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Abstract We present a procedure leading to efficient splitting schemes for the
time integration of explicitly time dependent partitioned linear differential equa-
tions arising when certain partial differential equations are previously discretized
in space. In the first stage we analyze the order conditions of the corresponding
autonomous problem and construct new 6th-order methods. In the second stage,
by following a procedure previously designed by the authors, we generalize the
methods to the time dependent case in such a way that no order reduction is
present. The resulting schemes compare favorably with other integrators previ-
ously available.
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1 Introduction

The evolution of many physical systems is usually described by an ordinary dif-
ferential equation (ODE)

x′ = f(x), x(t0) = x0 ∈ R
d, (1)
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versitat Jaume I, E-12071 Castellón, Spain.
E-mail: Fernando.Casas@uji.es

Ander Murua
Konputazio Zientziak eta A.A. saila, Informatika Fakultatea, EHU/UPV, Donostia/San Se-
bastián, Spain.
E-mail: Ander.Murua@ehu.es



2 Sergio Blanes et al.

whose formal solution can be written as

x(t) = ϕt(x0) = exp((t− t0)Df )x0.

Here Df stands for the Lie derivative associated with f(x), i.e. Df ≡ f(x) · ∇.
Describing the physical problem at hand requires then to formulate an appropriate
mathematical model in this setting. In other words, a suitable function f(x) such
that (1) can reproduce the most salient features of the real system. In this respect,
since the real system often involves one or more symmetries and these symmetries
can be mathematically formulated in terms of Lie groups, a necessary condition is
that the Lie derivative Df possesses the appropriate Lie algebraic structure.

Of course, one is also interested in solving (1), but with the exception of a very
few simple cases, only numerical approximations are usually obtained. Generally
speaking, standard numerical integrators (Runge–Kutta formulae, linear multistep
methods) produce approximate solutions that do not take into account the special
algebraic structure of f and therefore do not preserve the corresponding symme-
tries. In consequence, much effort has been devoted during the last two decades
to the design of numerical integrators preserving those qualitative (geometric)
properties of the exact solution. Examples of such algorithms include symplectic
integrators, volume preserving methods, Lie group integrators, variational meth-
ods in mechanics, etc. [13,14,20]. All of them are now put into the more general
category of geometric numerical integrators. In geometric integration, in fact, it is
crucial to identify significant (geometric) properties of the dynamical system (1)
and construct numerical integration algorithms that preserve those features. In
addition, of course, one is interested in building efficient methods with the usual
properties of accuracy and stability.

Although research in geometric numerical integrators for differential equations
has experienced a tremendous boost during the last decades, it is fair to say that
this has been mainly restricted to autonomous problems, whereas nonlinear sys-
tems of the form

x′ = f(x, t), x(t0) = x0 ∈ R
d, (2)

i.e., when time appears explicitly in the formulation of the problem, have been
up to some point disregarded. In the linear case X ′ = A(t)X, with A and X
n×n matrices, several options have been widely explored and indeed the Magnus
expansion has shown to be an extremely useful device to get analytical as well as
numerical approximations [7].

A usual procedure in the numerical analysis of explicitly time-dependent prob-
lems consists in transforming (2) into an autonomous differential equation by the
introduction of a new variable,

{

x′ = f(x, xt)
x′
t = 1

(3)

or, equivalently,
y′ = F (y), y(t0) = (x0, t0) ∈ R

d+1, (4)

and F (y) = (f(x, xt), 1). Notice that formulation (3) introduces the auxiliary
variable xt aimed at eliminating the explicit time dependence, so that numerical
integrators designed for (1) can, in principle, be used in this setting. This process
exhibits, nevertheless, several drawbacks. First, the algebraic structure of Df and
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DF may differ, so that methods specifically designed for (1) cannot simply be
used for the integration of the new enlarged system (4). Second, even when they
can be applied, very often their efficiency reduces considerably. For this reason,
during the last years, the authors have analyzed different procedures to adapt effec-
tive splitting schemes when the system is explicitly time-dependent without losing
their efficiency (see, e.g., [1,3,9]). In the particular but important case of the linear
differential equations arising from the space discretization of the Schrödinger equa-
tion, it is shown in [3] how to generalize methods previously designed in [11] when
an explicit time dependency is introduced. The results achieved in [3] motivates
the search of new and more powerful integration methods for time independent
systems especially designed to be used in the non-autonomous case. The goal of
the present paper is precisely this: to carry out a systematic analysis of the order
conditions to be satisfied by splitting methods when integrating partitioned linear
systems to which the techniques exposed in [3] are subsequently applied to render
schemes also valid in the time dependent case.

The plan of the paper is as follows. In section 2 we briefly review some of the
available techniques to adapt splitting methods designed for autonomous problems
to the explicitly time dependent case. In section 3 we focus the treatment on
partitioned linear systems of differential equations arising, in particular, in the
time integration of the Schrödinger equation previously discretized in space. There
we present a procedure to get and solve the resulting order conditions for methods
of order ≤ 6 to which the approach presented in [3] is applied to construct efficient
splitting schemes in the time dependent case. The validity of the treatment is
then illustrated in section 4, where the performance of a new 6th-order method
constructed along these lines is compared with other standard integrators.

2 Splitting methods and their generalization to non autonomous
systems

2.1 General treatment

Although splitting methods have been used for a long time in the numerical treat-
ment of differential equations, they have experienced a revival with the advent of
geometric integration. In fact, a good deal of geometric integrators are based on
the idea of splitting. The idea is fairly simple: suppose f in equation (1) can be
decomposed as f(x) = f [A](x) + f [B](x) in such a way that systems

x′ = f [A](x), x′ = f [B](x) (5)

can either be solved in closed form or accurately integrated. Then one combines
these partial solutions into an approximate solution for (1), often of high accuracy.
To make this sentence precise, let us denote by

ϕ[A]
t = exp((t− t0)DA), ϕ[B]

t = exp((t− t0)DB)

the flows corresponding to equations (5), where DA and DB represent the Lie
derivatives associated with f [A](x) and f [B](x), respectively. Then one considers
the composition

ψh ≡ ϕ[A]
am+1h

◦ ϕ[B]
bmh ◦ ϕ[A]

amh ◦ ϕ[B]
bm−1h

◦ · · · ◦ ϕ[B]
b1h

◦ ϕ[A]
a1h

(6)
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with appropriately chosen real coefficients ai, bi to ensure that ψh is an approxi-
mation to the exact solution ϕh up to order O(hp) with respect to the time step
h, i.e. ψh = ϕh + O(hp+1). A great deal of methods of this class exists in the
literature, of different orders and tailored for different structures of the vector
field: general separable problems, systems arising from second order differential
equations x′′ = g(x), near-integrable systems, etc. (see [5,13,15,17] and references
therein). One could say that the performance of the different splitting methods
strongly depends on the particular problem at hand, so that a previous analysis
is highly recommended to select the most appropriate scheme for its numerical
treatment [5]. The non-autonomous separable problem

x′ = f [A](x, t) + f [B](x, t) (7)

is indeed a case in point.
One might think of two procedures to adapt scheme (6) in this setting. The

first one consists in replacing the maps ϕ[A]
aih

, ϕ[B]
bih

by the maps associated to the
exact flow defined by the equations

x′ = f [A](x, t), t ∈ [t0 + cih, t0 + (ci + ai)h] (8)

x′ = f [B](x, t), t ∈ [t0 + dih, t0 + (di + bi)h]. (9)

Here ci =
∑i−1

j=0 aj , di =
∑i−1

j=0 bj , a0 = 0, b0 = 0, and the initial conditions
are given by the solution obtained from the previous flow. This approach can be
considered as a time-average on each stage of the composition. Obviously, obtaining
the exact solution of the non-autonomous equations (8) and (9) is by no means
trivial due to the explicit time-dependence. In any case, the formal solution can
be obtained by using the Magnus expansion, as shown in [7].

The second procedure is perhaps simpler. It consists in taking the maps ϕ[A]
aih

, ϕ[B]
bih

in (6) as the (aih)-flow and (bih)-flow associated respectively to the autonomous
equations

x′ = f [A](x, t0 + dih), t ∈ [t0 + cih, t0 + (ci + ai)h] (10)

x′ = f [B](x, t0 + cih), t ∈ [t0 + dih, t0 + (di + bi)h]. (11)

Notice that the coefficients ci, di appear interchanged in the vector fields with
respect to (8) and (9).

These two strategies, which could be dubbed ‘averaging’ and ‘frozen’ tech-
niques, respectively, may differ considerably both in the accuracy reached by the
methods and also in their computational cost. Let us illustrate them on a simple
but important example arising in applications.

2.2 Linear non autonomous separable systems

When discretizing in space the time dependent Schrödinger equation involving a
time dependent potential V (t) (for instance, with a pseudospectral method), the
following system of ODEs arises:

iu′ = H(t)u, (12)
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where u ∈ C
N and H is a real symmetric matrix. If the real and imaginary parts

in u are considered, u = q+ ip, the N -dimensional linear complex system (12) can
be written as the 2N -dimensional real system

q′ = H(t)p, p′ = −H(t)q. (13)

These, in fact, can be interpreted as the classical Hamilton equations corresponding
to the Hamiltonian

H(q, p, t) =
1

2
pTH(t)p+

1

2
qTH(t)q. (14)

Although we limit ourselves to this problem, most of the discussion is also valid
with minor modifications for the more general system

q′ = M(t)p, p′ = N(t)q, (15)

for q ∈ R
d1 , p ∈ R

d2 . Equation (15) arises, in particular, when the Maxwell
equations are discretized in space [19].

Equations (13) can be written in the compact form

z′ = (A(t) +B(t))z, (16)

where z = (q, p)T and

A(t) =

(

0 H(t)
0 0

)

, B(t) =

(

0 0
−H(t) 0

)

. (17)

Let us consider first the autonomous problem, i.e., when H does not depend ex-
plicitly on t, in which case the corresponding equations

q′ = Hp, p′ = −Hq (18)

possess the formal solution

z(t) = et(A+B)z(0). (19)

Typically, as a result of the discretization in space, the value of N is large,
and thus the exact computation of the exponential is exceedingly costly. In con-
sequence, it makes sense to construct approximations requiring a much reduced
computational effort. This can be achieved when the scheme only involves the
computation of Hq and Hp in a particular sequence and only a few times per
step. But this is precisely what splitting methods effectively do, as it is evident if
one writes the composition (6) for this particular problem:

K(h) ≡ eham+1AehbmBehamA · · · ehb1Beha1A (20)

=

(

I ham+1H
0 I

)(

I 0
−hbmH I

)

· · ·
(

I 0
−hb1H I

)(

I ha1H
0 I

)

.

The scheme requires m matrix-vector products Hq and Hp (the last product at
each step can be reused in the first stage at the following step) and is referred as
an m-stage method. Although any of the splitting methods for separable systems
collected in [13,15,17,18] can be used for carrying out numerical integrations here,
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equation (16) in the autonomous case possesses the following crucial simplifying
property:

[A, [A, [A,B]]] = [B, [B, [B,A]]] = 0, (21)

where [·, ·] stands for the usual commutator: [A,B] = AB−BA. This feature allows
one to build very efficient methods indeed [11,2,3]. Moreover, it has been shown
that any non-symmetric method for this problem is conjugate to a symmetric
method [4], so that one may restrict the analysis to symmetric compositions, i.e.,
when am+2−i = ai, bm+1−i = bi. The resulting scheme is sometimes referred to
as an ABA composition. Since the role of A and B can be naturally interchanged,
BAB compositions are not separately studied.

Let us turn our attention now to the time dependent case. As is well known,
the Magnus expansion allows one to formally write the solution of (16) as

z(t) = eΩ(t)z(0), (22)

where Ω(t) is given by an infinite series involving A(t), B(t), multivariate integrals
and nested commutators with a finite radius of convergence [16,7]. Although it
is indeed possible to derive numerical integration algorithms from the Magnus
expansion, they still require the computation of the exponential of a full matrix
of high dimension involving iterate integrals and commutators. We apply instead
the two procedures pointed out in section 2.1.

The first one (the ‘averaging’ technique) uses composition (6) with maps cor-
responding to the exact solutions of (8)-(9), which for this particular problem read
(taking t0 = 0)

ϕ[A1]
aih

(q, p) =

(

q +

∫ t+ci+1h

t+cih
H(τ)dτ p, p

)

ϕ[B1]
bih

(q, p) =

(

q, p−
∫ t+di+1h

t+dih
H(τ)dτ q

)

. (23)

Notice that the resulting scheme can be seen as the compositionmethod (6) applied
to the autonomous Hamiltonian

H(q, q1, q2, p, p1, p2) =

(

1

2
pTH(q1)p+ p1

)

+

(

1

2
qTH(q2)q + p2

)

≡ A1 +B1,

(24)
where we have considered time as two different additional coordinates.

On the other hand, with the ‘frozen’ technique (10)-(11) one has

ϕ[A2]
aih

(q, p) = (q +H(dih)p, p), ϕ[B2]
bih

(q, p) = (q, p−H(cih)q), (25)

and the corresponding scheme, as before, is nothing but composition (6) applied
to the Hamiltonian

H(q, q1, q2, p, p1, p2) =

(

1

2
pTH(q2)p+ p1

)

+

(

1

2
qTH(q1)q + p2

)

≡ A2 +B2.

(26)
Now the Hamilton equations are no longer linear and, moreover,

{Ai, {Ai, {Ai, Bi}}} (= 0, {Bi, {Bi, {Bi, Ai}}} (= 0, i = 1, 2
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in terms of the Poisson bracket. In consequence, the highly efficient schemes of type
(20) designed for systems verifying (21) lose their appealing accomplishments when
applied in the non autonomous case.

Another possibility is suggested in [9]. One might consider a combination of
(24) and (26) in the form

H(q, q1, q2, p, p1, p2) =

(

1

2
pTH(q1)p+ p1

)

+

(

1

2
qTH(q1)q + p2

)

(27)

or equivalently

H(q, q1, p, p1) =

(

1
2
pTH(q1)p+ p1

)

+

(

1
2
qTH(q1)q

)

≡ A3 +B3, (28)

with associated maps

ϕ[A3]
aih

(q, p) =

(

q +

∫ t+ci+1h

t+cih
H(τ)dτ p, p

)

, ϕ[B3]
bih

(q, p) = (q, p−H(cih)q).

(29)
Now {B3, {B3, {B3, A3}}} = 0 so that Runge–Kutta–Nyström methods can be
used (even with modified potentials) [5], and thus significant improvements in the
efficiency with respect to the previous choices can be achieved.

3 A new class of splitting methods for non autonomous linear systems

Our purpose here is to generalize the ‘averaging’ technique (23) by using the
Magnus expansion and formulate directly splitting methods of the form (20) in
terms of the new maps in such a way that the resulting schemes do not suffer from
a degradation in their performance. More specifically, the new methods have the
form (for a time step of size h)

z(t+ h) ≈ eÃm+1eB̃meÃm · · · eB̃1eÃ1z(t), (30)

where the matrices Ãi ≡ Ai(t, h) and B̃i ≡ Bi(t, h) are taken as

Ãi = h

∫ 1/2

−1/2
pai (τ)A(t1/2 + hτ) dτ, B̃i = h

∫ 1/2

−1/2
pbi(τ)B(t1/2 + hτ)dτ. (31)

Here t1/2 = t+ h
2 and pai (τ), p

b
i(τ) are filters (scalar functions). As we will see in

the sequel, to get integrators of even order n = 2s, it is enough to consider pai , p
b
i

as polynomials of degree s− 1, i.e.,

pai (τ) = a[0]i +a[1]i τ + · · ·+a[s−1]
i τs−1, pbi(τ) = b[0]

i +b[1]
i τ + · · ·+b[s−1]

i τs−1.

Since in our case

eÃi =

(

I H̃A
i

0 I

)

, eB̃i =

(

I 0
−H̃B

i I

)

,
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then (30) can be written as z(t+ h) ≈ K(t, h)z(t), where

K(t, h) = eÃm+1eB̃meÃm · · · eB̃1eÃ1 (32)

=

(

I H̃A
m+1

0 I

)(

I 0
−H̃B

m I

)(

I H̃A
m

0 I

)

· · ·
(

I 0
−H̃B

1 I

)(

I H̃A
1

0 I

)

,

and

H̃A
i = h

∫ 1/2

−1/2
pai (τ)H(t1/2 + hτ)dτ, H̃B

i = h

∫ 1/2

−1/2
pbi(τ)H(t1/2 + hτ) dτ.

(33)
These integrals can either be computed analytically or numerically approxi-

mated by using some appropriate quadrature rule. If the method (32) is of order
2s, then a quadrature rule of order 2s or higher must be used to retain the original
order.

The numerical scheme is then determined by the values of the coefficients a[k]i ,

b[k]
i (k = 0, 1, . . . , s− 1, i = 1, . . . ,m). The problem of designing efficient methods

of a prescribed order 2s is then equivalent to determining coefficients such that the
composition (30) achieves the desired order of accuracy and, at a given cost, pro-
vides the most accurate results among a number of possible choices. The method

is of order 2s if the coefficients a[k]i , b[k]
i satisfy a system of algebraic equations

(the order conditions), which have to be first formulated and then solved (usually
by numerical tools). A subset of such order conditions corresponds precisely to
the particular case where H(t) actually does not depend on t, so that the matrix

(32) reduces to the matrix K(h) in (20) with ai, bi related to a[k]i , b[k]
i . When

constructing a method of order 2s, we proceed as follows: (i) we first determine
the values of the coefficients ai, bi in such a way that (20) gives a good method

of order 2s for the autonomous case, (ii) and then choose the coefficients a[k]i ,

b[k]
i , so that the remaining order conditions hold (once the relation between the

coefficients ai, bi and a[k]i , b[k]
i is taken into account).

3.1 Order conditions for the autonomous case

When considering the matrix (20) used to propagate the numerical solution in
the autonomous case (18), one observes that diagonalizing the matrix H with an
appropriate linear change of variables transforms the system into N uncoupled
harmonic oscillators with frequencies ω1, . . . ,ωN . Although in practice one wants
to avoid diagonalizing the matrix H, numerically solving the system (18) by a
splitting method is mathematically equivalent to applying the splitting method to
each of such harmonic oscillators (and then rewritting the result in the original
variables). Clearly, the exact solution of each individual harmonic oscillator with
frequency ω is propagated by 2× 2 matrix O(ωh), where

O(x) =

(

cosx sinx
− sinx cosx

)

. (34)

As for the numerical solution, it is propagated by a matrix K(ωh) defined as

K(x) =

(

1 am+1x
0 1

)(

1 0
−bmx 1

)(

1 amx
0 1

)

· · ·
(

1 0
−b1x 1

)(

1 a1x
0 1

)

.
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It is straightforward to check that

K(x) =

(

K1(x) K2(x)
K3(x) K4(x)

)

=

(

1 +
∑m

i=1 k1,i x
2i ∑m+1

i=1 k2,i x
2i−1

∑m
i=1 k3,i x

2i−1 1 +
∑m

i=1 k4,i x
2i

)

, (35)

where ki,j are homogeneous polynomials in the parameters ai, bi.
The integrator (35) typically will be stable for |hω| < x∗ for some value x∗

(that we call stability threshold) depending on the coefficients ai, bi. It has been
shown [4] that if for a given splitting method x∗ > 0, then the method applied to
(18), for H a constant matrix, is conjugate, for hρ(H) < x∗, to the solution of a
modified system

q′ = H̃(h)p, p′ = −H̃(h)q, (36)

where
hH̃(h) = hH + φ2n+1(hH)2n+1 + φ2n+3(hH)2n+3 + · · · (37)

for some constants φ2i+1, i = 1, 2, . . ., provided that the method is of order 2n for
the harmonic oscillator (see [4] for more details). Here ρ(H) denotes the spectral
radius of H.

We thus intend to construct accurate symmetric schemes with large stability
intervals (−x∗, x∗). Notice that for a fair comparison of the stability interval for
splitting methods with different number of stages, one must consider the relative
stability threshold x∗/m. For this class of schemes, the elements of the stability
matrix have to satisfy

K1(x) = K4(x) ≈ cosx, (38)

K2(x) ≈ sinx, K3(x) ≈ − sinx, (39)

K1(x)
2 −K2(x)K3(x) = 1. (40)

Since we are dealing with symmetric compositions, we found more appropriate
(due to the ill conditioned equations to be numerically solved) to consider the
decomposition

K(x) = U(−x)−1U(x), where U(x) =

(

U1(x) U2(x)
U3(x) U4(x)

)

(41)

with U1, U4 even polynomial functions and U2, U3 odd polynomial functions. Since
we are interested in matrices K,U to be decomposed as products (35), then they
must satisfy det(K) = det(U) = 1. Clearly, conditions (38)-(40) are equivalent to
O(x) ≈ U(−x)−1U(x) together with

U1(x)U4(x)− U2(x)U3(x) ≡ 1. (42)

Whence, one has an approximation of order 2s if

U3(x) cos(x/2) + U4(x) sin(x/2) = O(x2n+1)

U1(x) sin(x/2)− U2(x) cos(x/2) = O(x2n+1). (43)

Observe that to obtain a method of order 2n one needs a composition withm ≥
2n−1 stages, as already noticed in [11]. The matrix U has 4n−2 parameters that
can be used to solve the required system of 4n−2 equations: indeed, equations (43)
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originate 2n linear equations and condition (42) gives 2n− 2 quadratic equations.
However, the methods with minimal number of stages obtained by solving these
4n − 2 equations have stability thresholds x∗ ≈ π, and thus the relative stability
threshold x∗/m ≈ π/(4n− 2) becomes very small for high order methods.

A simple trick to get methods with larger relative stability threshold is to add
the condition

O(jπ) = K(jπ), j = 1, . . . , l (44)

for some positive integer l. For moderate values of l relative to s, this typically gives
a method with stability threshold x∗ > lπ. In addition to improving stability, due
to its interpolatory nature, condition (44) contributes to improve also the precision
of the method when applied to (18).

In terms of the matrix U(x), condition (44) reads

U1((2j − 1)π) = U4((2j − 1)π) = 0, U1(jπ) = U3(2jπ) = 0, j ≤ l/2.
(45)

Given positive integers s, l, we impose conditions (42), (43), and (45) to the
matrix U(x), which gives a system of 4(n+ l) − 2 linear and quadratic equations
in terms of the coefficients of the polynomials Uj(x), j = 1, 2, 3, 4. The required
number of free parameters can be obtained by considering

d(U1) = 2(n+ l− 1), d(U4) = 2(n+ l),

d(U2) = 2(n+ l)− 1, d(U3) = 2(n+ l)− 1,

where d(P (x)) denotes de degree of the polynomial P (x). For a given matrix U(x)
satisfying the required conditions, if there exists a splitting method associated to
the matrix (41) (if it exists, is unique [4]), then in general will have m = 2(n+l)−1
stages.

We have obtained (with the help of the softwareMathematica) all the solutions
of the equations corresponding to moderate values of n and l (n+ l ≤ 6). For each
n and l, we choose among all the real solutions of the corresponding system of
polynomial equations the best methods with respect to suitable criteria based on
the rigorous error estimates (for the application of (18)) derived in [6]. Once an
appropriate matrix U(x) is chosen for given n and l, we compute the coefficients
{a1, b1, a2, b2, . . .} of the splitting scheme corresponding to K(x) = U(−x)−1U(x)
by following the algorithm presented in [4]. We collect in Table 1 the coefficients of
two of the best methods obtained in this way with m = 11 stages with n = l = 3
and n = 4, l = 2 (in the last case, the method is of order eight at the cost of being
slightly less stable due to the smaller value of l).

3.2 Determining the coefficients for the non autonomous case

The order conditions to be satisfied by the coefficients a[k]i , b[k]
i , i, k = 0, 1, . . . , s−1

for the polynomials in the scheme (33) to give a method of order p = 2s can be
determined by following the approach of [3]. First one considers the formal solution
of equations (16) at time h as furnished by the Magnus expansion,

z(t+ h) = eΩ(t,h)z(t), (46)
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where Ω(t, h) =
∑∞

k=1 Ωk(t, h) and each Ωk(t, h) is a multiple integral of combi-
nations of nested commutators containing k matrices A(t) and B(t) [7,16]. The
explicit expression of Ωk(t, h) can be obtained by inserting into the recurrence
defining the Magnus expansion a Taylor series of the matrices A(t) and B(t)
around the midpoint t + h/2 (to take advantage of the time-symmetry property
of the solution), i.e.,

A(t+ h
2 + τ) = α1 + α2τ + α3τ

2 + · · · , B(t+ h
2 + τ) = β1 + β2τ + β3τ

2 + · · ·

Then, the Baker–Campbell–Hausdorff (BCH) formula is repeatedly applied to
(30), so that K(t, h) is expressed as the exponential of only one operator,

K(t, h) = exp(Ω̃(t, h)),

depending on Ãi(t, h), B̃i(t, h) (i = 1, . . . ,m) and nested commutators of these
matrices. In consequence, the numerical scheme is of order p if Ω̃(t, h)−Ω(t, h) =
O(hp+1) as h → 0.

The analysis is simplified by imposing time symmetry to the composition (32):
K(t + h,−h) = K(t, h)−1, or equivalently, Ω̃(t + h − h) = −Ω̃(t, h). This is
automatically satisfied if

Ãm+2−i(t+ h,−h) = −Ãi(t, h), B̃m+1−i(t+ h,−h) = −B̃i(t, h),

Bm+1(t, h) = 0, (47)

for i = 1, 2, . . . ,m. Expanding Ãi(t, h), B̃i(t, h) in (31) in terms of αj , βj ,

Ãi(t, h) =
∑

n≥1

hna(n)
i αn, B̃i(t, h) =

∑

n≥1

hnb(n)
i βn, (48)

it is clear that conditions (47) are fulfilled as soon as

a(n)
m+1−i = (−1)n+1 a(n)

i , b(n)
m−i = (−1)n+1 b(n)

i , b(n)
m = 0, (49)

for n ≥ 1, i = 1, 2, . . . ,m.
In the autonomous case one has α1 = hA, β1 = hB and αj = βj = 0, j > 1 so

that the scheme reduces to

K(h) = ea
(1)
m+1α1eb

(1)
m

β1ea
(1)
m

α1 · · · eb
(1)
m

β1ea
(1)
1 α1 , (50)

which corresponds to eq. (20) with a(1)i = ai, b
(1)
i = bi. From (50) it is clear that

a(1)i , b(1)i can be taken separately from the remaining coefficients. For instance,
from (31) we have

a(1)i = h

∫ 1/2

−1/2
pai (τ)dτ, b(1)i = h

∫ 1/2

−1/2
pbi(τ) dτ. (51)

In any case, the actual choice of a(1)i , b(1)i plays an essential role to get the coeffi-

cients a[j]i , b[j]
i leading to efficient methods, since the constant parts α1 = hA(t1/2),

β1 = hB(t1/2) usually represent the dominant contributions to the evolution of
the system.
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Once a set of values for a(1)i , b(1)i , i = 1, . . . ,m, satisfying the symmetry con-

dition (49) is chosen, we have to determine the coefficients, a(n)
i , b(n)

i , n ≥ 2,
i = 1, . . . ,m, which satisfy the remaining order conditions. This can produce dif-

ferent methods with the same values for the coefficients a(1)i , b(1)i .
Let us now write Ãi, B̃i as follows:

Ãi =
s−1
∑

j=0

a[j]i A(j), B̃i =
s−1
∑

j=0

b[j]
i B(j), (52)

where

A(j) ≡ h

∫ 1/2

−1/2
τ jA(t1/2 + hτ)dτ, B(j) ≡ h

∫ 1/2

−1/2
τ jB(t1/2 + hτ)dτ (53)

for j = 0, . . . , s− 1.
At this point the following remark is worth to be stated. Suppose that b̄i, ci,

(i = 1, . . . , k), are the weights and nodes of a particular quadrature rule for inte-
grals. Then it is possible to approximate all the integrals A(i) (up to the required
order) just by using only the evaluations Ai at the nodes ci of the quadrature rule
required to compute A(0):

A(i) = h
k
∑

j=1

b̄j

(

cj −
1

2

)i

Aj . i = 0, . . . , s− 1, (54)

with Ai ≡ A(tn + cih). In particular, if fourth and sixth order Gauss-Legendre
quadrature rules are considered, we have s = k = 2 and b̄1 = b̄2 = 1/2, c1 =
1/2−

√
3/6, c2 = 1/2+

√
3/6. To order six we have s = k = 3 and b̄1 = b̄3 = 5/18,

b̄2 = 4/9, c1 = 1/2−
√
15/10, c2 = 1/2, c3 = 1/2 +

√
15/10.

Now, a simple relationship can be established between the coefficients a[j]i , b[j]
i

for a given method and the coefficients a(n)
i , b(n)

i by taking into account how the

matrices A(i), B(i) and αi, βi are related. Specifically, one has (neglecting higher
order terms)

A(i) =

∫ 1/2

−1/2

s
∑

j=1

hjαjτ
i+j−1dτ =

s
∑

j=1

(

T (s)
)

ij
hjαj ≡

s
∑

j=1

1− (−1)i+j

(i+ j)2i+j
hjαj ,

(55)
0 ≤ i ≤ s − 1, and analogous expression relating B(i) with βi. If this relation is
inverted (to order four, s = 2, and six, s = 3) we get

(r(2)ij ) ≡ (T (2))−1 =

(

1 0
0 12

)

, (r(3)ij ) =





9
4 0 −15
0 12 0

−15 0 180



 (56)

respectively. If we consider (48)

Ãi =
s

∑

n=1

a(n)
i hnαn =

s
∑

n=1

a(n)
i

s
∑

j=1

r(s)nj A
(j−1)

B̃i =
s

∑

n=1

b(n)
i hnαn =

s
∑

n=1

b(n)
i

s
∑

j=1

r(s)nj B
(j−1), (57)
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and compare with (52) then

a[j]i =
s

∑

n=1

a(n)
i r(s)n,j+1, b[j]

i =
s

∑

n=1

b(n)
i r(s)n,j+1. (58)

From this analysis, we proceed as follows. We first compute the coefficients
ai, bi by applying the procedure shown before for the autonomous case. Then, we

take a(1)i = ai, b
(1)
i = bi and then we get the coefficients a(k)i , b(k)i , k > 1.

In this work we have considered symmetric methods of order six. For the au-
tonomous case the schemes have necessarily m ≥ 5 stages. In consequence, we
have analyzed compositions with m = 5, 7, 9, 11 which corresponds to take n = 3
and l = 0, 1, 2, 3 in section 3.1, but we have also analyzed the case n = 4 and
l = 0, 1, 2. In each case we have taken the optimal choices according to the crite-
rion considered before.

On the other hand, getting sixth-order methods for the non-autonomous case

requires to solve a system of 10 nonlinear equations in the variables a(2)i , b(2)i

and an additional linear system of 8 equations to be solved in a(3)i , b(3)i , with the
symmetry (49). To obtain real solutions for these equations it was necessary to
consider methods with at least 11 stages. Here we have carried out an exhaustive
search of solutions and examined how all of them behave in practice. This turns out
to be the set of coefficients which minimize the sum of the absolute values of the
coefficients. The corresponding sets are collected in Table 1. For future reference,
we refer to these (optimal in the previous sense) methods as SM116 and SM1186.

The coefficients a[j]i , b[j]
i can be obtained from (58) for s = 3, and then using the

coefficients from (r(3)i,j ) given in (56). As a matter of fact, in [3] we included in the
numerical examples the results achieved by SM116, but without indicating how
the scheme was obtained.

4 Numerical examples

Our purpose in this section is to illustrate the performance of the new specially
adapted 11-stage sixth-order (SM116 and SM1186) splitting methods for parti-
tioned non-autonomous linear systems. To do so, we carry out some comparisons
with some other well established general purpose geometric schemes. Given a basic
symmetric second order method, we consider symmetric compositions of the basic
method with fractional steps. The most efficient compositions of this family of or-
ders 6 to 10 known by the authors (with real coefficients and without processor or
corrector) correspond to the following methods: the 13-stage sixth-order (S136),
the 21-stage eighth-order (S218), and the 35-stage tenth-order (S3510) methods
obtained in [22]. The coefficients of S3510 are also collected, for instance, in [13,
chapter V]. As basic second order scheme we take the well known leapfrog compo-

sition: ψ[2]h ≡ ϕ[B]
h/2◦ϕ[A]

h ◦ϕ[B]
h/2. The explicit time dependence is treated by taking

the time as two new coordinates as shown in (10)-(11) or (25). We also consider
the 11-stage sixth-order Runge-Kutta-Nyström splitting method, RKN116, given
in [10] and adapted to explicitly time-dependent problems [9] similarly as given in
(28)-(29), which gives similar performance to the scheme proposed in [1], but it
is simpler to implement. This method is also implemented taking the time as two
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Table 1 Coefficients a(j)i , b(j)i for the 11-stage sixth-order method with s = 3 and n = 3, l =
3 (SM116), and n = 4, l = 2 (SM1186). The schemes are written as ABA time-reversible

compositions. The corresponding coefficients a
[j]
i , b

[j]
i can be obtained from (58) for s = 3, and

then using the coefficients from r(3)i,j given in (56).

SM116

a
(1)
1 = 0.04648745479086313086 a

(2)
1 = 0.02193266201422243554 a

(3)
1 = 0.01077435319621614570

b
(1)
1 = 0.18433048350266556347 b

(2)
1 = 0.07626534298581334973 b

(3)
1 = 0.03014212501832794093

a(1)2 = −0.06069167116564293530 a(2)2 = −0.02039856592080283195 a(3)2 = −0.00542713028889977442

b(1)2 = −0.04105690329771146237 b(2)2 = −0.01259689047991468431 b(3)2 = −0.00437211775744595277

a
(1)
3 = 0.21846652646340681047 a

(2)
3 = 0.08285246661957294702 a

(3)
3 = 0.02955403630534304458

b(1)3 = 0.13375567966675033070 b(2)3 = 0.02732023273818340957 b(3)3 = 0.01331421499301463305

a(1)4 = 0.16805357948309270304 a(2)4 = 0.03387453196733517440 a(3)4 = 0.00676540745400725080

b(1)4 = 0.20376454713235473820 b(2)4 = 0.05751859844471906953 b(3)4 = 0.00258244441277004544

a
(1)
5 = 0.31439236417035348674 a

(2)
5 = −0.00275088080153402384 a

(3)
5 = 0

b(1)5 = −0.01176016691496004372 b(2)5 = 1/100 b(3)5 = 0

a(1)6 = 1
2 − (a(1)1 + · · ·+ a(1)5 ) a(2)6 = 0.002702345260889928730 a(3)6 = 0

b
(1)
6 = 1− 2(b

(1)
1 + · · ·+ b

(1)
5 ) b

(2)
6 = 0 b

(3)
6 = 0

a
(1)
13−i = a

(1)
i a

(2)
13−i = −a

(2)
i a

(3)
13−i = a

(3)
i , i = 1, . . . , 6

b(1)12−i = b(1)i b(2)12−i = −b(2)i b(3)12−i = b(3)i , i = 1, . . . , 5

SM1186

a
(1)
1 = 0.03973124988532299637 a

(2)
1 = 0.02400794642202757534 a

(3)
1 = 0.01426347688561003458

b(1)1 = 0.14287701840991454594 b(2)1 = 0.05694857575287938004 b(3)1 = 0.02419546407969782444

a(1)2 = −0.21448946380256107573 a(2)2 = −0.05636883329464990245 a(3)2 = −0.00827632423527062146

b(1)2 = −0.00914109419622051067 b(2)2 = −0.00288348177686401417 b(3)2 = −0.00078756602133509741

a
(1)
3 = 0.36819766483105942846 a

(2)
3 = 0.10704989071362334460 a

(3)
3 = 0.02378542863893405247

b(1)3 = 0.12498111985066240923 b(2)3 = 0.04926847474936858693 b(3)3 = 0.01500328192941108314

a(1)4 = 0.16749724928405616467 a(2)4 = 0.03981179966317880912 a(3)4 = 0.00949421566450808647

b
(1)
4 = 0.22721131708027567509 b

(2)
4 = 0.01651693314599112332 b

(3)
4 = 0.00388912208303570946

a(1)5 = 0.39616080151130058710 a(2)5 = −0.0348720903488828659 a(3)5 = 0.01581584517797694018

b(1)5 = −0.00876131570709263239 b(2)5 = 0 b(3)5 = −0.00003594151650905306

a(1)6 = 1
2 − (a(1)1 + · · ·+ a(1)5 ) a(2)6 = 0.06436174254164758857 a(3)6 = −0.01341597546509182559

b
(1)
6 = 1− 2(b

(1)
1 + · · ·+ b

(1)
5 ) b

(2)
6 = 0 b

(3)
6 = −0.00119538777526759980

a(1)13−i = a(1)i a(2)13−i = −a(2)i a(3)13−i = a(3)i , i = 1, . . . , 6

b(1)12−i = b(1)i b(2)12−i = −b(2)i b(3)12−i = b(3)i , i = 1, . . . , 5

new coordinates, as in the Smp schemes, to illustrate the advantage of treating the
time dependency appropriately (in this case it is referred as RKN1164).

Since the main interest of this family of methods lies in the numerical integra-
tion of differential equations originated from space discretizations of PDEs, the
computational cost of the methods is measured by the number of stages required.
The integrals (31) appearing in the new scheme are approximated by the sixth-
order Gauss-Legendre quadrature rule, as indicated in (52) and (54). Notice that
using this quadrature rule only three evaluations for the time dependent functions
are required per step, whereas 11 is the number used to count the cost of the
algorithm.
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Perturbed Harmonic Oscillators. We first consider as a simple test bench problem
the Mathieu equation,

q′′ + (ω2 + ε cos(t))q = 0,

with q ∈ R, which corresponds to a time dependent linear harmonic oscillator with
Hamiltonian

H =
1

2
p2 +

1

2
(ω2 + ε cos(t))q2.

We take as initial condition q(0) = 1, p(0) = 1, integrate up to t = 200π/ω
and measure the average error in phase space (at t = 2π/ω, 4π/ω, . . . , 200π/ω) in
terms of the number of force evaluations for different time steps (in logarithmic
scale). We compare the relative error for ω = 3/2 with ε = 1/40 and ε = 1/4,
and ω = 5, with ε = 1/40 and ε = 4. Since the kinetic part is time-independent,
the RKN116 method can be used in this case by just taking the time as a new
coordinate. The superiority of the new schemes is manifest for all accuracies of
practical interest. We can also observe that this superiority is more relevant when
the dominant contribution from the Hamiltonian originates from the constant part,
since the new scheme is built to be highly efficient for small perturbations of the
autonomous harmonic oscillator. In this setting the scheme SM1186 is superior
and behaves as an eighth-order method in the case ω = 5, ε = 1/40. We observe
that when the time-dependent functions are significant, the errors associated to
the new method are dominated by the Magnus expansion treatment. This is an
important observation to take into account to build new improved methods in this
class.

The Schrödinger equation. Let us now consider the one-dimensional Schrödinger
equation (in units where ! = 1)

i
∂
∂t

ψ(x, t) =

(

− 1
2µ

∂2

∂x2
+ V (x) + f(t)x

)

ψ(x, t), (59)

with ψ(x, 0) = ψ0(x). We take the Morse potential V (x) = D
(

1− e−αx
)2

in a
laser field described by f(t)x = A cos(ωt)x. It corresponds to the Walker–Preston
model of a diatomic molecule in a strong laser field [23]. This problem is used as a
test bench for the numerical methods presented in [12] and [21] and the same values
for the parameters are taken (in atomic units): µ = 1745 a.u., D = 0.2251 a.u.
and α = 1.1741 a.u. (corresponding to the HF molecule), A = 0.011025 a.u. and
laser frequency w = 0.01787. We assume that the system is defined in the interval
x ∈ [−0.8,4.32], which is split into N = 64 parts of length ∆x = 0.08, and impose
periodic boundary conditions.

After space discretization, eq. (59) leads to the complex linear equation (12)
with u ∈ C

N and uk(t) = ψ(xk, t)(∆x)1/2, k = 0, 1, . . . , N−1. Here xk = x0+k∆x
and H(t) = T + V̂ (t) is an Hermitian matrix (real and symmetric). As initial
conditions we take the ground state of the Morse potential,

φ(x) = σ exp
(

− (γ − 1/2)αx
)

exp
(

− γe−αx),

with γ = 2D/w0, w0 = α
√

2D/µ and σ is a normalizing constant.
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Fig. 1 Average error in phase space (at t = 2π/ω, 4π/ω, . . . , 100π/ω) vs. the number of force
evaluations for different time steps (in logarithmic scale) for the Mathieu equation for different
values of ω and ε.

Notice that V̂ (t) is a diagonal matrix with elements V̂jj = V (xj)+ f(t)xj, and
Tq, Tp can be efficiently computed using FFTs [2,11]. Notice also that in (33) we
now have

HA
i = h

∫ 1/2

−1/2
pai (τ)H(t1/2 + hτ) dτ = ha(1)i T + ha(1)i V + hXFa(t, h) (60)

and

HB
i = h

∫ 1/2

−1/2
pbi (τ)H(t1/2 + hτ) dτ = hb(1)i T + hb(1)i V + hXFb(t, h), (61)

where Fa/b(t, h) = h
∫ 1/2
−1/2 p

a/b
i (τ) f(t1/2 + hτ)dτ . Here X is a diagonal matrix

with diagonal elements Xjj = xj . The products Hiq and Hip only require one
FFT and its inverse and thus an m-stage method requires 4m FFTs per step. The
split (25) used for the general purpose methods Smp was already proposed in [21],
showing a clear improvement with respect to the second order Magnus integrator
(combined with a third order splitting scheme) given in [12]. This split is also used
for the RKN116 method, but it produces a fourth-order scheme. This is corrected
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using the averaging (28)-(29) which only requires to replace the scalar function
f(t) by its corresponding integral along each fractional time-step in one part of
the separable Hamiltonian system.

First, we integrate the system in the time interval t ∈ [0, 2τ ] with τ = 2π/ω.
The exact solution, uex(2τ), at the final time is obtained numerically using a
sufficiently small time step. We measure the error in the wave function, ‖uex(2τ)−
u(2τ)‖ versus the number of FFTs required for each method, and this is repeated
for different values of the time step, starting with a very small time step and
increasing it until reaching a time step close to the stability limit of the method
(an overflow appears if the time step is slightly increased). We repeated the same
experiment taking a larger time integration, t ∈ [0, 200τ ].

Figure 2 shows the efficiency plots for the methods. The superiority of the new
splitting methods is manifest both with respect to efficiency and the stability limit.
In addition, we observe that this superiority increases when taking a longer time
integration. This constitutes indeed an interesting property of the new methods
which is currently under investigation [6]. Scheme SM116 is more stable (it was
built with a larger value of l), but SM1186 can be more efficient when a high ac-
curacy is desired and the time dependent functions originate a small perturbation
to the remaining autonomous problem, because in that limit the method behaves
as an eighth-order method.
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Fig. 2 Error in the wave function versus the number of FFTs for the one-dimensional
Schrödinger equation (59) written in the form (13) after space discretization: (a) for the time
integration t ∈ [0, 2τ ], and (b) for t ∈ [0, 200τ ] with τ = 2π/ω.
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