ x5 � x6Þ
@g3

@x3

þ x2
1

4

@g3

@x4

þ k � 1

4

x2
1

4
þ K

� �
@g3

@x4

þ @g3

@x5

þ @g3

@x6

� ��
þ x2

1

4

@h3

@x4

¼ 0:

(15)

We distinguish some cases depending on the value of j.
If j¼ 1 then Eq. (15) becomes

ð�x4 þ x5 þ x6Þg3 þ x1ð�x4 þ x5 þ x6Þ
@g3

@x1

þ x3ðx4 þ x5 � x6Þ
@g3

@x3

þ x2
1

4

@g3

@x4

þ k � 1

4

x2
1

4
þ K

� �
@g3

@x4

þ @g3

@x5

þ @g3

@x6

� �
þ x1

4

@h3

@x4

¼ 0:

Let �g3 ¼ g3jx1¼0 6� 0. On x1 ¼ 0 we have

ð�x4 þ x5 þ x6Þ�g3 þ x3ðx4 þ x5 � x6Þ
@�g3

@x3

þ k � 1

4
K

@�g3

@x4

þ @�g3

@x5

þ @�g3

@x6

� �
¼ 0:

Write �g3 ¼ xm
3 g4 6� 0, with m 2N [ f0g and x3-g4. Then,

½ð�x4 þ x5 þ x6Þ þ mðx4 þ x5 � x6Þ�g4

þ x3ðx4 þ x5 � x6Þ
@g4

@x3

þ k � 1

4
K

@g4

@x4

þ @g4

@x5

þ @g4

@x6

� �
¼ 0:

Let �g4 ¼ g4jx3¼0 6� 0. On x3 ¼ 0 we have

½ð�x4 þ x5 þ x6Þ þ mðx4 þ x5 � x6Þ��g4

þ k � 1

4
K

@�g4

@x4

þ @�g4

@x5

þ @�g4

@x6

� �
¼ 0:

Applying Lemma 4 we obtain �g4 � 0, which is a contradic-

tion. Hence g3 � 0. Back to Eq. (15) we have @h3=@x4 � 0,

which means that h3 ¼ h3ðx5 � x6Þ. Then the lemma follows

in the case j¼ 1.

If j > 2, then from Eq. (15) we have that x1jð@h3=@x4Þ
and thus @h3=@x4 � 0. Now we can proceed as in the case

j¼ 1 to obtain the equation

½jð�x4 þ x5 þ x6Þ þ mðx4 þ x5 � x6Þ��g4

þ k � 1

4
K

@�g4

@x4

þ @�g4

@x5

þ @�g4

@x6

� �
¼ 0:

Applying Lemma 4 we arrive to a contradiction and hence

g3 � 0. The lemma follows in the case j > 2.

If j¼ 2 then Eq. (15) writes

2ð�x4 þ x5 þ x6Þg3 þ x1ð�x4 þ x5 þ x6Þ
@g3

@x1

þ x3ðx4 þ x5 � x6Þ
@g3

@x3

þ x2
1

4

@g3

@x4

þ k � 1

4

x2
1

4
þ K

� �
@g3

@x4

þ @g3

@x5

þ @g3

@x6

� �
þ 1

4

@h3

@x4

¼ 0:

Let �g3 ¼ g3jx1¼0 6� 0. On x1 ¼ 0 we have

2ð�x4 þ x5 þ x6Þ�g3 þ x3ðx4 þ x5 � x6Þ
@�g3

@x3

þ k � 1

4
K

@�g3

@x4

þ @�g3

@x5

þ @�g3

@x6

� �
þ 1

4

@h3

@x4

¼ 0:

Write �g3 ¼ xm
3 g4 6� 0, with m 2N [ f0g and x3-g4. Then

we get

xm
3

�
½2ð�x4 þ x5 þ x6Þ þ mðx4 þ x5 � x6Þ�g4

þ x3ðx4 þ x5 � x6Þ
@g4

@x3

þ k � 1

4
K

@g4

@x4

þ @g4

@x5

þ @g4

@x6

� ��
þ 1

4

@h3

@x4

¼ 0:

If m > 0 then x3jð@h3=@x4Þ. Hence @h3=@x4 � 0 and

h3 ¼ h3ðx5 � x6Þ. Let �g4 ¼ g4jx3¼0 6� 0. On x3 ¼ 0 we obtain

½2ð�x4 þ x5 þ x6Þ þ mðx4 þ x5 � x6Þ��g4

þ k � 1

4
K

@�g4

@x4

þ @�g4

@x5

þ @�g4

@x6

� �
¼ 0:

Applying Lemma 4 we get a contradiction, hence we have

g3 � 0.

In the case m¼ 0, let �g4 ¼ g4jx3¼0 6� 0. On x3 ¼ 0 we

obtain

2ð�x4 þ x5 þ x6Þ�g4 þ
k � 1

4
K

@�g4

@x4

þ @�g4

@x5

þ @�g4

@x6

� �

þ 1

4

@h3

@x4

¼ 0:

We can apply Lemma 5, permuting the variables x4 by x5,

and we get that h3 ¼ h3ðx5 � x6Þ so @h3=@x4 � 0. Now

applying Lemma 4 we obtain �g4 � 0. Hence the lemma fol-

lows in the case j¼ 2. �

After Lemma 6 we have that h ¼ h3ðx5 � x6Þ
þ xl

2g2ðx1;…; x6Þ, with l 2N and x2-g2. We note that h3 is
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a homogeneous polynomial, hence, we can write h3ðx5 � x6Þ
¼ C3ðx5 � x6Þn, with C3 2 R.

We recall that h is a first integral of system (7). Thus it

satisfies the equation

xl
2 lx1ðx4 � x5 þ x6Þg2 þ x2

1ð�x4 þ x5 þ x6Þ
@g2

@x1

�

þ x1x2ðx4 � x5 þ x6Þ
@g2

@x2

þ x1x3ðx4 þ x5 � x6Þ
@g2

@x3

þ k � 1

4
R

@g2

@x4

þ @g2

@x5

þ @g2

@x6

� �

þ x3
1

4
þ x2

1x2 � 2x2ðx4 þ x5 � 2x6Þ2
� �

@g2

@x4

þ
�

x2
1x2 þ 2x2ðx4 þ x5 � 2x6Þ2

� @g2

@x5

þ x2
1x2

@g2

@x6

�
þ 2C3nx2ðx4 þ x5 � 2x6Þ2ðx5 � x6Þn�1 ¼ 0: (16)

The following lemma ends the proof of statement (b) of

Theorem 2, as it shows that h � 0.

Lemma 7. We have that h3 � 0 and g2 � 0.

Proof. Suppose that g2 6� 0. We distinguish two cases

depending on the value of l. If l > 1 then from equation (16)

we must take C3 ¼ 0 and therefore h3 � 0. Let �g2 ¼ g2jx2¼0

6� 0. After simplifying xl
2, equation (16) on x2 ¼ 0 becomes,

after cancelling a common factor x1,

lðx4 � x5 þ x6Þ�g2 þ x1ð�x4 þ x5 þ x6Þ
@�g2

@x1

þ x3ðx4 þ x5 � x6Þ
@�g2

@x3

þ x2
1

4

@�g2

@x4

þ k � 1

4

x2
1

4
þ K

� �
@�g2

@x4

þ @�g2

@x5

þ @�g2

@x6

� �
¼ 0: (17)

Write �g2 ¼ xj
1g3 6� 0, with j 2N [ f0g and x1-g3. We get

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ�g3

þ x1ð�x4 þ x5 þ x6Þ
@g3

@x1

þ x3ðx4 þ x5 � x6Þ
@g3

@x3

þ x2
1

4

@g3

@x4

þ k � 1

4

x2
1

4
þ K

� �
@g3

@x4

þ @g3

@x5

þ @g3

@x6

� �
¼ 0:

Let �g3 ¼ g3jx1¼0 6� 0. Then, on x1 ¼ 0 we have

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ��g3

þx3ðx4 þ x5 � x6Þ
@�g3

@x3

þ k� 1

4
K

@�g3

@x4

þ @�g3

@x5

þ @�g3

@x6

� �
¼ 0:

Now write �g3 ¼ xm
3 g4 6� 0, with m 2N [ f0g and x3-g4.

We get

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þ

þmðx4 þ x5 � x6Þ�g4 þ x3ðx4 þ x5 � x6Þ
@g4

@x3

þ k � 1

4
K

@g4

@x4

þ @g4

@x5

þ @g4

@x6

� �
¼ 0:

Let �g4 ¼ g4jx3¼0 6� 0. Then, on x3 ¼ 0 we have

½jð�x4 þ x5 þ x6Þ þ lðx4 � x5 þ x6Þþ mðx4 þ x5 � x6Þ��g4

þ k � 1

4
K

@�g4

@x4

þ @�g4

@x5

þ @�g4

@x6

� �
¼ 0:

Applying Lemma 4 we obtain �g4 � 0, a contradiction. Hence

g2 � 0 and the lemma follows in the case l > 1.

If l¼ 1 then we can cancel a common factor x2 in

Eq. (16). Let �g2 ¼ g2jx2¼0 6� 0. On x2 ¼ 0 Eq. (16) becomes

x1 ðx4 � x5 þ x6Þ�g2 þ x1ð�x4 þ x5 þ x6Þ
@�g2

@x1

�

þ x3ðx4 þ x5 � x6Þ
@�g2

@x3

þ x2
1

4

@�g2

@x4

þ k � 1

4

x2
1

4
þ K

� �
@�g2

@x4

þ @�g2

@x5

þ @�g2

@x6

� ��
þ 2C3nðx4 þ x5 � 2x6Þ2ðx5 � x6Þn�1 ¼ 0:

Clearly we must take C3 ¼ 0, and hence h3 � 0. Then

the equation writes

ðx4 � x5 þ x6Þ�g2 þ x1ð�x4 þ x5 þ x6Þ
@�g2

@x1

þ x3ðx4 þ x5 � x6Þ
@�g2

@x3

þ x2
1

4

@�g2

@x4

þ k � 1

4

x2
1

4
þ K

� �
@�g2

@x4

þ @�g2

@x5

þ @�g2

@x6

� �
¼ 0: (18)

Write now �g2 ¼ xj
1g3 6� 0, with j 2N [ f0g and x1-g3.

Then the above equation becomes

½jð�x4 þ x5 þ x6Þ þ ðx4 � x5 þ x6Þ�g3

þ x1ð�x4 þ x5 þ x6Þ
@g3

@x1

þ x2
1

4

@g3

@x4

þ x3ðx4 þ x5 � x6Þ
@g3

@x3

þ k � 1

4

x2
1

4
þ K

� �
@g3

@x4

þ @g3

@x5

þ @g3

@x6

� �
¼ 0: (19)

Let �g3 ¼ g3jx1¼0 6� 0. Then, on x1 ¼ 0 we have

½jð�x4 þ x5 þ x6Þ þ ðx4 � x5 þ x6Þ��g3

þ x3ðx4 þ x5 � x6Þ
@�g3

@x3

þ k � 1

4
K

@�g3

@x4

þ @�g3

@x5

þ @�g3

@x6

� �
¼ 0:

Now write �g3 ¼ xm
3 g4 6� 0, with m 2N [ f0g and

x3-g4. We get

½jð�x4 þ x5 þ x6Þ þ ðx4 � x5 þ x6Þ

þmðx4 þ x5 � x6Þ�g4 þ x3ðx4 þ x5 � x6Þ
@g4

@x3

þ k � 1

4
K

@g4

@x4

þ @g4

@x5

þ @g4

@x6

� �
¼ 0:

Let �g4 ¼ g4jx3¼0 6� 0. Then, on x3 ¼ 0 we have
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½jð�x4 þ x5 þ x6Þ þ ðx4 � x5 þ x6Þ

þmðx4 þ x5 � x6Þ��g4 þ
k � 1

4
K

@�g4

@x4

þ @�g4

@x5

þ @�g4

@x6

� �
¼ 0:

Applying Lemma 4 we obtain �g4 � 0, a contradiction. Hence

g2 � 0 and the lemma follows also in the case l¼ 1. �

We have proved that the first integral h is identically

zero. Therefore, the system cannot have a polynomial first

integral. Statement (b) of Theorem 2 follows.

V. PROOF OF STATEMENT (C) OF THEOREM 2

We study in this section the analytic integrability of

Bianchi models III, VI, and VII.

Consider system (8) and let h ¼ hðx1;…; x6Þ be a homo-

geneous polynomial first integral of degree n of this system.

Applying Lemma 3 we can write h ¼ h1ðx2;…; x6Þ
þ xj

1g1ðx1;…; x6Þ, with j 2N and h1 and g1 homogeneous

polynomials such that x1-g1.

Assume that g1 6� 0: On x1 ¼ 0 system (8) becomes, af-

ter canceling a common factor �n2x3
2,

_x2 ¼ x2ðx4 � x5 þ x6Þ;
_x3 ¼ x3ðx4 þ x5 � x6Þ;

_x4 ¼
k � 1

4

x2
2

4
þ K

� �
;

_x5 ¼
x2

2

4
þ k � 1

4

x2
2

4
þ K

� �
;

_x6 ¼
k � 1

4

x2
2

4
þ K

� �
:

(20)

We note that h1 is a first integral of system (20). The fol-

lowing lemma provides more information about the expres-

sion of h1.

Lemma 8. We have h1 ¼ h1ðx4 � x6Þ.
Proof. Swapping x1 and x2 and swapping x4 and x5 sys-

tem (20) is system (13), for which we have proved that there

is no other polynomial first integral than 0, see Lemma 6.

Then the lemma follows. �

After Lemma 8 we have that h ¼ h1ðx4 � x6Þ
þxj

1g1ðx1;…; x6Þ, with j 2N and x1-g1. We recall that h is

a first integral of system (8). Thus it satisfies the equation

xj
1 jN3ð�x4 þ x5 þ x6Þg1 þ x1N3ð�x4 þ x5 þ x6Þ

@g1

@x1

þ x2N3ðx4 � x5 þ x6Þ
@g1

@x2

þ x3N3ðx4 þ x5 � x6Þ
@g1

@x3

�

þ k � 1

4
NS

@g1

@x4

þ @g1

@x5

þ @g1

@x6

� �
þ
�

1

4
x1N4 þ a2x1x2N3 � 2a2x1x2ðx1 þ n2x2Þðx4 þ x5 � 2x6Þ2

�
@g1

@x4

þ
�

1

4
N5 � 1

4
x1N4 þ a2x1x2N3 þ 2a2x1x2ðx1 þ n2x2Þðx4 þ x5 � 2x6Þ2

�
@g1

@x5

þ a2x1x2N3 @g1

@x6

�
þ a2x1x2N3 @h1

@x6

þ
�

1

4
x1N4 þ a2x1x2N3 � 2a2x1x2ðx1 þ n2x2Þðx4 þ x5 � 2x6Þ2

�
@h1

@x4

¼ 0: (21)

The following lemma ends the proof of statement (c) of The-

orem 2, as it shows that h � 0.

Lemma 9. We have that h1 � 0 and g1 � 0.

Proof. Write h1ðx4 � x6Þ ¼ C1ðx4 � x6Þn, with C1 2 R.

Suppose that g1 6� 0. We distinguish two cases depending on

the value of j. If j > 1 then from Eq. (21) we have that x1

divides

C1n
x4

2

4
� 2a2n2x2

2ðx4 þ x5 � 2x6Þ2
� �

:

Hence, we must take C2 ¼ 0 and therefore h2 � 0. Let

�g1 ¼ g1jx1¼0 6� 0. Equation (21) on x1 ¼ 0 becomes, after

cancelling a common factor �n2x3
2,

jð�x4 þ x5 þ x6Þ�g1 þ x2ðx4 � x5 þ x6Þ
@�g1

@x2

þx3ðx4 þ x5 � x6Þ
@�g1

@x3

þ x2
2

4

@�g1

@x5

þ k � 1

4

x2
2

4
þ K

� �
@�g1

@x4

þ @�g1

@x5

þ @�g1

@x6

� �
¼ 0:

Swapping x1 and x2 and swapping x4 and x5 we obtain

Eq. (17). Hence we have g1 � 0 and the lemma follows in

the case j > 1.

If j¼ 1 then we can cancel a common factor x1 in equa-

tion (21). Let �g1 ¼ g1jx1¼0 6� 0. On x1 ¼ 0 Eq. (21) becomes,

after cancelling a common factor �n2x2
2,

x2

�
ð�x4 þ x5 þ x6Þ�g1 þ x2ðx4 � x5 þ x6Þ

@�g1

@x2

þ x3ðx4 þ x5 � x6Þ
@�g1

@x3

þ x2
2

4

@�g1

@x5

þ k � 1

4

x2
2

4
þ K

� �
@�g1

@x4

þ @�g1

@x5

þ @�g1

@x6

� ��

þ C1n 2a2ðx4 þ x5 � 2x6Þ2 �
n2

4
x2

2

� �
ðx4 � x6Þn�1 ¼ 0:

Clearly we must take C1 ¼ 0, and hence h1 � 0. Once

again swapping x1 and x2 and swapping x4 and x5 this equa-

tion is Eq. (18). Hence, we have g1 � 0 and the lemma fol-

lows in the case j¼ 1. �
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VI. DISCUSSION

In this work we have proved that the Bianchi model V

of Class B is partially integrable with analytic first integrals,

but not completely integrable, and that the Bianchi models

III, IV, VI, and VII of Class B have no analytic first integrals.

Consequently, the partial integrability of the model V and

the non-analytic integrability of the other Bianchi models of

class B facilitates that they can have chaotic behavior.
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