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Abstract

Synthetic terrain is a key element in many applications that can lessen the sense

of realism if it is not handled correctly. We propose a new technique for visual-

izing terrain surfaces by tessellating them on the GPU. The presented algorithm

introduces a new adaptive tessellation scheme for managing the level of detail of

the terrain mesh, avoiding the appearance of t-vertices that can produce visually

disturbing artifacts. Previous solutions exploited the Geometry Shader capabilities

to tessellate meshes from scratch. In contrast, we reuse the already calculated data

to minimise the operations performed in the shader units. These features allow us

to increase performance through smart refining and coarsening.
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1 Introduction1

In recent years the research area of procedural modeling has been the focus2

of a lot of effort. The latest works try to take advantage of the new graphics3

hardware technology, making it possible for the geometry to be generated4

at rendering time in the graphics card itself. Thus, instead of specifying the5

details of a 3D object, we provide some parameters for a procedure that will6

create the object.7

In the field of computer graphics, tessellation techniques are often used to8

divide a surface into a set of polygons. Thus, we can tessellate a polygon and9

convert it into a set of triangles or we can tessellate a curved surface. These ap-10

proaches are typically used to amplify coarse geometry. Programmable graph-11

ics hardware has enabled many surface tessellation approaches to be migrated12

to the GPU, including isosurface extraction (Buatois et al., 2006), subdivi-13

son surfaces (Shiue et al., 2005), NURBS patches (Guthe et al., 2005), and14

procedural detail (Bokeloh and Wand, 2006; Boubekeur and Schlick, 2005).15

In this paper we analyse the possibilities offered by GPU-based tessellation16

techniques for terrain visualisation.17

For many decades terrain simulation has been the subject of research, and18

there are many solutions in the literature to its realistic and interactive ren-19

dering. Most of these solutions simulate terrain as an unbounded surface that is20

represented in the synthetic environment as a heightmap, which is a regularly-21

spaced two-dimensional grid of height coordinates. These grids can be later22

processed by a modeling software or a rendering engine to obtain the 3D sur-23
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face of the desired terrain.24

Some authors have criticised the use of heightfields, as these data structures25

store only one height value for any given (x,y) pair. In this sense, in specific26

cases like caves or complex terrain formations it may be possible to have more27

than one height value for each position. In our case we will not consider these28

complex formations and, thus, the use of a squared heightmap will still be29

adequate.30

We introduce a new adaptive tessellation scheme for terrain that works com-31

pletely on the GPU. The main feature of the framework that we are presenting32

is the possibility of refining or coarsening the mesh while maintaining coher-33

ence. By coherence we refer to the reuse of information between changes in34

the level of detail. In this way, the latest approximation extracted is used in35

the next step, optimising the tessellation process and improving performance.36

The rest of the paper is structured as follows. Section 2 presents the state of37

the art in terrain simulation. Section 3 thoroughly describes our tessellation38

technique. Section 4 offers some results on the technique presented and, lastly,39

Section 5 presents some conclusions on the techniques developed and outlines40

future work.41

2 Related work42

Digital Terrain Models (DTMs) are usually represented and managed by43

means of regular or irregular grids. The reader is referred to recent surveys44

for a more in-depth review of these methods (Pajarola and Gobbetti, 2007;45

Rebollo et al., 2004).46
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2.1 Regular Grids47

The most common regular structures are quadtrees and binary trees (bintrees).48

These structures with regular connectivity are suitable for terrain, as the input49

data usually come as a grid of values. In this sense, regular approaches have50

produced some of the most efficient systems to date (Pajarola and Gobbetti,51

2007).52

Quadtrees are found in the literature in many papers with CPU-based solu-53

tions (Lindstrom et al., 1996; Pajarola, 1998) as well as GPU-based approxima-54

tions (Schmiade, 2008). This latter approach proposed a tessellation algorithm55

on the GPU, although the pattern selection process was very complex.56

The ROAM method (Real-time Optimally Adapting Meshes) (Duchaineau57

et al., 1997) is a widely known method based on the use of bintrees. They58

use two priority queues to manage split and merge operations, obtaining high59

accuracy and performance. As an attempt to improve this solution, in (Apu60

and Gavrilova, 2004) the authors eliminated the priority queue for merges to61

exploit frame-to-frame coherence.62

Some authors proposed using bintrees where each node contains, instead of a63

single triangle, a patch of triangles (Levenberg, 2002; Pomeranz, 2000). Algo-64

rithms like (Cignoni et al., 2003; Schneider and Westermann, 2006) batched65

the triangular patches to the graphics hardware. The Batched Dynamic Adap-66

tive Mesh (BDAM) proposed in (Cignoni et al., 2003) used triangle strips to67

increase performance, although it was based on complex data structures and68

costly processes which still produced popping artifacts. From a different per-69

spective, (Larsen and Christensen, 2003) used patches of quads to manage70
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terrain rendering on the GPU. Later, (Schneider and Westermann, 2006) re-71

duced bandwidth requirements by simplifying the mesh and using progressive72

transmission of geometry. Recently, in (Bosch et al., 2009) the authors pro-73

posed the use of precalculated triangle patches to develop a GPU-intensive74

solution.75

The projected grid concept offered an alternative way to render displaced sur-76

faces with high efficiency (Johanson, 2004). The idea was to create a grid with77

vertices that were evenly-spaced in post-perspective camera space. This repre-78

sentation provided spatial scalability and a fully GPU-based implementation79

was described. In (Schneider et al., 2006), Schneider et al. used the projective80

grid method to render infinite terrain in high detail. They generated the ter-81

rain in real time on the GPU by means of fractals. The work in (Livny et al.,82

2008) proposed using ray tracing to guide the sampling of the terrain, being83

the technique able to produce both regular and irregular meshes.84

As an improvement over binary trees, (Losasso and Hoppe, 2004) introduced85

geometry clipmaps, caching the terrain in a set of nested regular grids. These86

grids were stored as vertex buffers, and mipmapping was applied to prevent87

aliasing. As vertex buffers cannot be modified on the GPU, this approach was88

later improved by using vertex textures to avoid having to use the CPU to89

modify the grids (Asirvatham and Hoppe, 2005). This work was also extended90

to handle spherical terrains (Clasen and Hege, 2006).91

Lastly, it is worth mentioning that bintree hierarchies are also useful for decom-92

pressing terrain surfaces on the GPU. In this sense, (Lindstrom and Cohen,93

2010) presented a fast, lossless compression codec for terrains on the GPU,94

and demonstrated its use for interactive visualisation.95
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2.2 Irregular Grids96

Irregular grids are commonly known as TINs (Triangulated Irregular Net-97

works) and represent surfaces through a polyhedron with triangular faces.98

These solutions are less constrained triangulations of the terrain and, in gen-99

eral, need fewer triangles although their algorithms and data structures tend100

to be more complex.101

(Hoppe, 1998) proposed specialising his View-dependent Progressive Mesh102

(VDPM) framework for arbitrary meshes that represent terrain. With a more103

intense GPU exploitation, (Dachsbacher and Stamminger, 2004) proposed a104

costly procedural solution that needs three rendering passes to obtain the105

geometry.106

Delaunay triangulation is one of the main techniques used to create the ter-107

rain mesh. In computational geometry, a Delaunay triangulation for a set of108

points is a triangulation where no point is inside the circumcircle (circle which109

passes through all the vertices of the triangle) of any generated triangle (De-110

launay, 1934). This triangulation has been widely used in terrain solutions111

(De Berg et al., 2008; Rabinovich and Gotsman, 1997). The main problem112

with Delaunay triangulation is that it relies on smoothing morphing between113

two triangulations generated in two successive frames, but the triangulations114

may be very different. As an improvement, (Cohen-Or and Levanoni, 1996)115

proposed a solution that involved blending between two levels of Delaunay116

triangulation without adding more triangles. More recently, (Liu et al., 2010)117

proposed a new technique where points from a DEM are initially given an118

importance value in order to guide the adaptive triangulation in real time.119

Their proposal allowed for smooth morphing and tried to eliminate very small120
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triangles which could produce visual disturbances.121

As a conclusion, we can note that techniques based on irregular grids tend to122

be more complex and less suitable for GPU computations.123

3 Our GPU-based Tessellation Scheme124

In this paper we propose a new adaptive tessellation algorithm that works com-125

pletely on the GPU. Moreover, this algorithm is able to offer view-dependent126

approximations where more detail is added in areas of interest. Our algorithm127

will be based on bintrees, creating the hierarchy on the GPU using some spe-128

cific equations. As mentioned above, there have been different proposals with129

similar aims, although our scheme is easier to implement while still robust and130

efficient.131

A successful tessellation algorithm is based on the selection of the most suit-132

able tessellation patterns to amplify the triangles. These patterns affect the133

algorithm chosen to refine and coarsen the geometry. As our aim is to process134

the mesh in a Geometry Shader, each triangle is to be processed separately135

and in parallel. Thus, it will be necessary to develop a technique to alter the136

geometry of the different triangles without any communication between them.137

Moreover, the algorithms must assure that no cracks or holes appear on the138

surface mesh.139

In the remainder of this section we will address the selection of the patterns140

and also the algorithms to manage the terrain surface.141
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3.1 Tessellation patterns142

It is possible to find in the literature different proposals of tessellation patterns.143

Among them, we have selected the seven patterns presented in (Schmiade,144

2008). Figure 1 presents, on the left side, an initial rectangular triangle where145

its hypotenuse and catheti (or legs) are labeled as H, C1 and C2 respectively.146

Next, the seven tessellation patterns are presented, where the edges of the147

original triangle that need refinement are depicted in red.148

These patterns assure that no t-vertices are produced. A t-vertex appears after149

a tessellation step when two edge junctions make a t-shape (McConnell, 2006).150

To clarify the appearance of t-vertices, Figure 2 presents the initial geometry151

of a terrain composed of three triangles. According to some criterion, it is152

decided to refine the middle triangle and vertex v5 is introduced, outputting153

4 triangles. Then, if we decided to apply a heightmap to this geometry, we154

would find holes around vertex v5, as the triangle on top has no reference to155

this vertex. In the example offered, vertex v5 would be a t-vertex.156

The different patterns presented in Figure 1 offer a robust tessellation and157

avoid cracks and holes. We must note that our tessellation algorithm is based158

on the use of an edge-based criterion to decide which triangles to refine and159

which to coarsen. This is an improvement over triangle-based criterions, as160

they tend to introduce t-vertices. In this sense, each pattern shows the tessel-161

lation that would be necessary depending on the combination of edges that162

need refinement. We use the center point of each edge to perform the appro-163

priate calculations. For example, pattern 3 considers a situation in which the164

hypotenuse needed refinement and a new vertex has been added to create two165

new triangles.166
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In addition to the edge-based criterion, we also must select a metric to decide167

whether an edge should be refined or coarsened. Although in most cases the168

distance to the camera is the selected metric, it would be possible to apply169

more accurate heuristics that balance the perceived visual quality and the170

extraction time that the tessellation process needs.171

3.2 Tessellation algorithm172

At each iteration of the tessellation process, the algorithm checks each trian-173

gle to see whether it is necessary to refine or coarsen it. More precisely, the174

algorithm checks the center point of each edge according to the selected met-175

ric. The resulting combination of edges that need processing indicates which176

pattern should be applied.177

For the correct performance of our tessellation scheme, it is necessary for each178

triangle to store:179

• The spatial, texture and normal coordinates.180

• A number indicating the id of the triangle.181

• A number coding the tessellation patterns that have been applied (patternInfo).182

The need of storing the id and patternInfo values is due to the fact that we183

must know how a particular triangle was created in order to know how we184

should modify it when swapping to a lower level of detail. This information is185

crucial as it allows the algorithm to coarsen the geometry without having to186

return to the initial mesh. This is one of the main contributions of our algo-187

rithm, as coherence among extracted approximations considerably increases188

the rendering performance.189
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On the one hand, the id value will uniquely identify each of the generated190

triangles and will also allow us to calculate the id of its parent triangle. This191

id number is calculated following the formula:192

id = id ∗maxOutput + originalTris + childType (1)193

The maxOutput value is understood as the maximum number of triangles194

that can be output from a parent triangle using the available patterns. The195

patterns presented in Figure 1 involve outputting a maximum number of four196

new triangles and, as a consequence, in our case maxOutput is a value equal197

to 4. The originalTris constant refers to the number of initially existing tri-198

angles on the source mesh, which depends on the input mesh the application199

uses. Finally, childType is a value used to differentiate between the triangles200

output from a parent triangle. As the patterns output a maximum number of201

four new triangles, in our case the childType is a value ranging from 0 to 3.202

The childType value assures that each id is different, allowing us to distin-203

guish between the triangles that belong to the same parent. This feature is204

compulsory for the correct simplification of the mesh.205

On the other hand, the patternInfo number is used to store all the patterns206

that have been applied to refine a triangle. Equation 2 has been specifically207

prepared to code the different patterns applied to a triangle in one single value.208

In this equation, latestPattern refers to the type of the latest pattern, the209

one that we have used to create this triangle. The value numberOfPatterns210

refers to the number of available patterns that we can apply in our tessellation211

algorithm. In our case we use the seven patterns presented in Figure 1 and, as a212

consequence, numberOfPatterns should be equal to 7. It is worth mentioning213

that, initially, all the patternInfo values are equal to 0. This patternInfo214

10



value will be the same for all the triangles belonging to the same parent.215

This piece of information is important to know how a particular triangle was216

created and, consequently, how we should modify it when swapping to a lower217

level of detail.218

patternInfo = patternInfo ∗ numberOfPatterns + latestPattern (2)219

Refining algorithm220

When refining the mesh, the algorithm checks the center point of each edge221

to see whether they need refinement. Depending on the combination of edges222

that need more detail, the algorithm selects a tessellation pattern (see Figure223

1) and generates the adequate number of triangles. For each new triangle, the224

algorithm calculates its spatial coordinates, texture information and any other225

information needed for rendering. To clarify the process, Figure 3 presents an226

example of how the tessellation process works. We present the initial mesh227

composed of three triangles, initially labeled with ids 0, 1 and 2. The dotted228

line represents the plane that we will use to define which area of the mesh needs229

refinements, being the area on the left the one that requires more detail. Each230

of the initial triangles goes through the extraction process of the algorithm231

that we are presenting.232

In the specific case of triangle number 2, the algorithm detects that none of233

its edges needs refinement and, as a consequence, no change will be made.234

Nevertheless, the algorithm detects that triangle with id 0 needs refinement235

because the center point of some of its edges is on the left of the dotted line.236

Then, the algorithm chooses pattern 6 as it reflects the combination of edges237

to be refined. Using this pattern, the tessellation process algorithm generates238
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the three new triangles shown in the figure. It can be seen how the id values239

of the new triangles are calculated following the formula 1, assuring that no240

repeated id is given. The triangle with id 1 is similarly refined using pattern241

6.242

Following on with the refinement process, the next tessellation step shows that243

different patterns have been applied to obtain different types of tessellation.244

In the figure we depict how triangle 5 is refined with pattern 2 and triangle245

7 with pattern 7. It is important to mention that this figure also includes the246

patternInfo of the different triangles, which is calculated using Equation 2.247

Coarsening algorithm248

A different process should be applied when diminishing the detail of the mesh.249

The id and the patternInfo values of the triangles have been precisely given250

in order to simplify the coarsening process. Using the example given in the251

previous subsection, let us suppose that we want to reduce the detail and252

return to the state shown in the middle of Figure 3. In this case, each of253

the triangles located on the left of the dotted line would execute the same254

coarsening process.255

When tessellating a triangle, for example with the pattern that is used when256

the hypotenuse and both legs are refined (see pattern 7 in Figure 1), four257

triangles are output. Nevertheless, only one of these triangles will be needed258

when diminishing the detail. As we will see in the remaining of this Section,259

three of them will be discarded and the other one will be modified to recreate260

the geometry of the parent triangle.261
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When coarsening the mesh, the first step is to find out whether the triangle262

that we are processing can be discarded or if it is the triangle in charge of263

retrieving the geometry of the parent triangle. The childType used when cal-264

culating the id of each triangle is necessary for this particular differentiation.265

In those cases where this value is equal to 0, the algorithm assumes this trian-266

gle is in charge of recovering the geometry of the parent triangle; if the value267

is not equal to 0, the triangle is discarded. The childType can be retrieved by268

using Equation 3.269

childType = mod((id− originalTris),maxOutput) (3)270

id = (id− originalTris)/maxOutput (4)271

The second step entails knowing which pattern was applied to create the272

existing triangle. This is due to the fact that for each pattern we will perform273

different calculations for retrieving the three vertices of the parent triangle.274

In this situation, the patternInfo value helps us to know which pattern was275

applied, as the latest pattern can be obtained with the next equation:276

latestPattern = mod(patternInfo, numberOfPatterns) (5)277

Once we know which pattern was applied, we calculate the position of the278

vertices and we output the new geometry with the new id value obtained in279

Equation 4 and the new patternInfo value obtained with Equation 6. The way280

we calculate these values assures that we will be able to continue coarsening281

the mesh or refining it without any problem.282

patternInfo = patternInfo/numberOfPatterns (6)283

Following on with the example presented in Figure 3, let us suppose that we284
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are processing the triangle with id 34. If we calculate its childType we obtain a285

value greater than 0, indicating that it can be discarded. Nevertheless, triangle286

31 has a childType value equal to 0 and, thus, it is the one used to recover the287

parent triangle. The id of the parent triangle can be obtained with Equation 4.288

In this case, the latestPattern would indicate that pattern 7 was applied and289

we would calculate the spatial coordinates of the parent triangle accordingly.290

Once again we would like to remember that all these operations have been291

coded in the shaders, so that the algorithm knows which operations to perform292

depending on the type of pattern applied.293

Global algorithm294

Once we have described the main characteristics of our algorithm, we must295

consider how the refining and coarsening processes work together. The refine-296

ment process is executed at each frame while the criterion is met and until297

we reach a maximum tessellation level, which is defined by the application.298

Similarly, the coarsening process is performed at each frame until the original299

geometry is obtained.300

Nevertheless, in a real application the surface representing the terrain is refined301

and coarsened at the same time, as the tessellation conditions are modified302

while the user navigates through the scene. Our algorithm is capable of han-303

dling multiple levels of detail on the mesh, as the tessellation is applied to304

each edge of the triangles individually. In this sense, it is possible that in the305

triangle some edges need refinement and some need simplification. In these306

cases, and as it happened in the examples above, the algorithm would choose307

the most suitable pattern that fits this situation.308
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We must note that we will not store precomputed patterns on GPU memory309

as other solutions do (Boubekeur and Schlick, 2005). We just code in the310

Geometry Shader the seven cases that we follow (see Figure 1)so that the311

coordinates of the new vertices can be calculated from the coordinates of312

existing vertices when refining and coarsening the triangles.313

Finally, it is worth mentioning that the last step of our algorithm includes314

retrieving the height of the newly computed vertices from the heightmap,315

which is previously stored in the GPU. It can be seen as the use of a displace-316

ment map to alter the position of each vertex (Szirmay-Kalos and Umenhoffer,317

2008).318

In Figure 4 we present an overview of the management of the heightmaps.319

First, the whole heightmap is allocated into main memory. Before the ren-320

dering stage starts, the area to be initially processed is uploaded to graphics321

memory. When the area of interest changes, a new texture should be up-322

loaded to GPU memory. In order to avoid GPU stalls during these texture323

streamings, our approach uses asynchronous updates by means of Pixel Buffer324

Objects. A Pixel Buffer Object Elhassan (2005) is simply an array of bytes in325

GPU memory. However, this type of object can improve performance because326

it allows the graphics driver to streamline writing to video memory and to327

schedule asynchronous transfers. Thus, CPU does not need to wait for the328

texture transfer to be completed. In Figure 5, we present a graphical compar-329

ison between the conventional manner to load a texture from main memory330

to graphics memory and the alternative method by using a Pixel Buffer Ob-331

ject. The conventional method requires the CPU to perform all the transfer332

processes. On the contrary, with the PBO, the CPU still has to perform the333

transfer of data, but transferring data from the PBO to the texture object is334
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managed by the GPU. Therefore, OpenGL performs these transfer operations335

without the CPU intervention and asynchronous operations in memory can336

be scheduled while rendering.337

The texture upload could be triggered when the user approaches one of the338

limits of the terrain. When this situation happens, the systems starts stream-339

ing the new heightmap to the PBO, replacing those areas which are no longer340

used. At the same time,341

4 Results342

In this section we will study the performance of our tessellation method by343

analysing the visual quality obtained as well as the calculation time of the344

extracted approximation. Our scheme was programmed with GLSL and C++345

on a Windows Vista Operating System. The tests were carried out on a Pen-346

tium D 2.8 GHz. with 2 GB. RAM and an nVidia GeForce 8800 GT graphics347

card.348

4.1 Visual Results349

First, we offer some visual results of the tessellation algorithm that we have350

described. Figures 6 and 7 present a mesh in wireframe where different tessel-351

lations have been applied. These figures show how the tessellation process is352

capable of increasing the detail of an input mesh without introducing cracks353

or other artifacts.354

Figure 6 presents a tessellation case where an initial mesh (on top) is refined355
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according to the distance to the camera. In this Figure the height values are356

recovered from a heightmap stored as a texture on the GPU. We have also357

included an image of the texturing process that can also be applied in our pro-358

cess, as the algorithm can calculate the texture coordinates when tessellating359

the surface mesh.360

We can find another tessellation example in Figure 7 where five tessellation361

steps are presented. In this case, we have considered that a fictitious frustum362

has been located on the mesh to guide the tessellation process which considers363

the distance to the camera. It is important to mention that some areas of364

the mesh that are outside the frustum are also tessellated in order to avoid365

T-vertices, as we explained when describing our proposal. From a different366

perspective, in this case we have tested our method with a heightmap in geotiff367

format Sazid and Ramakrishnan (2003). Figure 4 shows the area that covers368

the map, which has a size greater than 1.5 GBytes and an error of around369

25 meters. This terrain is located in Spain and has been extracted from a370

public web service. The whole map was initially allocated in main memory. In371

case of requiring more space than that available in main memory, it would be372

compulsory to resort to out of core techniques Silva et al. (2002); Varadhan373

and Manocha (2002). On the GPU side, graphics memory has a limited size374

(512 Mbytes in the graphics card that we have used). Thus, we also made use375

of an OpenGL extension (PBO or Pixel Buffer Object Elhassan (2005)) that376

enabled us to stream the heightmap from the CPU to the GPU, as commented377

in Section 3.2.378
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4.2 Performance379

In order to evaluate the performance of our tessellation technique, we have380

conducted some tests where an initial mesh composed of 4 triangles is tes-381

sellated. The detail of the input mesh is first increased and later coarsened382

following a smooth trajectory of the camera.383

Figure 8 presents the time needed for tessellating and rendering the input384

mesh at different tessellation levels. In this case the tessellation depends on385

the distance to the camera. Table 1 presents the results obtained in this test,386

helping us to show how the calculations for tessellation suppose an average387

increase of 60%.388

For offering further tessellation experiments, Figure 9 presents the results of389

a similar test where all the geometry is tessellated at the same time, without390

any specific criterion. In this case, the obtained geometry will be composed of391

2n triangles, where n is the tessellation step. In this case, we can observe how392

the cost of the tessellation is exponential, offering very high temporal costs393

when outputting a large number of triangles. Again, the results are depicted394

in Table 2 to help us analyse the way this tessellation algorithm works. It395

is worth mentioning that, in our simulation, we will never include so many396

triangles as only those areas that need detail will be tessellated. Nevertheless,397

we considered it to be interesting in order to show how the temporal cost of398

the algorithm can be affected by the quantity of output triangles.399
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4.3 Coherence exploitation400

An important contribution of the proposed approach is the possibility of ex-401

ploiting coherence among the extracted tessellations. Table 3 presents the402

temporal results of a scenario similar to that presented in Figure 8, where403

the distance to the camera is used to guide the tessellation. These temporal404

costs include visualisation and tessellation of the input mesh. The column405

on the right offers the results without coherence maintenance, which nearly406

double the cost of our coherence-based algorithm. These results show that we407

can offer better performance as our tessellation scheme can exploit coherence408

among extracted tessellation, in contrast to previous solutions which had to409

start again from the input mesh.410

5 Conclusions411

In this article we have presented a new fully-GPU tessellation technique which412

offers view-dependent approximations. The scheme proposed avoided the ap-413

pearance of T-vertices and other artifacts that can produce holes in the surface414

of a terrain. Another important aspect of this tessellation algorithm was the415

coherence exploitation, as it is capable of reusing the latest approximations416

when refining and coarsening the mesh. In this sense, we minimise the oper-417

ations to perform in both cases, reducing the temporal cost involved in the418

tessellation process. This coherence maintenance is possible by storing some419

small pieces of information in each triangle, which is sufficient for altering the420

level of detail. It is important to underline that previous solutions were not ca-421

pable of managing coherence, and thus entailed costlier tessellation processes.422

In addition, we have also considered a simple yet efficient approach to manage423
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the heightmap information on the GPU.424

A triangle-based criterion.....425

For future work we would like to use larger terrains and consider out-of-core426

meshes, where all the geometry of the mesh does not fit within the memory on427

the GPU. From a different perspective, the appearance of Directx 11 involves428

further advances in computer graphics. Among the new stages of the rendering429

pipelines, we could highlight the tessellation unit, which will be able to produce430

semi-regular tessellations (Tariq, 2009) by itself. In this sense, for future work431

we would like to study the possibilities offered by the new tessellation units,432

in order to adapt our algorithm to this new framework.433
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Number of triangles Visualisation Visualisation + Tessellation

4 1.45 2.28

16 1.46 2.29

64 1.48 2.28

256 1.58 2.45

1,024 1.71 2.75

3,644 1.83 3.16

5,756 1.88 3.95

3,644 1.83 3.39

1,024 1.71 2.75

256 1.58 2.45

64 1.48 2.28

16 1.46 2.28

4 1.45 2.28

Table 1
Comparison of time (in milliseconds) required for visualising and tessellating the

input mesh using a distance criterion, by first increasing and then decreasing the
detail following a smooth camera trajectory.

26



Number of triangles Visualisation Visualisation + Tessellation

4 1.45 2.29

16 1.46 2.29

64 1.48 2.44

256 1.58 2.44

1,024 1.71 2.76

4,096 1.80 3.17

16,384 2.08 4.56

65,536 2.71 6.42

262,144 4.89 9.31

562,500 7.05 15.23

262,144 4.89 10.96

65,536 2.71 6.83

16,384 2.08 5.16

4,096 1.80 3.59

1,024 1.71 2.76

256 1.58 2.8

64 1.48 2.44

16 1.46 2.29

4 1.45 2.29

Table 2
Comparison of time (in milliseconds) required for visualising and tessellating if

completely tessellating the mesh, by firs increasing and then decreasing the detail
following a smooth camera trajectory.
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Number of Triangles Coherence Exploitation No Coherence Exploitation

16 2.29 2.49

64 2.29 3.63

256 2.28 4.89

1,024 2.75 5.46

3,644 3.16 7.55

5,756 3.95 8.04

Table 3
Performance comparison (visualisation and tessellation) with and without exploit-

ing coherence (in milliseconds).
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Figure2-eps-converted-to.pdf

Fig. 1. Tessellation patterns (Schmiade, 2008). The red colour indicates the edges
that need refinement.
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Figure1-eps-converted-to.pdf

Fig. 2. Example of t-vertex (v5) after a tessellation step.
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Figure3-eps-converted-to.pdf

Fig. 3. Tessellation example with the id value of each triangle. The patterinInfo
value of each triangle is also shown.
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Fig. 4. Workflow to process and render a terrain surface in the GPU by using our
approach.
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Fig. 5. Graphical comparison between the conventional manner to load a texture
into the graphics memory and the alternative one by using Pixel Buffer Objects,
which enable us to perform asynchronous operations with no CPU intervention.
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Figure5-eps-converted-to.pdf

Fig. 6. Sample tessellation using a heightmap to modify the terrain surface.
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Figure4-eps-converted-to.pdf

Fig. 7. Sample tessellation guided by a simulated frustum and using a heightmap
from Spain obtained from a public web service. Geometry is refined up to 2,348
triangles.
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Figure6-eps-converted-to.pdf

Fig. 8. Performance obtained using a distance criterion.
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Figure7-eps-converted-to.pdf

Fig. 9. Performance obtained when completely tessellating the mesh.
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