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Abstract—Primates possess a superior ability in dealing with
objects in their environment. One of the keys for achieving
such ability is the continuous concurrent use of multiple cues,
especially of visual nature. This work is aimed at improving the
skills of robotic systems in their interaction with nearby objects.
The basic idea is to improve visual estimation of objects in the
world through the merging of different visual cues of the same
stimuli. A computational model of stereoptic and perspective
orientation estimators, merged according to different criteria, is
implemented on a robotic setup and tested in different conditions.
Experimental results suggest that the integration of monocular
and binocular cues can make robot sensory systems more reliable
and versatile.

I. INTRODUCTION

THE interaction with the environment requires the abil-
ity of estimating spatial properties of nearby objects.

Although such skill can hardly be achieved without the use
of binocular vision, other cues are in many cases extremely
helpful. Cue integration is indeed a major principle in the
primate sensory cortex: visual information is processed in
a highly parallel way, different cues for the same stimulus
are processed, compared and merged in order to provide
increased estimation reliability through redundancy [24], [45].
Often, motion and texture cues are at least as informative
as stereoscopic ones, and a method for integrating all the
available cues for obtaining the most likely estimate is re-
quired. Although some modern artificial vision approaches
build strongly on biological concepts [40], these principles
have not been exploited up to their potentialities in robotics.
With this work we put forward a proposal for improving
the reliability of artificial systems in the estimation of visual
features in 3D based on neuropsychological concepts.
The thorough study of neuroscience research related to the

integration of monocular and binocular retinal information
for estimating object pose allowed us to define a modular
computational structure composed of various estimators and
different ways of merging them [7]. We present here the
outcome of applying the computational model to a real robotic
platform, where a robot is required to observe box-like shapes
of different size and proportion and estimate the features
useful for a potential grasping action. The experimental results
obtained with the robotic visual system confirm the hypothesis
that integration of monocular and binocular data provides
a robot with superior estimation capabilities. The merged
estimator obtained appropriately weighting the different cues
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is robust across working conditions, in a way that is not
attainable by a simple estimator alone.
The background of this research, both in neuroscience and

computational vision, is introduced in Sec. II. Sec. III de-
scribes the model our implementation is based on. The robotic
implementation is explained in Sec. IV and experimental
results are presented and discussed in Sec. V.

II. BACKGROUND

For both natural and artificial agents, the ability of estimat-
ing distance, size and shape of surrounding objects is highly
supported by, if not fully dependent on, the use of binocular,
or stereoscopic vision [28]. Binocular vision consists in the
acquisition of two different images taken from viewpoints,
the eyes, that are always at the same short distance. The
process allows to obtain a fast and accurate estimation of
object distance, size, motion, through the interpretation of
binocular disparities.
Despite its fundamental importance, stereoptic information

alone is often not enough, and motion, texture, shading and
other cues are used to complement it. Indeed, in each modality
the brain seems to efficiently use a large set of different cues
at the same time [31]. Cue evaluation and integration is a
major principle in the primate sensory cortex, and especially
in vision, in order to obtain the most likely final estimates
of stimulus properties. Visual information is processed in
a highly parallel way, different cues for the same stimulus
are processed, compared and merged in order to provide
increased estimation reliability through redundancy [24]. In
this section, vision science concepts and approaches related
to cue generation and integration both in natural and artificial
systems are reviewed.

A. Visual and Visuomotor Brain Areas

The basic mechanisms of stereoscopic vision have been
studied for long time, and are discussed in fundamental
works [22], [29]. Neuronal responses to disparity stimuli in
cortical visual areas have also been throughly investigated
[33], [10]. Disparity detection is a fundamental aspect of visual
processing that begins already in primary visual areas of the
primate brain. In higher visual regions disparity coding spans
areas of the visual field wide enough to provide a proper
interpretation of stereoptic information, both in monkeys and
in humans [44]. Advanced visual areas are thought to be in
charge of processing both higher order disparities and basic
perspective cues [48].
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Of special interest for the research presented in this pa-
per is an area of the posterior parietal cortex of primates,
the caudal intraparietal sulcus CIP, which is dedicated to
the extraction and description of visual features suitable for
grasping purposes. Its neurons are strongly selective for the
orientation of visual stimuli, represented in a viewer-centered
way. Selectivity toward disparity-based orientation cues is
predominant in monkey and human’s CIP [38], [44]. On the
other hand, many CIP neurons also respond (some exclu-
sively) to perspective-based orientation cues. The evidence
suggests that CIP integrates stereoptic and perspective cues
for obtaining better estimates of orientation [45], [48]. This
sort of processing performed by CIP neurons is the logical
continuation of the simpler orientation responsiveness found
in earlier visual areas, and makes of CIP the ideal intermediate
stage toward the grasping-based object representations of
downstream associative areas [38], [3].
Distance and location estimation of target objects is also

performed in primates’ posterior parietal cortex. More exactly,
according to psychophysiological research in humans [42],
what is actually estimated and used is the reciprocal of
distance, that is, nearness. In the parietal cortex, distance and
disparity are processed together, the former acting as a gain
modulation variable on the latter [14]. This mechanism allows
to properly interpret stereoscopic visual information [30], as
described in Section III-A.

B. Cue Integration
Cue integration, or combination, is one of the main work-

ing principles of the human sensory systems. Restricting to
unimodal cue integration, vision is probably the best example
of the complexity reached in the process of getting the best
estimate of a stimulus from concurring and often discordant
cues. Several models have been proposed for explaining how
such best estimate is obtained, but most phenomena can be
modeled by a simple linear weighting of concurrent cues,
aimed at maximizing the likelihood of the final estimate [24].
The main underlying principles that allow to achieve this
goal seem to be two: cue reliability and cue correlation, or
discrepancy [42].
Cue reliability is probabilistic, it depends on environmental

conditions, on the estimate itself and sometimes on other,
ancillary measures [24]. Considering the case of interest in
this thesis, i.e. orientation estimation, stereoscopic cues are
considered less reliable outside a certain range of disparity,
but also at longer distances, being distance in this case an an-
cillary cue. Often, ancillary cues directly affect the estimation
process through gain modulation, such as in the mentioned
distance/disparity example [43]. This seemingly simple and
safe mechanism may nevertheless suffer because of a second-
order uncertainty, the problem of assessing the reliability of
the ancillary cue itself. In any case, reliability rules have to be
learnt by a subject in her/his interaction with the environment,
and can be misleading in the case of unusual situations, such
as in optical illusions.
The second principle, cue correlation, considers the degree

to which concurrent cues conflict or coincide, and gains

importance with increasing number of cues. In fact, there is no
way to choose between two conflicting cues only on the base
of cue correlation, but if a cue is the only one in disagreement
with a number of coincident cues, it is very reasonable to
consider it untrustworthy. Fortunately, vision systems often
provide many cues quite different from each other, so that
correlation can be a perfect criterion for weighting the cues in
the final estimate [1].
The available models for extraction and integration of visual

cues usually focus on early visual processing [37] or on very
specific aspects, such as conflicting stimuli [46], maximum-
likelihood cue integration [20], temporal integration according
to cue reliability [17], extraction of local surface slant [21].
Apparently, no published models on the subject provide details
for practical implementation on robotic vision setups.

C. Artificial Vision and Robotics
Object orientation (or slant) estimation is a common, and

difficult, problem in artificial vision [27]. Nevertheless, no
research works similar to the proposed approach are available
in the literature. Existing techniques for pose estimation still
build on the fundamental concepts described by Goddard [16].
The available approaches differ depending on the type and
location of the sensors, the illumination requirements, the
object or scene feature on which the pose is calculated, the
relative motion between robot and object. Sometimes, noise
sources and uncertainty factors are modeled in an attempt to
improve the robustness and accuracy of the results. Among
various methods, geometry or model based techniques are
most common. These methods use an explicit model for the ge-
ometry of the object in addition to its image in determining the
pose. The object is modeled in terms of points, lines, curves,
planar surfaces, or quadric surfaces [34]. Methods of this kind
have been proved useful also with moving targets [26], and
even with articulated shapes [25]. Some of these methods
build on cognitive science concepts, like Peters’ [32], in which
viewpoint-based, sparse representations of objects are used.
Often, the use of markers substitute explicit modeling [13].
Model based techniques can be combined with others, where
appearance based methods are used for a rough initial estimate
followed by a refinement step [11]. A model based approach
can also be connected with range images, for example match-
ing a 3D model to a range representation of the scene [15]. The
managing of range data is anyway quite different from vision
research, and works which locate parallel surfaces to grip from
range images, such as [47], are interesting but have little in
common with the current approach. In a work more related
to this paper, Xu et al. [49] consider parallel lines to self-
calibrate a pair of cameras and estimate the pose of geometric
features. Some of their initial assumptions are similar to ours,
but they do not include perspective data, and their approach
is not biologically inspired.
For what concerns stereo slant estimation inspired on human

physiology, [12] describes a method based on binocular dispar-
ities which makes use of a model for computing orientation of
features based on eye orientation. The results they obtain are
consistent with, and complementary to, those presented in this
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paper. The idea of integrating stereoptic and perspective cues
in artificial vision is not novel [9], but only one robotic plat-
form is nowadays making use of both visual cues at the same
time [39]. In Saxena and colleagues’ setup, a vision system is
trained to estimate scene depth through monocular data using
supervised learning, and a joint monocular/binocular estimator
is generated. The authors show that integration of monocular
and stereopsis data performs better than either cue alone.
The main difference between this work and our approach is
the use of traditional computer vision techniques as opposed
to our biologically-inspired, computational neuroscience-based
implementation. Other works, focused on object tracking [41]
and on visual servoing [23], perform cue integration, but
their visual analysis is model-based, and their goal is feature
matching and not feature extraction.

III. COMPUTATIONAL MODEL

As part of a computational model for vision-based grasping
based on neuroscience findings [5], [8], we developed and
implemented a model of distance and orientation estimation
inspired by human visual mechanisms. Here, we briefly ex-
plain only those concepts necessary to properly understand the
robotic implementation; please refer to the original paper for
additional references and details on computational issues [7].
The model is based on the integration of monocular and

binocular cues. The implemented cues are perspective under
the assumption of edge parallelism and width disparity. We
assume that the target object has straight, parallel edges, and is
standing upright. This is reasonable from a neuropsychological
point of view, as the primate brain is actually “programmed”
to better assess vertical and horizontal edges, most common in
nature. Indeed, experiments on monkeys [45] and humans [2]
have shown that, even for purely perspective pose estimations,
a frontoparallel trapezoid is usually interpreted as a rectangular
shape slanted in depth. The model does not take into account
cyclorotation movements, which are usually not implemented
in robot vision systems, although their inclusion would con-
stitute an interesting challenge for future developments [19].

A. Orientation Estimation
We provide here a brief description of how we compute slant

estimation from stereopsis and perspective visual information,
and distance from proprioceptive eye data.
1) Perspective: The slant of an object can be estimated

using only monocular data, as depicted in Figure 1(a), in
which the origin of the axes is one of the eyes. As explained
above, given a rectangle slanted in depth, we can exploit the
assumption of parallelism and equality of opposite edges (PS
and RQ in the image). Angles β in the figure represent the
vertical retinal angles associated to such edges. The equation
which leads from retinal angles to orientation estimation can
be derived from the draw [7], and can be referred entirely
to either the left or the right eye (monocular separation
ψQ = (αQ − αP )/2):

tan θ =
tan βQR

tan βPS sin ψQ
−

1

tan ψQ
(1)

(a) Perspective







 

  
















(b) Stereopsis

Fig. 1. Schemes for deriving slant from perspective and stereopsis, adapted
from [7].

2) Stereopsis: In Fig. 1(b) a viewing scene is seen from
above: object PQ of length l is slanted about a vertical axis
with orientation θ. Its extreme P is the fixation point, placed
straight ahead from the cyclopean eye (a point lying slightly
behind the midpoint between the eyes). All α angles represent
the retinal projections of points P and Q on the left and right
eyes, I is the interocular distance, ψQ the binocular separation
of points P and Q (being ψP = 0), γP the vergence angle.
The horizontal slant θ of an object can be computed only
from retinal angles using the following expression, which can
be derived from the image [7]:
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tan θ =
(tan αrQ − tan αlQ) − (tan αrP − tanαlP )

tan αlP tan αrQ − tan αlQ tan αrP
(2)

B. Distance Estimation
The distance of a fixated point from a viewer can be

estimated by either retinal and/or proprioceptive informa-
tion (accommodation and vergence). Proprioceptive cues are
preferably used when retinal data is not available or considered
not reliable, and for short distances [1]. Neuropsychological
experiments [42] suggest that distance estimation is most
probably performed in our brain using nearness units instead
of distance units. Nearness is the reciprocal of distance,
so that a point at infinite distance has 0 nearness, and a
point at the maximum vergence angle has nearness 1 (or
100%). Although in our computational implementation with
Radial Basis Functions [7] we showed that nearness is a
more convenient measure, for practical purposes we will use
distance in this work. The distance estimator that we designed
is based on proprioceptual vergence data, according to the
following simple equation, where d is the viewing distance, I
the interocular interval and γ the vergence angle:

d =
I

2 tan(γP /2)
(3)

In [7] we implemented with neural networks a multiple
cue orientation estimator which makes use of the equations
provided in this section and different cue merging methods.
The data from neuropsychological experiments that we were
able to reproduce are explained in Sec.V-A. In the next section,
we extend such approach to robotics research.

IV. ROBOTIC POSE ESTIMATION
The extension of our computational model to robotics has

been done with two purposes. The first goal is to obtain
an orientation estimator very robust and reliable to use in a
robotic vision-based grasping system. The second goal is to
try and reproduce the mentioned effect with real experimental
data, and further validate the model.
From a robotic point of view, our approach for computing

the orientation of an object is original in that it pursues esti-
mation reliability through the merging of different estimation
methods, as in the primate brain. We have implemented the
described computational method on our robotic setup, and
performed a number of different experiments to verify how
the ideal results change when the model has to face the
uncertainties of the real world.

A. Setup and visual processing
Our robotic setup, shown in Fig. 2, consists of a seven

degrees-of-freedom (DOF) Mitsubishi PA10 arm, on which are
mounted a three finger, four DOF Barrett Hand and a stereo-
scopic camera Videre Design (eye-in-hand style). The robot
world is a dark environment in which box-like, clear shapes
are placed on a table at variable positions and orientations
(see Fig. 3). The range of possible positions are those that

(a) Robotic arm and hand (b) Detail of hand with stereo camera

Fig. 2. Robotic setup with arm, hand and stereoscopic camera.

Fig. 3. Workspace with possible target objects.

allow to view the object and also keep it at reaching distance
for the hand. The system is able to estimate distance, pose
and size of the object without using models, only exploiting
the assumption, supported by neuroscience studies, that what
looks like a trapezoid is most likely a slanted shape having
parallel and equal edges [38].
The choice of object and background color was driven by

the need of keeping image processing as fast and lean as
possible. Given the image of a target object, we binarize it,
extract the contour and detect its salient points, corresponding
to the object corners (Fig. 4). Object faces are not segmented
separately, so the number of detected corners ranges from
4 to 6 depending on point of view and object pose. Even
with this simplified setup, to reliably detect the salient points
we perform a double search on the contour, combining the
information given by two different algorithms for corner [4]
and edge detection, to maximize the chance of finding all six
visible corners of the object when possible. Although a system
able to segment the three faces of the object separately would
probably provide a better estimate, good results were obtained
with this simple approach.
The three variables that identify object position and ori-

entation are the distance d, the slant angle with respect to
the frontoparallel position θ (see Fig. 1), and the direction of
view with respect to the horizontal plane, φ. This last variable
is known by the robot, and is computed by the vestibular
system in primates. We restricted the viewing direction angle
in our experiments, to allow a clear perspective view without
simplifying too much the task as it happens for large angles (in
such cases, the slant is very similar to what can be estimated
simply using the inclination of segments in the 2D image).
The final working range is about 15°< φ <50°, and these
are very plausible values even for a human subject looking
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Fig. 4. Left and right images from the initial position, with labels of detected
corners.

at an object with grasping purposes. For what concerns the
slant θ, we only rule out those situations that would reduce
the interest of the slant estimation (for angles very close to
0°and 90°) and which can anyway be detected quite easily by
the system, from the number and distribution of the defining
corners.
The process of distance, pose and size estimation begins

with the arm moving until the object is placed horizontally at
the center of the image, in order to minimize distortions due
to the cameras’ optic. Left and right images at this position
are then processed: corners P, Q, R, W, T and U are found as
explained above, and the position of S is estimated through
a two point perspective method (Fig. 4). At this point, the
coordinates of the defining points are transformed in angles
with respect to the center of the image, using the camera
focal lens and image size in pixels as parameters. The non-
linearity of the camera optic is the reason to avoid getting
close to the image borders, where distortions could affect the
transformation process.

B. Cue Estimation and Integration

Once the six points identifying the two frontal faces of the
object for both cameras have been detected, the actual slant
estimation process can begin. Eight different estimators are
calculated using the equations provided in Section III-A: (1)
is applied to the couples of segments PS/QR and UT/PS for
both the left and right eye whilst (2) is applied to segments
PQ, SR, TS and UP. We thus obtain the first eight estimators,
four perspective and four stereoscopic, of Table I.
Before calculating the final, merged estimator it is useful to

check for possible outliers (completely wrong estimations). In
nature, bad estimations could be due to momentary occlusions,
unusual light conditions, sudden movements, etc. In our simple
setup, any previous processing step can affect the final results,
so again illumination issues, imperfections in the binarization
or corner detection can cause one or more cues to deviate
hugely from the average estimate. Outlier detection is a full
sub-branch of statistics [36], and many different methods are
available. The methods we tried did not give significantly
different results, and we finally chose the classical Rosner’s
many outliers test [35], widely used in the literature for similar
problems. The best results were obtained for a significance
level α = 0.01, which gave a final estimation improved of
more than 5% compared to the implementation without outlier
rejection.

TABLE I
ORIENTATION ESTIMATORS

# Estimator Computation Method

1 Perspective I Segments PS/QR, left eye
2 Perspective II Segments PS/QR, right eye
3 Perspective III Segments UT/PS, left eye
4 Perspective IV Segments UT/PS, right eye
5 Stereopsis I Segment PQ
6 Stereopsis II Segment SR
7 Stereopsis III Segment UP
8 Stereopsis IV Segment TS
9 Merged (θ̂P ) Perspective Only Average, # 1-4
10 Merged (θ̂S ) Stereopsis Only Average, # 5-8
11 Merged (θ̂A) θ̂P and θ̂S Simple Average, # 9-10
12 Merged (θ̂G) Global Simple Average, # 1-8
13 Merged (θ̂W ) Global Weighted Average, # 1-8

As explained in Section II, there is good evidence that
primates make use of many different monocular and binocular
cues, and merge them according to their expected reliability
and correlation. In our experiment, we start from a situation
in which no information is available regarding the reliability
of the different cues in the various working conditions. Thus,
to begin with, there are only two solutions readily available
without the need of performing a training session for learning
the cue weights. The first is to compute a simple, non-weighted
average of a set of simple estimators (Estimators 9-12 of
Table I). The second is to compute an average in which
weights are calculated using cue correlation (Estimator 13),
in our case simply using the deviation of each cue from the
simple average of all cues.

C. Distance and Size Estimation

As we assume no previous knowledge regarding the object
dimension, it is not possible to disambiguate the pair dis-
tance/size only from retinal data. We thus make use of (3),
and only have to estimate the proprioceptive vergence angle
γ. Our stereo camera does not allow vergence movements of
the eyes, so we have to simulate them. The simple procedure
we adopt is to center point P of our object in one of the
images first, and rotate the camera around the cyclopean eye,
in order to center again P on the other image without changing
the actual distance. To take advantage of this movement
we take left and right images both from the initial and the
final position, and consider them as two independent slant
estimation experiments. We actually observed that estimations
from the initial position are slightly better than those from
the final, probably because, although horizontal centering is
performed in both cases, only the first experiment starts from
an ideal vertical alignment of the object.
Regarding size estimation, the relative size of the object

(proportion between its edges) can be detected from orienta-
tion and separation angles alone. Once distances have been
estimated, the actual dimensions of the object can be com-
puted through simple geometric equations, as the ambiguity
size/distance has been resolved.
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TABLE II
NUMBER OF EXPERIMENTS PER DISTANCE AND SLANT

Distance Count Slant Count

450-500 14 10 12
500-550 40 20 80
550-600 66 30 96
600-650 74 40 80
650-700 88 50 92
700-750 94 60 48
750-800 28 70 14
800-850 18

V. RESULTS AND DISCUSSION

A. Simulation Results
Experiments with human subjects tell that distance, as an

ancillary cue, and slant itself are the two most important
driving factors for slant estimation reliability. With increasing
distance, both perspective and stereoptic estimators become
less reliable, but stereoscopic cues are more affected. The
effect of orientation is more complex, as perspective methods
are more sensitive and precise for pronounced slants, that
generate higher differences in vertical disparities. Disparity
methods also prefer high slants at long distances, but for
short distances, the ones we use in all our vision-for-grasping
experiments, their error is minimum for low slant values,
which grant higher binocular disparities.
The purpose of our previous work [7] was to reproduce

with our model some of the aformentioned effects. For pur-
suing this goal we trained a set of neural networks with
the equations described in the previous section, and compute
slant from different monocular and binocular cues. Introducing
random noise we observed how the estimation performance
was affected with variations of distance and slant itself. The
similarity of the obtained results to what described in the
literature was remarkable [7]. The second effect we could
reproduce was the improved performance obtained through a
maximum likelihood merged estimator in which cues were
weighted according to their reliability (experimentally learnt),
as explained in Section II.

B. Experimental Results
Overall, we executed 422 experiments with different values

of slant and distance as shown in Table II. The global average
estimation errors of all executed experiments are provided in
Table III. Perspective estimator θ̂P and stereopsis estimator θ̂S

are calculated merging the four estimators of each modality
alone. The simple average θ̂A is the mean between the two,
and the global average θ̂G is the mean of all eight initial
estimators. It can be observed how the combination of multiple
cues, especially when they come from different kinds of visual
information, strongly improves the estimation performance.
The worst merged estimator θ̂P performs better than the
best single cue estimator, Stereopsis I; the global average
θ̂G improves the merged stereopsis estimator θ̂S by more
than 25%. The cue correlation weighted average estimator θ̂W

shows a further improvement of around 8% compared to θ̂G,

TABLE III
OVERALL AVERAGE ERRORS

# Estimator Error(°)

1 Perspective I 8.63
2 Perspective II 6.67
3 Perspective III 12.75
4 Perspective IV 9.59
5 Stereopsis I 4.73
6 Stereopsis II 7.89
7 Stereopsis III 6.31
8 Stereopsis IV 5.41
9 Merged (θ̂P ) 4.71
10 Merged (θ̂S ) 3.92
11 Merged (θ̂A) 3.78
12 Merged (θ̂G) 2.91
13 Merged (θ̂W ) 2.68

bringing the overall mean error close to 2.5°, which constitutes
a very good pose estimation for a robotic grasping system.
It is interesting to compare the error distributions obtained

in the real practical experiments with the theoretical ones and
those obtained in the simulation. Fig. 5 shows the average
error plotted as a function of slant (Fig. 5(a)) and distance
(Fig. 5(b)). The variability of the setup did not allow to
obtain clean, smooth curves, and some slant and distance
values are probably affected by the use of different objects
and viewpoints; see for example the bad quality of stereopsis,
and consequently of the merged estimators, for slant = 60.
Nevertheless, the trends are quite clear, and the expected effect
of slant and distance on the different estimators is reproduced.
In Fig. 5(a) the improvement in perspective estimation and the
deterioration in stereoptic estimation with increasing slant are
clearly visible, and the weighted average is definitely the best
available estimator. Fig. 5(b) shows that stereoptic estimation
gradually decrease its precision with distance, whilst per-
spective seems nearly uncorrelated with it, apart for extreme
values. As in the simulation, the weighted average presents a
clearly advantageous behavior in all conditions.
It can be noted from both graphs how the weighted estimator

maintains its reliability across conditions. Error bars of θW are
always small apart for extreme conditions. Errors for other
estimators (not plotted for clarity reasons) are always quite
larger. This is a very important aspect for a robotic application,
as there are no “blind spots” for which its estimation capa-
bilities become unreliable. The implementation of a multiple
cue estimation method thus provides a robotic system with
a robustness hardly achievable with perspective or stereopsis
alone.
For what concerns distance estimation, the global average

error for all experiments is of 33.4mm, and the error distri-
bution shown in Fig. 6, although noisy, follows the expected
trend, showing decreasing estimation precision with increasing
distance. Size estimation revealed to be less precise compared
to slant and distance estimation. In part, this is due to the
fact that it makes use of two estimators and the theoretical
final error is the product of the two initial errors. Moreover,
for high slants and for small objects, the edges of the least
visible side have very short separation angles, for which the
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Fig. 5. Slant estimation error as a function of slant and distance; experimental
results. For clarity, errors on errors are plotted only for θW .

relative error is much higher. Anyway, the worst case error
is never larger than a few centimeters, and this is enough for
reliable grasping by the robot hand, as it remained clear from
experiments executed with our robotic grasping setup [5], [18].

VI. CONCLUSIONS AND EXTENSIONS
The robotic implementation of a computational model for

estimating object features in 3D permitted us to achieve two
important results. On the one hand, we provided our robotic
grasping system with a very reliable and versatile visual
estimation of slant, distance and size of target objects. On
the other hand, we could reproduce at a reasonable level of
approximation effects described in neuropsychological data.
Cue integration is the fundamental principle which allowed
us to obtain such results, through the efficient merging of
stereoscopic and perspective estimators.
The research presented in this paper is carrying to further

developments in both engineering and scientific aspects. For
what concerns the goal of modeling primate visual estimation
of the properties of nearby objects, a full model of the
information flow through the visual and visuomotor cortices
has been completed and selectively implemented, using visual
input to obtain reaching plans and candidate grips for a target
object [5], [6]. From the pragmatic point of view of robot
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Fig. 6. Distance estimation error; Error (mm) vs. distance (mm).

grasping performance, the model has been extended to allow
the system to deal with other simple objects, such as cylinders
and spheres. Successful reaching and grasping experiments
have been performed using our estimated measures as in-
puts [18]. The accurateness of the final action is assessed
through tactile feedback, and we plan to use it as a way to learn
the reliability of each estimator in different conditions. The
next-generation estimator will thus perform cue integration
using both correlation and reliability, as in the primate brain.
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