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VOLUME GROWTH OF SUBMANIFOLDS

AND THE CHEEGER ISOPERIMETRIC CONSTANT

VICENT GIMENO AND VICENTE PALMER

(Communicated by Michael Wolf)

Abstract. We obtain an estimate of the Cheeger isoperimetric constant in
terms of the volume growth for a properly immersed submanifold in a Rie-
mannian manifold which possesses at least one pole and sectional curvature
bounded from above.

1. Introduction

The Cheeger isoperimetric constant I∞(M) (see [5]) of a non-compact Riemann-
ian manifold of dimension n ≥ 2 is defined as

(1.1) I∞(M) := inf
Ω

{
Vol(∂Ω)

Vol(Ω)

}
,

where Ω ranges over open submanifolds of M possessing compact closure and
smooth boundary, Vol(∂Ω) denotes the (n−1)-dimensional volume of the boundary
∂Ω, and Vol(Ω) denotes the n-dimensional volume of Ω (concerning this definition,
see also [3] and [4]).

This paper focuses on obtaining sharp upper and lower bounds for the Cheeger
isoperimetric constant I∞(P ) of a complete submanifold P with controlled mean
curvature and properly immersed in an ambient manifold N with sectional curva-
tures bounded from above and which possess at least one pole.

As a consequence of these upper and lower bounds and as a preliminary view
of our main theorems (Theorems 3.2 and 3.3 in section 3), we present the follow-
ing results, which constitute a particular case of these bounds when a complete,
non-compact and minimal submanifold properly immersed in a Cartan-Hadamard
manifold is considered. In contrast, if we focus on compact and minimal submani-
folds of a Riemannian manifold satisfying other geometric restrictions, we refer to
the work [12], where certain isoperimetric inequalities involving these submanifolds
have been proven.

Theorem A. Let Pm be a complete non-compact and minimal submanifold prop-
erly immersed in a Cartan-Hadamard manifold N with sectional curvatures bounded

from above as KN ≤ b ≤ 0, and suppose that Supt>0(
Vol(P∩BN

t )

Vol(Bm,b
t )

) < ∞, where BN
t is
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3640 V. GIMENO AND V. PALMER

the geodesic t-ball in the ambient manifold N and Bm,b
t denotes the geodesic t-ball

in the real space form of constant sectional curvature K
m(b).

Then

(1.2) I∞(P ) ≤ (m− 1)
√
−b .

Theorem B. Let Pm be a complete non-compact and minimal submanifold properly
immersed in a Cartan-Hadamard manifold N with sectional curvatures bounded
from above as KN ≤ b ≤ 0. Then

(1.3) I∞(P ) ≥ (m− 1)
√
−b .

The lower bounds for I∞(P ) in Theorem B come from a direct application of
the divergence theorem to the Laplacian of the extrinsic distance defined on the
submanifold using the distance in the ambient manifold, following the arguments
of Proposition 3 in [21] and of Theorem 6.4 in [4].

On the other hand, the upper bounds in Theorem A were obtained by assuming
that the (extrinsic) volume growth of the submanifold is bounded from above by a
finite quantity. As we shall see in the corollaries, when the submanifold is a minimal
immersion in the Euclidean space or when we are dealing with minimal surfaces in
the Euclidean or the Hyperbolic space, this crucial fact relates Cheeger’s constant
I∞(P ) with the total extrinsic curvature of the submanifold

∫
P
‖BP ‖mdσ, in the

sense that the finiteness of this total extrinsic curvature implies the upper bounds
for Cheeger’s constant, using the results in [1], [6] and [8].

These lower and upper bounds of I∞(P ) given in Theorems 3.2 and 3.3 come
from comparisons for the Laplacian of the extrinsic distance defined on the sub-
manifold, and the techniques used to obtain these comparisons are based on the
Hessian analysis of this restricted distance function. When the extrinsic curvature
of the submanifold is bounded (from above or from below), this analysis focuses on
the relation, given in [10], between the Hessian of this function and these (extrin-
sic) curvature bounds, thus providing comparison results for the Hessian and the
Laplacian of the distance function in the submanifold.

The model used in these comparisons is constructed from the corresponding
values for these operators computed for the intrinsic distance of a rotationally
symmetric space whose sectional curvatures bound the corresponding curvatures of
the ambient manifold.

We shall see that the Cheeger constant I∞(P ) is bounded by the limit of some
isoperimetric quotient determined by the geodesic r-balls in these model spaces,
which involves the mean curvature of the submanifold.

1.1. Outline of the paper. In section 2 we present the basic definitions and
facts concerning the extrinsic distance restricted to a submanifold and about the
rotationally symmetric spaces used as a model for comparison. We also present the
basic results regarding the Hessian comparison theory of restricted distance function
that will be used. This section concludes with the description of the isoperimetric
context where the results hold. Section 3 is devoted to the statement and proof
of the two main theorems, Theorems 3.2 and 3.3. Three corollaries are stated and
proven in the final section, §4.
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CHEEGER ISOPERIMETRIC CONSTANT 3641

2. Preliminaries

2.1. The extrinsic distance. We assume throughout the paper that Pm is a com-
plete, non-compact, properly immersed, m-dimensional submanifold in a complete
Riemannian manifold Nn which possesses at least one pole o ∈ N . Recall that a
pole is a point o such that the exponential map

expo : ToN
n → Nn

is a diffeomorphism. For every x ∈ Nn \ {o} we define r(x) = ro(x) = distN (o, x),
and this distance is realized by the length of a unique geodesic from o to x, which is
the radial geodesic from o. We also denote by r the restriction r|P : P → R+ ∪{0}.
This restriction is called the extrinsic distance function from o in Pm. The gradients
of r in N and P are denoted by ∇N r and ∇P r, respectively. Let us remark that
∇P r(x) is just the tangential component in P of ∇N r(x), for all x ∈ S. Then we
have the following basic relation:

(2.1) ∇Nr = ∇P r + (∇N r)⊥ ,

where (∇N r)⊥(x) = ∇⊥r(x) is perpendicular to TxP for all x ∈ P .

Definition 2.1. Given a connected and complete submanifold Pm properly im-
mersed in a manifold Nn with a pole o ∈ N , we denote the extrinsic metric balls
of radius t > 0 and center o ∈ N by Dt(o). They are defined as the intersection

BN
t (o) ∩ P = {x ∈ P : r(x) < t} ,

where BN
t (o) denotes the open geodesic ball of radius t centered at the pole o in

Nn.

Remark A. The extrinsic domains Dt(o) are precompact sets (because in the def-
inition above it was assumed that the submanifold P is properly immersed) with
smooth boundary ∂Dt(o). The assumption on the smoothness of ∂Dt(o) makes
no restriction. Indeed, the distance function r is smooth in N \ {o} since N is
assumed to possess a pole o ∈ N . Hence the restriction r|P is smooth in P , and
consequently the radii t that produce smooth boundaries ∂Dt(o) are dense in R by
Sard’s theorem and the Regular Level Set Theorem.

We now present the curvature restrictions which constitute the geometric frame-
work of our study.

Definition 2.2. Let o be a point in a Riemannian manifold N and let x ∈ N−{o}.
The sectional curvature KN (σx) of the two-plane σx ∈ TxN is then called a o-radial
sectional curvature of N at x if σx contains the tangent vector to a minimal geodesic
from o to x. We denote these curvatures by Ko,N (σx).

In order to control the mean curvatures HP (x) of Pm at distance r from o in
Nn, we introduce the following definition:

Definition 2.3. The o-radial mean curvature function for P in N is defined in
terms of the inner product of HP with the N -gradient of the distance function r(x)
as follows:

C(x) = −〈∇Nr(x), HP (x)〉 for all x ∈ P .
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3642 V. GIMENO AND V. PALMER

2.2. Model spaces. The model spaces Mm
w are rotationally symmetric spaces

which serve as comparison controllers for the radial sectional curvatures of the
ambient space Nn.

Definition 2.4 (see [11], [10]). A w−model Mm
w is a smooth warped product with

base B1 = [ 0, R[ ⊂ R (where 0 < R ≤ ∞ ), fiber Fm−1 = Sm−1
1 (i.e., the unit

(m−1)−sphere with standard metric), and warping function w : [ 0, R[→ R+∪{0}
with w(0) = 0, w′(0) = 1, and w(r) > 0 for all r > 0 . The point ow = π−1(0),
where π denotes the projection onto B1, is called the center point of the model
space. If R = ∞, then ow is a pole of Mm

w .

Remark B. The simply connected space forms K
m(b) of constant curvature b can

be constructed as w−models Kn(b) = Mn
wb

with any given point as the center point
using the warping functions

(2.2) wb(r) =

⎧⎪⎨
⎪⎩

1√
b
sin(

√
b r) if b > 0 ,

r if b = 0 ,
1√
−b

sinh(
√
−b r) if b < 0 .

Note that for b > 0 the function wb(r) admits a smooth extension to r = π/
√
b.

For b ≤ 0 any center point is a pole.

Remark C. The sectional curvatures of the model spaces Kow,Mw
in the radial

directions from the center point are determined by the radial function

Kow,Mw
(σx) = Kw(r) = −w′′(r)

w(r)

(see [10], [11] [18]). Moreover, the mean curvature of the distance sphere of radius
r from the center point is

(2.3) ηw(r) =
w′(r)

w(r)
=

d

dr
ln(w(r)) .

Hence, the sectional curvature of K
n(b) is given by −w′′

b (r)

wb(r)
= b and the mean

curvature of the geodesic r−sphere Swb
r = Sb,n−1

r in the real space form K
n(b),

‘pointed inward’, is (see [19])

ηwb
= hb(t) =

⎧⎨
⎩

√
b cot

√
bt if b > 0 ,

1/t if b = 0 ,√
−b coth

√
−bt if b < 0 .

In particular, in [16] we introduced, for any given warping function w(r) , the
isoperimetric quotient function qw(r) for the corresponding w−model space Mm

w

as follows:

(2.4) qw(r) =
Vol(Bw

r )

Vol(Sw
r )

=

∫ r

0
wm−1(t) dt

wm−1(r)
,

where Bw
r and Sw

r denotes the metric r−ball and the metric r−sphere in Mm
w

respectively.
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2.3. Hessian comparison analysis of the extrinsic distance. This subsection
offers a corollary of the Hessian comparison Theorem A in [10], which concerns the
bounds for the Laplacian of a radial function defined on the submanifold (see [13]
and [20] for detailed computations; see also [14]).

Theorem 2.5. Let Nn be a manifold with a pole o and let Mm
w denote a w−model

with center ow. Let P
m be a properly immersed submanifold in N . Then we have the

following dual Laplacian inequalities for modified distance functions f ◦r : P −→ R.
Suppose that every o-radial sectional curvature at x ∈ N −{o} is bounded by the

ow-radial sectional curvatures in Mm
w as follows:

(2.5) K(σ(x)) = Ko,N (σx) ≤ −w′′(r)

w(r)
.

Then we have for every smooth function f(r) with f ′(r) ≤ 0 for all r (respec-
tively f ′(r) ≥ 0 for all r):

(2.6)
ΔP (f ◦ r) ≤ (≥) ( f ′′(r)− f ′(r)ηw(r) ) ‖∇P r‖2

+mf ′(r)
(
ηw(r) + 〈∇Nr, HP 〉

)
,

where HP denotes the mean curvature vector of P in N .

2.4. The isoperimetric comparison space. We are going to define a new kind of

model space, Mm
W . The limit lim

r→∞

W ′(r)

W (r)
of the quotient determined by its warping

function (this quotient is given in terms of the mean curvature of the geodesic
spheres in Mm

W and the bounds on the mean curvature of the submanifold P ) will
serve as an estimate for the isoperimetric constant I∞(P ).

Definition 2.6 ([17]). Given the smooth functions w : R+ −→ R+ and h : R+ −→
R with w(0) = 0, w′(0) = 1 and −∞ < h(0) < ∞, the isoperimetric comparison
space Mm

W is the W−model space with base interval B = [ 0, R ] and warping
function W (r) defined by the differential equation

(2.7)
W ′(r)

W (r)
= ηw(r) − m

m− 1
h(r)

and the boundary condition

(2.8) W ′(0) = 1 .

By using equation (2.8), it is straightforward to see that W (r) = 0 only at r = 0,
so Mm

W has a well-defined pole oW at r = 0. Moreover, W (r) > 0 for all r > 0.
Note that when h(r) = 0 for all r, then W (r) = w(r) for all r, so Mm

W becomes
a model space with warping function w, Mm

w .

Definition 2.7. The model space Mm
W is w−balanced from above (with respect to

the intermediary model space Mm
w ) iff the following holds for all r ∈ [ 0, R ]:

(2.9)
ηw(r) ≥ 0 ,

η′W (r) ≤ 0 ∀r .

Note that η′W (r) ≤ 0 ∀r is equivalent to the condition

(2.10) −(m− 1)(η2w(r) +Kw(r)) ≤ mh′(r) .
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3644 V. GIMENO AND V. PALMER

Definition 2.8. The model space Mm
W is w−balanced from below (with respect to

the intermediary model space Mm
w ) iff the following holds for all r ∈ [ 0, R ]:

(2.11) qW (r) (ηw(r)− h(r)) ≥ 1/m .

Examples. The following is a list of examples of isoperimetric comparison spaces
and balance:

(1) Given the functions wb(r) and h(r) = C ≥
√
−b, ∀r > 0, let us consider

K
m(b) = Mm

wb
as an intermediary model space with constant sectional cur-

vature b < 0. Then, it is straightforward to check that the model space
Mm

W defined from wb and h as in Definition 2.6 is wb−balanced from above
and is not wb−balanced from below.

(2) Let Mm
w be a model space, with w(r) = er

2

+ r − 1. Let us now consider
h(r) = 0 ∀r > 0. In this case, as h(r) = 0, then W (r) = w(r), so the
isoperimetric comparison space Mm

W agrees with its corresponding interme-
diary model space Mm

w . Moreover (see [16]),

qw(r)ηw(r) ≥
1

m
,

so Mm
w is w-balanced from below.

However, it is easy to see that ηw(r) =
2rer

2
+1

er2+r−1
is an increasing function

from a given value r0 > 0 and, hence, does not satisfy the second inequality
in (2.9) and is therefore not w-balanced from above.

(3) Let K
m(b) = Mm

wb
(b ≤ 0) be the Euclidean or hyperbolic space, with

warping function wb(r). Let us consider h(r) = 0 ∀r. In this context, these
spaces are isoperimetric spaces with themselves as intermediary spaces, and
they satisfy both balance conditions given in Definitions 2.7 and 2.8 (see
[16]).

2.5. Comparison constellations. We now present the precise settings where our
main results take place and introduce the notion of comparison constellations.

Definition 2.9. Let Nn denote a Riemannian manifold with a pole o and distance
function r = r(x) = distN (o, x). Let Pm denote a complete and properly im-
mersed submanifold in Nn. Suppose the following conditions are satisfied for all
x ∈ Pm with r(x) ∈ [ 0, R] :

(a) The o-radial sectional curvatures of N are bounded from above by the ow-radial
sectional curvatures of the w−model space Mm

w :

K(σx) ≤ −w′′(r(x))

w(r(x))
.

(b) The o-radial mean curvature of P is bounded from above by a smooth radial
function (the bounding function) h : R+ −→ R, (h(0) ∈]−∞,∞[):

C(x) ≤ h(r(x)) .

Let Mm
W denote the W -model with the specific warping function W : π(Mm

W ) →
R+ constructed in Definition 2.6 via w and h. Then the triple {Nn, Pm,Mm

W } is
called an isoperimetric comparison constellation on the interval [ 0, R] .

Examples. Minimal and non-minimal settings will now be described.
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(1) Minimal submanifolds immersed in an ambient Cartan-Hadamard mani-
fold: let P be a minimal submanifold of a Cartan-Hadamard manifold N ,
with sectional curvatures bounded above by b ≤ 0. Let us consider the
function h(r) = 0 ∀r ≥ 0 as the bounding function for the o-radial mean
curvature of P and the functions wb(r) with b ≤ 0 as the warping function
w(r).

It is straigthforward to see that, under these restrictions, W = wb and,
hence, Mm

W = K
m(b), so {Nn, Pm, Km(b)} is an isoperimetric comparison

constellation on the interval [0, R] , for all R > 0. Here the model space
Mm

W = Mm
wb

= K
m(b) is wb-balanced from above and from below.

(2) Non-minimal submanifolds immersed in an ambient Cartan-Hadamard
manifold: let us again consider a Cartan-Hadamard manifold N with sec-
tional curvatures bounded above by a ≤ 0. Let Pm be a properly immersed
submanifold in N such that

C(x) ≤ ha,b(r(x)) ,

where, by fixing a < b < 0, we define ha,b(r) =
m−1
m (ηwa

(r)− ηwb
(r)) ∀r >

0.
Then, it is straightforward to check that W = wb and, hence, Mm

W =
K

m(b), so {Nn, Pm,Mm
W } is an isoperimetric comparison constellation on

the interval [0, R] , for all R > 0. Moreover, the model space Mm
W = Mm

wb
=

K
m(b) is wa-balanced from above and from below.

3. Main results

Before stating our main theorems, we find the upper bounds for the isoperimetric
quotient defined as the volume of the extrinsic sphere divided by the volume of the
extrinsic ball, in the setting given by the comparison constellations.

Theorem 3.1 (see [13], [19], [15]). Consider an isoperimetric comparison constel-
lation {Nn, Pm,Mm

W }. Assume that the isoperimetric comparison space Mm
W is

w-balanced from below. Then

(3.1)
Vol(∂Dt)

Vol(Dt)
≥ Vol(SW

t )

Vol(BW
t )

.

Furthermore, the function f(t) = Vol(Dt)
Vol(BW

t )
is monotone non-decreasing in t.

Moreover, if equality holds in (3.1) for some fixed radius t0 > 0, then Dt0 is a
cone in the ambient space Nn.

The following is the upper bound for the Cheeger constant of a submanifold P .

Theorem 3.2. Consider an isoperimetric comparison constellation {Nn, Pm,Mm
W }.

Assume that the isoperimetric comparison space Mm
W is w-balanced from below.

Assume, moreover, that

(1) Supt>0(
Vol(Dt)

Vol(BW
t )

) < ∞.

(2) The limit limt→∞
Vol(SW

t )

Vol(BW
t )

exists.

Then

(3.2) I∞(P ) ≤ lim
t→∞

Vol(SW
t )

Vol(BW
t )

.
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In particular, let Pm be a complete and minimal submanifold properly immersed
in a Cartan-Hadamard manifold N with sectional curvatures bounded from above

as KN ≤ b ≤ 0, and suppose that Supt>0(
Vol(Dt)

Vol(Bm,b
t )

) < ∞.

Then

(3.3) I∞(P ) ≤ (m− 1)
√
−b .

Proof. Let us define

(3.4) F (t) :=
Vol(Dt)

′

Vol(Dt)
− Vol(SW

t )

Vol(BW
t )

=

[
ln

(
Vol(Dt)

Vol(BW
t )

)]′
.

By the co-area formula and applying Theorem 3.1 it is easy to see that F (t) is a

non-negative function. Moreover, Vol(Dt)

Vol(BW
t )

is non-decreasing (see [15]).

Integrating between t0 > 0 and t > t0,

Vol(Dt)

Vol(BW
t )

=
Vol(Dt0)

Vol(BW
t0 )

e
∫ t
t0

F (s) ds
.

But on the other hand, from hypothesis (2) and the fact that Vol(Dt)

Vol(BW
t )

is non-

decreasing, we know that limt→∞
Vol(Dt)

Vol(BW
t )

= supt
Vol(Dt)

Vol(BW
t )

< ∞. Then, since F (t) ≥
0 ∀t > 0, ∫ ∞

t0

F (s)ds < ∞ ,

and hence there is a monotone increasing sequence {ti}∞i=0 tending to infinity such
that

(3.5) lim
i→∞

F (ti) = 0 .

Let us now consider the exhaustion {Dti}∞i=1 of P by these extrinsic balls.
By using equation (1.1), we have that

(3.6) I∞(P ) ≤ Vol(∂Dti)

Vol(Dti)
≤ (Vol(Dti))

′

Vol(Dti)
∀ri .

On the other hand, since limi→∞ F (ti) = 0,

(3.7) lim
i→∞

(Vol(Dti))
′

Vol(Dti))
= lim

i→∞

Vol(SW
ti )

Vol(BW
ti )

,

and therefore

(3.8) I∞(P ) ≤ lim
i→∞

Vol(SW
ti
)

Vol(BW
ti )

.

Inequality (3.3) follows inmediately taking into account that, as was shown in
the examples above, when P is minimal in a Cartan-Hadamard manifold, then con-
sidering h(r) = 0 ∀r and considering w(r) = wb(r), we have that {Nn, Pm,Km(b)}
is a comparison constellation, with K

m(b) wb-balanced from below.

By hypothesis, Supt>0(
Vol(Dt)

Vol(Bb,m
t )

) < ∞, and we have that

(3.9)

lim
t→∞

Vol(SW
t )

Vol(BW
t )

= lim
t→∞

Vol(S0,m−1
t )

Vol(B0,m
t )

= 0 if b = 0 ,

lim
t→∞

Vol(SW
t )

Vol(BW
t )

= lim
t→∞

Vol(Sb,m−1
t )

Vol(Bb,m
t )

= (m− 1)
√
−b if b < 0 .
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We now apply inequality (3.2). �
Now, we have the following result, which is a direct extension to Yau’s classical

result (see [21]) on minimal submanifolds, using the same techniques as in [4].

Theorem 3.3. Consider an isoperimetric comparison constellation {Nn, Pm,Mm
W }.

Assume that the isoperimetric comparison space Mm
W is w-balanced from above.

Assume, moreover, that the limit limr→∞
W ′(r)
W (r) exists.

Then

(3.10) I∞(P ) ≥ (m− 1) lim
r→∞

W ′(r)

W (r)
.

In particular, let Pm be a complete and minimal submanifold properly immersed
in a Cartan-Hadamard manifold N with sectional curvatures bounded from above
as KN ≤ b ≤ 0.

Then

(3.11) I∞(P ) ≥ (m− 1)
√
−b .

Proof. From equation (2.7) in Definition 2.6 of the isoperimetric comparison space,
we have

(3.12) (m− 1)
W ′(r)

W (r)
+ ηw(r) = m (ηw(r)− h(r)) .

On the other hand, from Theorem 2.5,

(3.13)

ΔP r ≥
(
m− ‖∇P r‖2

)
ηw(r) +m〈∇Nr, HP 〉

≥ (m− 1)ηw(r) +m〈∇Nr, HP 〉
≥ (m− 1)ηw(r)−mh(r)

= m (ηw(r)− h(r))− ηw(r) .

Then, applying (3.12),

(3.14) �P r ≥ (m− 1)
W ′(r)

W (r)
.

Now, if we consider a domain Ω ⊆ P , which is precompact and with smooth
closure, we have, given its outward unitary normal vector field, ν:

〈ν,∇P r〉 ≤ 1 .

Hence by applying the divergence theorem and taking into account that W ′(r)
W (r) is

non-increasing,

(3.15)

Vol(∂Ω) ≥
∫
∂Ω

〈ν,∇P r〉dμ

=

∫
Ω

ΔP rdσ ≥
∫
Ω

W ′(r)

W (r)
dσ ≥ (m− 1) lim

r→∞

W ′(r)

W (r)
Vol(Ω) .

As
Vol(∂Ω)

Vol(Ω)
≥ (m− 1) lim

r→∞

W ′(r)

W (r)

for any domain Ω, we have the result.
Inequality (3.11) follows immediately by taking into account that, as in the

proof of Theorem 3.2 and in the examples above, when P is minimal in a Cartan-
Hadamard manifold, we have that {Nn, Pm,Km(b)} is a comparison constellation
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(h(r) = 0 ∀r and w(r) = wb(r)), with the isoperimetric comparison space used as a

modelMm
W = K

m(b) wb-balanced from above. Moreover, limr→∞
W ′(r)
W (r) =

√
−b. �

4. Applications: Cheeger constant of minimal submanifolds

of Cartan-Hadamard manifolds

4.1. Isoperimetric results and Chern-Osserman inequality. This subsection
provides two results which describe how minimality and the control on the total ex-
trinsic curvature of the submanifold implies, among other topological consequences,
having finite volume growth. The first (Theorem 4.1) is due to M.T. Anderson, and
the second (Theorem 4.2) was proved in the Euclidean setting by S.S. Chern and
R. Osserman, with an extension to the hyperbolic setting due to Q. Chen. These
results will be used to prove Corollaries 4.4 and 4.5 in subsection 4.2.

Theorem 4.1 (see [1]). Let Pm be an oriented, connected and complete minimal
submanifold immersed in the Euclidean space R

n. Let us suppose that
∫
P
‖BP ‖mdσ

< ∞, where BP is the second fundamental form of P . Then

(1) P has finite topological type.

(2) Supt>0(
Vol(∂Dt)

Vol(S0,m−1
t )

) < ∞ .

(3) −χ(P ) =
∫
P
Φdσ + limt→∞

Vol(∂Dt)

Vol(S0,m−1
t )

,

where χ(P ) is the Euler characteristic of P and Φ is the Gauss-Bonnet-Chern form

on P , and Sb,m−1
t denotes the geodesic t-sphere in K

m(b).

Remark D. Note that by applying inequality (3.1) in Theorem 3.1 to the sub-
manifold P in the theorem above, we conclude that, under the assumptions of
Theorem 4.1, we have the following bound for the volume growth:

(4.1) Supt>0(
Vol(Dt)

Vol(B0,m
t )

) ≤ Supt>0(
Vol(∂Dt)

Vol(S0,m−1
t )

) < ∞ ,

where Bb,m
t denotes the geodesic t-ball in K

m(b).

On the other hand, we have that the Chern-Osserman Inequality is satisfied by
complete and minimal surfaces in a simply connected real space form with constant
sectional curvature b ≤ 0, Kn(b). Namely,

Theorem 4.2 (See [1], [6] and [8]. For an alternative proof, see [9]). Let P 2 be
a complete minimal surface immersed in a simply connected real space form with
constant sectional curvature b ≤ 0, Kn(b). Let us suppose that

∫
P
‖BP ‖2dσ < ∞.

Then

(1) P has finite topological type.

(2) Supt>0(
Vol(Dt)

Vol(Bb,2
t )

) < ∞ .

(3) −χ(P ) ≤
∫
P

‖BP ‖2

4π − Supt>0
Vol(Dt)

Vol(Bb,2
t )

,

where χ(P ) is the Euler characteristic of P .

4.2. The corollaries. In this subsection, we are going to state and prove the
following results, which are direct consequences of the main theorems in section 3
and Theorems 4.1 and 4.2 in subsection 4.1.

Corollary 4.3 is a direct application of Theorems 3.2 and 3.3.
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Corollary 4.3. Let Pm be a complete and minimal submanifold properly immersed
in a Cartan-Hadamard manifold N with sectional curvatures bounded from above

as KN ≤ b ≤ 0. Let us suppose that Supt>0(
Vol(Dt)

Vol(Bb,m
t )

) < ∞.

Then

(4.2) I∞(P ) = (m− 1)
√
−b .

Proof. This is a direct consequence of inequalities (3.3) and (3.11) in Theorem 3.2
and Theorem 3.3. �

Corollaries 4.4 and 4.5 are based on Theorems 4.1 and 4.2.
When we consider minimal submanifolds in R

n, we have the following result:

Corollary 4.4. Let Pm be a complete and minimal submanifold properly immersed
in R

n, with finite total extrinsic curvature
∫
P
‖BP ‖mdσ < ∞.

Then

(4.3) I∞(P ) = 0 .

Proof. In this case, taking h(r) = 0 ∀r and w0(r) = r, we have that {Rn, Pm,Rm}
is a comparison constellation bounded from above, with R

m w0-balanced from
below. Hence, we apply Theorem 3.1 to obtain

(4.4)
Vol(Dt)

Vol(B0,m
t )

≤ Vol(∂Dt)

Vol(S0,m−1
t )

for all t > 0 .

Therefore, as the total extrinsic curvature of P is finite, by applying Theorem 4.1,
inequality (4.4) and Remark D, we have

Supt>0(
Vol(Dt)

Vol(B0,m
t )

) < ∞ .

Finally,

lim
t→∞

Vol(S0,m−1
t )

Vol(B0,m
t )

= lim
t→∞

m

t
= 0 .

Hence, by applying Theorem 3.2, I∞(P ) ≤ 0, so I∞(P ) = 0. �

Corollary 4.4 can be extended to complete and minimal surfaces (properly) im-
mersed in the hyperbolic space, with finite total extrinsic curvature:

Corollary 4.5. Let P 2 be a complete and minimal surface immersed in K
n(b) with

finite total extrinsic curvature
∫
P
‖BP ‖2dσ < ∞.

Then

(4.5) I∞(P ) =
√
−b .

Proof. As the total extrinsic curvature of P is finite, by applying Theorem 4.2 we
have

Supt>0(
Vol(Dt)

Vol(Bb,2
t )

) < ∞ .

Then, apply Corollary 4.3 with m = 2. �
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