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Spain

E-mail: climente@uji.es

Abstract.

We study the spin purity of the hole ground state in nearly axially symmetric
GaN/AlN quantum dots (QDs). To this end, we develop a six-band Burt-Foreman
Hamiltonian describing the valence band structure of zinc-blende nanostructures with
cylindrical symmetry, and calculate the effects of eccentricity variationally. We show
that that the aspect ratio is a key factor for spin purity. In typical QDs with small
aspect ratio the ground state is essentially a heavy hole (HH) whose spin purity
is even higher than that of InGaAs QDs of similar size. When the aspect ratio
increases, mixing with light-hole (LH) and split-off (SO) subbands becomes important
and, additionally, the ground state becomes sensitive to QD anisotropy, which further
enhances the mixing. We finally show that despite the large GaN hole effective mass,
an efficient magnetic modulation is feasible in QDs with aspect ratio ∼ 1, which can be
used to modify the ground state symmetry and hence the optical spectrum properties.
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1. Introduction

GaN/AlN QDs are nanostructures of current interest for optoelectronic applications

owing to their emission in the UV spectrum and their efficient optical activity up to

room temperature.[1] The former property follows from the wide band gap of GaN (3.4

eV), while the latter follows from the low dielectric constants, large effective masses and

band-offsets, which enable unprecedented strength of exciton confinement. The wide

band gap is also responsible for weak spin-orbit interactions,[2] which should translate

into long exciton spin relaxation lifetimes. This is of interest for spintronic applications.

GaN QDs can be grown in hexagonal (wurtzite) or cubic (zinc-blende)

crystallographic phases.[1, 3, 4] Wurtzite QDs are characterized by the presence of strong

built-in electric fields (of the order of MV/cm) due to spontaneous and piezoelectric

polarization.[1, 5] This constitutes a critical factor in determining the optical response

of the QDs[6, 5, 7], as well as the exciton spin lifetime, which turns out to be rather

short –of the order of 200 ps at room temperature–.[8] Built-in electric fields are however

missing in GaN/AlN QDs with zinc-blende structure.[6] Lagarde et al. showed that,

as a consequence, the optical orientation in cubic structures is robust even at room

temperature, with exciton spin lifetimes exceeding 10 ns.[9]

These results hold promise for both optoelectronic and spintronic applications of

cubic GaN/AlN QDs, and have triggered an increasing number of works investigating

their properties.[2, 10, 11, 12, 13] An important aspect to understand such properties is

the valence band mixing, which is known to underlie the optical polarization[13, 14] and

the exciton spin dynamics.[13, 15, 16] The valence band structure of GaN is complicated

because the spin-orbit splitting is only 17 meV.[17] As a consequence, light-hole (LH)

and split-off (SO) subbands may couple strongly and come close to the heavy-hole

(HH) subband in the Brillouin zone center, as noted in GaN/AlN superlattices.[18] The

situation could however be different in QDs because HH, LH and SO have different

effective masses and hence feel quantum confinement differently.[13] Indeed, the long

spin lifetimes observed by Lagarde et al. suggest a ground state with weak valence band

mixing. Understanding the relationship between QD confinement and valence band

mixing is then desirable.

In this work we investigate how the size and shape of cubic GaN/AlN QDs influences

the valence band admixture of the hole ground state. The QDs are assumed to be grown

along the [001] axis.[3, 4] Because holes have strongly anisotropic masses, we find that

flat QDs –where vertical confinement dominates over lateral one– favor HH character

and high spin purity. As a matter of fact, the spin purity is higher than that of more

conventional materials as InGaAs, which supports the suitability of these structures

for optical spin storage. By contrast, high QDs with strong lateral confinement imply

dominant LH character. When vertical and lateral confinements are comparable HH

and LH states are close in energy. Then, the admixture becomes significant and very

sensitive to in-plane anisotropy, as noted in recent experiments. In this case, we show

that the different Zeeman splitting of states with dominant HH and LH components can
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be used to induce ground state transitions. This enables efficient magnetic manipulation

of the optical spectrum in spite of the large effective mass of GaN.

2. Theory

An accurate description of holes in GaN/AlN QDs can be obtained using 6-band

k·p Hamiltonians including HH, LH and SO subbands.[19] This requires spanning the

Hamiltonian on the basis of periodic Bloch functions |J, Jz〉:
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The |3/2,±3/2〉 components correspond to HH, the |3/2,±1/2〉 to LH and the

|1/2,±1/2〉 to SO. One can see from the explicit |J, Jz〉 functions above that HH

components have pure spin, while LH and SO components contain spin admixture.

Since the Luttinger parameters of GaN and AlN are quite different, it is convenient

to employ position-dependent effective mass parameters. Then, instead of the classical

Luttinger Hamiltonian[20] one must use the Burt-Foreman one.[21, 22] A detailed

description of this Hamiltonian can be found in Ref. [23], where the due expression

in cartesian coordinates is given.[24] For circular QDs it is however convenient to use

cylindrical coordinates instead. We then convert the coordinate system from cartesian

to cylindrical. Additionally, we include a magnetic field along [001] by following the

prescription of Ref. [25] i.e., by introducing the magnetic terms in the k·p Hamiltonian

prior to applying the envelope function approximation. Note that this is contrary to

the traditional Luttinger formulation for bulk semiconductors and usual formulations

for nanostructures which implement the magnetic field after the envelope function

approximation.[26] For multi-band studies of nanostructures, our formulation provides

a more reliable description of the magnetic field.[27, 28]

The resulting Hamiltonian is one of the important results of this work. It is a

6-by-6 matrix, H6, whose elements are given in the Appendix. The QD is modeled

as a quantum disk of radius R and height H. Since the disk has axial symmetry, the

angular coordinate is integrated analytically. Then, within the axial approximation of
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the k·p Hamiltonian,[29] the states can be labeled by their total angular momentum

Fz = mz + Jz, which is the sum of the envelope angular momentum mz and the Bloch

angular momentum Jz. The eigenfunctions of H6 are then six-component spinorial

objects of the form:
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(1)

where n = 1, 2, 3 . . . is the main quantum number and f (i)
mz

(ρ, z) is the envelope function

of the i-th component. For calculations in this work we use GaN and AlN material

parameters.[17] The confining potential is zero inside the QD and V0 outside, where

V0 = 0.5 eV is the valence band-offset between GaN and AlN.[30] For InGaAs/GaAs

QDs, which we also study for comparison, we take In0.53Ga0.47As and GaAs parame-

ters, with V0 = 0.4 eV.[17] For simplicity, strain is disregarded. This leads to slightly

overestimated subband mixing, but the trends we report should not be affected. The

Hamiltonian is integrated with a finite differences scheme.

3. Results and discussion

In this section we investigate the composition of the hole ground state as a function of

the QD geometry and external fields. The composition is given in terms of the weight of

each component within the spinor (1). For example, the weight of the |hh+〉 component

is:

chh+
=

〈f (1)|f (1)〉
∑

i〈f (i)|f (i)〉
. (2)

3.1. Effect of the aspect ratio

Our starting point is a GaN QD with typical dimensions, radius R = 6 nm and height

H = 1.5 nm.[3, 9] The ground state has Fz = 3/2 symmetry, with a largely dominant

|hh+〉 component.[31] Yet, the minor components are important in determining the

optical polarization and the hole spin dynamics.[13] Thus, in Fig. 1(a) we analyze how

the minor components vary with the QD radius (solid lines). For comparison, we also

show the minor components in the better-known case of InGaAs/GaAs QDs (dashed

lines), which is taken as a reference. One can see that in both GaN and InGaAs QDs

the weight of the minor components decreases with R.

This result can be understood from the anisotropic effective masses of holes, which

are summarized in Table 1. In the QDs of Fig. 1(a), the vertical confinement is
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Figure 1. (Color online). Minor components of the hole ground state in GaN/AlN
QDs (solid lines) and InGaAs/GaAs QDs (dashed lines). (a) Variable radius and fixed
height H = 1.5 nm. (b) Variable height and fixed radius R = 6 nm.

much stronger than the lateral one. If we disregard lateral confinement completely

and pay attention to the effective masses along z ([001] axis) only, we can see that

mz
hh > mz

lh ∼ mso. Thus, the kinetic energy of LH and SO states will be large and

coupling with HH weak. The smaller the aspect ratio (H/2R), the closer we are to this

limit.

In Fig. 1(b) we plot the variation of the minor components with the QD height. Here

the behavior is the opposite. As H increases the vertical confinement becomes weaker.

Then, the lateral confinement becomes more relevant and the ground state gains LH

character because m⊥
lh > m⊥

hh. As a result, the |lh+ > component weight may now

exceed 10% for large H. As a matter of fact, when H is large enough the ground state

symmetry changes from Fz = ±3/2 (dominant HH component) to Fz = ±1/2 (dominant

LH component). This translates into a sharp enhancement of the LH character, which

can be used to emit strongly linearly polarized light.[32, 33, 34] For InGaAs QDs the

transition occurs at H = 7 nm (aspect ratio ∼ 0.6), while for GaN QDs it occurs at

H = 9.7 nm (aspect ratio ∼ 0.8). For clarity of presentation, in Fig. 1 we have truncated

the lines at the position of the transitions. State-of-the-art cubic GaN QDs are grown

by self-assembly techniques and have small aspect ratio. Yet, the results in Fig. 1(b)

stress the interest of potential developments in the synthesis of elongated QDs.

Fig. 1 reveals that the valence band mixing of the ground state in GaN QDs is

weaker than that in InGaAs QDs with equal size. This implies high spin purity, which is

consistent with the long spin lifetimes observed by Lagarde et al.[9] The result is however

surprising because the effective masses in GaN are much heavier than in InGaAs, so that
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Table 1. Effective masses of HH, LH and SO (times m0).

mz
hh mz

lh m⊥
hh m⊥

lh mso

GaN 0.85 0.24 0.29 0.52 0.37

InGaAs 0.38 0.05 0.07 0.15 0.09

the density of states is larger and one could expect stronger mixing. Also, the LH-SO

coupling could in principle bring these subbands close to the HH one, as in higher-

dimensional structures.[18] The underlying reason for the high purity of the ground

state is two-fold. First, the inter-subband coupling terms are weaker than those of

InGaAs. For example, many coupling terms are proportional to γ̃ (see H6 terms in

Appendix). For GaN γ̃ = 0.925, which is about five times smaller than that of InGaAs,

γ̃ = 4.51. Second, according to Eq. 1, the spinor of the Fz = 3/2 ground state reads:
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. (3)

Note that only the dominant |hh+〉 component has envelope angular momentummz = 0.

Other components have finite mz and are then pushed high in energy by the lateral

confinement. We stress that this makes valence band mixing in GaN QDs much weaker

than in quantum wells.[18]

3.2. Magnetic field modulation

The large effective mass of GaN hinders the use of magnetic fields to manipulate the

electronic structure of typical QDs (aspect ratio ∼ 1/8). To circumvent this problem,

consider a GaN QD with aspect ratio close to 1. In this case the kinetic energy of HH and

LH is similar. As a consequence, spinors with dominant HH and LH character are close

in energy and moderate Zeeman splittings suffice to modify the electronic structure.

This opens the possibility of magnetic modulation in GaN QDs.

To illustrate this point, in Fig. 2 we show the energy structure of a QD with R = 6

nm and H = 10 nm. At zero magnetic field, the ground state is |1/2, 1〉 and the

first excited one is |3/2, 1〉. The dominant components of these spinors are |lh+〉 and

|hh+〉, respectively (i.e., the components with mz = 0). The corresponding linear-in-B

coefficients are (γ1 + γ2)/2 for |hh+〉 and (γ1 − γ2)/6 for |lh+〉 –see H6 in Appendix–.

Thus, the orbital Zeeman splitting of |3/2, 1〉 is larger than that of |1/2, 1〉. As a result,

with increasing B the ground state changes from Fz = 1/2 to Fz = 3/2 (see arrow in

Fig 2). Because |3/2〉 and |1/2〉 yield different optical polarizations, this can be used to

modify the optical response of QDs at will.



Valence band mixing of cubic GaN/AlN quantum dots 7

Fz=+3/2

Fz=−3/2

Fz=−1/2

Fz=+1/2

−16

−15

−14

−13

 0  2  4  6  8  10

B (T)
En

er
gy

 (m
eV

)

Figure 2. (Color online). Magnetic field splitting of the lowest hole levels in a
GaN/AlN QD with aspect ratio ∼ 1. The arrow points at the ground state transition
at B = 0.6 T. Zero energy is the top of the valence band.

3.3. Effect of QD anisotropy

The presence of anisotropy in QDs is often considered to be a source of HH-LH coupling,

with due consequences on the optical polarization[36, 37, 38] and hole spin mixing.[39]

To see how this affects GaN QDs, next we study how the ground state composition is

influenced by an elongation of the QD.

We consider three reference geometries: a QD with typical dimensions, R = 6 nm

and H = 1.5 nm (QD1); a QD with large aspect ratio –similar to that of InAs QDs–,

R = 15 nm and H = 1.5 nm (QD2); a QD with aspect ratio ∼ 1, R = 6 nm and H = 10

nm (QD3). We start from circular QDs and let the eccentricity ε increase while keeping

the basis area constant. The semi-major (semi-minor) axis Ra (Rb) of the elliptical QD

is then:

Ra = R/(1− ε2)1/4, (4)

Rb = R2/Ra. (5)

Note from the above expressions that for small QD radius R, large eccentricities are

required to provide significant anisotropy Ra/Rb. The hole states are calculated with a

variational procedure, projecting the 3D anisotropic potential on a basis of circular QD

eigenstates, as described in Ref. [39] For simplicity, in this section GaN effective mass

in used all over the structure.

Figure 3 shows the composition of the ground state in each QD. In QD1 the

dominant component is by far |hh+〉, with the eccentricity having little effect up to

ε ∼ 0.6. At this point the semi-minor axis starts imposing a strong lateral confinement

and the valence band mixing rapidly increases. For ε ∼ 0.8 (Rb = 4.6 nm) the weight of

|hh+〉 has already decreased from 97% to 86%. Noteworthily, the largest of the minor

components is not a LH but a SO instead –LHs are unfavored by the strong vertical

confinement–. In QD2 the dot radius is much larger. As a result, lateral confinement is

weak even for strong eccentricities and the ground state composition is barely affected
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by the anisotropy. In QD3 the vertical confinement is weak, so the ground state is

|Fz = 1/2, n = 1〉 with dominant |lh+〉 component. In this case, even small anisotropies

induce sever HH-LH mixing.
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Figure 3. (Color online). Components of the hole ground state as a function of the
eccentricity in a typical QD (QD1), a QD with small (QD2) and large (QD3) aspect
ratio. The upper axis indicates the length of the semi-minor axis.

Comparing QD1, QD2 and QD3 we conclude that the influence of elongations on

the valence band mixing depends on the aspect ratio. When the aspect ratio is small

(QD2) the influence is negligible, when it is large (QD3) the influence becomes dramatic.

This result is consistent with recent experiments in GaAs QDs, where severe HH-LH

mixing was ascribed to dot elongations.[38] Such QDs turn out to have comparable

lateral and vertical dimensions.[40] Typical cubic GaN/AlN QDs (QD1) have aspect

ratio ∼ 1/8. Owing to the dense energy spectrum this is enough to be sensitive to

moderate anisotropies.
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4. Conclusions

We have derived a 6-band Burt-Foreman Hamiltonian in cylindrical coordinates for zinc-

blende nanostructures grown along the [001] axis. The Hamiltonian properly includes

position-dependent Luttinger parameters and axial magnetic fields.

Using this Hamiltonian we have shown that HH mixing with LH and SO subbands

in typical GaN/AlN QDs is weak provided the dot has good circular symmetry. Indeed,

the mixing is weaker than that in GaAs/AlAs quantum wells or InAs/GaAs QDs of

similar size. This makes the system suited for optical manipulation and storage of spins.

Elongations of the QD do however introduce significant HH-SO and HH-LH mixing. The

band mixing and the sensitivity to QD anisotropy can be enhanced (reduced) by growing

QDs with small (large) aspect ratio.

We have also shown that in GaN QDs with large aspect ratio the small energy

splitting between states with dominant HH and LH components, along with their

different Zeeman splittings, can be used to switch the ground state symmetry with

external magnetic fields. This is in spite of the large effective masses of GaN, and allows

to modify the optical emission characteristics (energy, polarization, intensity).
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Appendix A. 6-band k·p Hamiltonian

In this appendix we provide the elements of the Burt-Foreman 6-band Hamiltonian in

cylindrical coordinates. An external magnetic field B along the growth axis is included

following Ref. [25].

To describe the uniform axial magnetic field, a potencial vector in the symmetric

gauge A = [−y, x, 0]B/2 is considered. The presence of this potential vector turns the

in-plane part of the kinetic energy operator from p⊥
1

2m⊥
p⊥ into (p⊥−qA⊥)

1
2m⊥

(p⊥−qA⊥),

where the charge q = 1 a.u. for holes. In the presence of axial symmetry m⊥ = m⊥(ρ, z)

and we have,

H(B) = H0 −
A⊥

m⊥
p⊥ +

A2
⊥

2m⊥
= H0 +

B

2m⊥
Lz +

B2ρ2

8m⊥
(A.1)

where H0 is the Hamiltonian in the absence of magnetic field. Now, we follow

the procedure in Refs. [25, 28] to obtain the magnetic field contribution to the

different matrix elements of the Burt-Foreman Hamiltonian. For exemple, the magnetic

contribution to the (1, 1) matrix element is 1
m⊥

[

Fz−1/2
2 B + B2 ρ2

8

]

, withm−1
⊥ = −(γ1+γ2)

being the mass factor corresponding to the |32 ,
3
2〉 heavy hole state.



Valence band mixing of cubic GaN/AlN quantum dots 10

As a result, the position-dependent 6-band Hamiltonian, including and axial

uniform magnetic field, reads in cylindrical coordinates as follows:

H6 =
1

2
M+ V (ρ, z) I, (A.2)

where atomic units are used (h̄ = q = m0 = 1), with m0 as the free electron mass.

V (ρ, z) is the confining potential, I is the identity matrix and M a rank-6 matrix with

the following elements:

M[1, 1] =
∂
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∂

∂ρ
+
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ρ

∂

∂ρ
+

∂

∂z
(γ1 − 2γ2)

∂

∂z
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(Fz − 3
2
)2

ρ2
(γ1 + γ2) +

(Fz − 3
2
)

2ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

− 2(γ1 + γ2)[
(Fz − 1

2
)B

2
+

B2ρ2

8
],

M[1, 2] =
1
√
3
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∂z
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2
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∂ρ
+

(Fz − 3
2
)(Fz + 1

2
)

ρ2
γ̃},

M[1, 4] = 0,

M[1, 5] = −
1
√
6
{
∂

∂ρ
C1

∂

∂z
−

∂

∂z
C2

∂

∂ρ
+

(Fz − 1
2
)

ρ

[

C1

∂

∂z
−

∂

∂z
C2

]

},

M[1, 6] = −
√
6{

∂

∂ρ
γ̃

∂

∂ρ
+

(Fz + 1
2
)

ρ

∂

∂ρ
γ̃ +

(Fz − 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz − 3
2
)(Fz + 1

2
)

ρ2
γ̃},

M[2, 1] =
1
√
3
{
∂

∂z
C1

∂

∂ρ
−

∂

∂ρ
C2

∂

∂z
+

(Fz − 3
2
)

ρ

[

C2

∂

∂z
−

∂

∂z
C1

]

},

M[2, 2] =
∂

∂ρ
(γ1 − γ2)

∂

∂ρ
+

(γ1 − γ2)

ρ

∂
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∂ρ

]

− 2(γ1 − γ2)[
(Fz − 1

6
)B

2
+

B2ρ2

8
],

M[2, 3] =
1

3
{
∂

∂ρ
(C1 + C2)

∂

∂z
−

∂

∂z
(C1 + C2)

∂

∂ρ
+

(Fz + 1
2
)

ρ

[

(C1 + C2)
∂

∂z
−

∂

∂z
(C1 + C2)

]

},

M[2, 4] =
√
3{

∂

∂ρ
γ̃

∂

∂ρ
+

(Fz + 3
2
)

ρ

∂

∂ρ
γ̃ +

(Fz + 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz + 3
2
)(Fz − 1

2
)

ρ2
γ̃},

M[2, 5] =
√
2{

∂

∂ρ
γ2

∂

∂ρ
− 2

∂

∂z
γ2

∂

∂z
+

γ2
ρ

∂

∂ρ
−

(Fz − 1
2
)2

ρ2
γ2 +

(Fz − 1
2
)

6ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

} − 2γ2
B

3
,

M[2, 6] = −
1

3
√
2
{
∂

∂ρ
(C1 − 2C2)

∂

∂z
+

∂

∂z
(2C1 − C2)

∂

∂ρ
+

(Fz + 1
2
)

ρ

[

(C1 − 2C2)
∂

∂z
+

∂

∂z
(2C1 − C2)

]

},

M[3, 1] = −
√
3{

∂

∂ρ
γ̃

∂

∂ρ
−

(Fz − 3
2
)

ρ

∂

∂ρ
γ̃ −

(Fz − 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz − 3
2
)(Fz + 1

2
)

ρ2
γ̃},

M[3, 2] =
1

3
{
∂

∂z
(C1 + C2)

∂

∂ρ
−

∂

∂ρ
(C1 + C2)

∂

∂z
+

(Fz − 1
2
)

ρ

[

(C1 + C2)
∂

∂z
−

∂

∂z
(C1 + C2)

]

},

M[3, 3] =
∂

∂ρ
(γ1 − γ2)

∂

∂ρ
+

(γ1 − γ2)

ρ

∂

∂ρ
+

∂

∂z
(γ1 + 2γ2)

∂

∂z
−

(Fz + 1
2
)2

ρ2
(γ1 − γ2)−

(Fz + 1
2
)

6ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

− 2(γ1 − γ2)[
(Fz + 1

6
)B

2
+

B2ρ2

8
],

M[3, 4] =
1
√
3
{
∂

∂z
C1

∂

∂ρ
−

∂

∂ρ
C2

∂

∂z
−

(Fz + 3
2
)

ρ

[

C2

∂

∂z
−

∂

∂z
C1

]

},

M[3, 5] =
1

3
√
2
{
∂

∂ρ
(C1 − 2C2)

∂

∂z
+

∂

∂z
(2C1 − C2)

∂

∂ρ
−

(Fz − 1
2
)

ρ

[

(C1 − 2C2)
∂

∂z
+

∂

∂z
(2C1 − C2)

]

},
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M[3, 6] =
√
2{

∂

∂ρ
γ2

∂

∂ρ
− 2

∂

∂z
γ2

∂

∂z
+

γ2
ρ

∂

∂ρ
−

(Fz + 1
2
)2

ρ2
γ2 −

(Fz + 1
2
)

6ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

}+ 2γ2
B

3
,

M[4, 1] = 0,

M[4, 2] =
√
3{

∂

∂ρ
γ̃

∂

∂ρ
−

(Fz − 1
2
)

ρ

∂

∂ρ
γ̃ −

(Fz + 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz + 3
2
)(Fz − 1

2
)

ρ2
γ̃},

M[4, 3] =
1
√
3
{
∂

∂ρ
C1

∂

∂z
−

∂

∂z
C2

∂

∂ρ
−

(Fz + 1
2
)

ρ

[

C1

∂

∂z
−

∂

∂z
C2

]

},

M[4, 4] =
∂

∂ρ
(γ1 + γ2)

∂

∂ρ
+

(γ1 + γ2)

ρ

∂

∂ρ
+

∂

∂z
(γ1 − 2γ2)

∂

∂z
−

(Fz + 3
2
)2

ρ2
(γ1 + γ2)−

(Fz + 3
2
)

2ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

− 2(γ1 + γ2)[
(Fz + 1

2
)B

2
+

B2ρ2

8
],

M[4, 5] =
√
6{

∂

∂ρ
γ̃

∂

∂ρ
−

(Fz − 1
2
)

ρ

∂

∂ρ
γ̃ −

(Fz + 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz + 3
2
)(Fz − 1

2
)

ρ2
γ̃},

M[4, 6] = −
1
√
6
{
∂

∂ρ
C1

∂

∂z
−

∂

∂z
C2

∂

∂ρ
−

(Fz + 1
2
)

ρ

[

C1

∂

∂z
−

∂

∂z
C2

]

},

M[5, 1] = −
1
√
6
{
∂

∂z
C1

∂

∂ρ
−

∂

∂ρ
C2

∂

∂z
+

(Fz − 3
2
)

ρ

[

C2

∂

∂z
−

∂

∂z
C1

]

},

M[5, 2] =
√
2{

∂

∂ρ
γ2

∂

∂ρ
− 2

∂

∂z
γ2

∂

∂z
+

γ2
ρ

∂

∂ρ
−

(Fz − 1
2
)2

ρ2
γ2 +

(Fz − 1
2
)

6ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

} − 2γ2
B

3
,

M[5, 3] =
1

3
√
2
{
∂

∂ρ
(2C1 − C2)

∂

∂z
+

∂

∂z
(C1 − 2C2)

∂

∂ρ
+

(Fz + 1
2
)

ρ

[

(2C1 − C2)
∂

∂z
+

∂

∂z
(C1 − 2C2)

]

},

M[5, 4] =
√
6{

∂

∂ρ
γ̃

∂

∂ρ
+

(Fz + 3
2
)

ρ

∂

∂ρ
γ̃ +

(Fz + 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz + 3
2
)(Fz − 1

2
)

ρ2
γ̃},

M[5, 5] =
∂

∂ρ
γ1

∂

∂ρ
+

∂

∂z
γ1

∂

∂z
+

γ1
ρ

∂

∂ρ
−

(Fz − 1
2
)2

ρ2
γ1 +

(Fz − 1
2
)

3ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

− 2γ1[
(Fz + 1

6
)B

2
+

B2ρ2

8
]− 2∆o(ρ, z),

M[5, 6] = −
1

3
{
∂

∂ρ
(C1 + C2)

∂

∂z
−

∂

∂z
(C1 + C2)

∂

∂ρ
+

(Fz + 1
2
)

ρ

[

(C1 + C2)
∂

∂z
−

∂

∂z
(C1 + C2)

]

},

M[6, 1] = −
√
6{

∂

∂ρ
γ̃

∂

∂ρ
−

(Fz − 3
2
)

ρ

∂

∂ρ
γ̃ −

(Fz − 1
2
)

ρ
γ̃

∂

∂ρ
+

(Fz − 3
2
)(Fz + 1

2
)

ρ2
γ̃},

M[6, 2] = −
1

3
√
2
{
∂

∂ρ
(2C1 − C2)

∂

∂z
+

∂

∂z
(C1 − 2C2)

∂

∂ρ
−

(Fz − 1
2
)

ρ

[

(2C1 − C2)
∂

∂z
+

∂

∂z
(C1 − 2C2)

]

},

M[6, 3] =
√
2{

∂

∂ρ
γ2

∂

∂ρ
− 2

∂

∂z
γ2

∂

∂z
+

γ2
ρ

∂

∂ρ
−

(Fz + 1
2
)2

ρ2
γ2 −

(Fz + 1
2
)

6ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

}+ 2γ2
B

3
,

M[6, 4] = −
1
√
6
{
∂

∂z
C1

∂

∂ρ
−

∂

∂ρ
C2

∂

∂z
−

(Fz + 3
2
)

ρ

[

C2

∂

∂z
−

∂

∂z
C1

]

},

M[6, 5] = −
1

3
{
∂

∂z
(C1 + C2)

∂

∂ρ
−

∂

∂ρ
(C1 + C2)

∂

∂z
+

(Fz − 1
2
)

ρ

[

(C1 + C2)
∂

∂z
−

∂

∂z
(C1 + C2)

]

},

M[6, 6] =
∂

∂ρ
γ1

∂

∂ρ
+

∂

∂z
γ1

∂

∂z
+

γ1
ρ

∂

∂ρ
−

(Fz + 1
2
)2

ρ2
γ1 −

(Fz + 1
2
)

3ρ

[

∂

∂ρ
(C1 + C2)− (C1 + C2)

∂

∂ρ

]

− 2γ1[
(Fz − 1

6
)B

2
+

B2ρ2

8
]− 2∆o(ρ, z).
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Here γi are the position-dependent Luttinger parameters, γ̃ = (γ2 + γ3)/2, C1 =

1+γ1−2γ2−6γ3 and C2 = 1+γ1−2γ2, Fz is the total angular momentum z-projection

and ∆o(ρ, z) the spin-orbit splitting.
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