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Abstract. The common approach to estimate the distance of an object
in computer vision and robotics is to use stereo vision. Stereopsis, how-
ever, provides good estimates only within near space and thus is more
suitable for reaching actions. In order to successfully plan and execute
an action in far space, other depth cues must be taken into account. Self-
body movements, such as head and eye movements or locomotion can
provide rich information of depth. This paper proposes a model for inte-
gration of static and self-motion-based depth cues for a humanoid robot.
Our results show that self-motion-based visual cues improve the accu-
racy of distance perception and combined with other depth cues provide
the robot with a robust distance estimator suitable for both reaching
and walking actions.
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1 Introduction

In the classical approach, a robot uses its sensors to create perception of the
environment and then uses these percepts to select an appropriate action. Thus,
the connection between perception and action is considered as one direction
only, that is only perception has an effect on a subsequent action and not vice
versa. Nethertheless, the evidences suggest that many actions are also taken
for their perceptual consequences, and the boundary between perception and
action sometimes fades. It has been argued that motor actions, such as locomo-
tion, head and eye movements, and object manipulation affect perception and
representation of three dimensional objects and space [6].

Space perception, and distance perception in particular, is influenced by the
body in many ways [2, 3]. The distance to an object, in many situations, can be
directly specified by visual angles inherent in optical information. For example,
when the object and the observer are both located on level ground, the distance
to the object is a function of its angular elevation scaled to the observer’s eye-
height. Rich knowledge of the third dimension can also be retrieved from body
movements, namely by coordinating the gaze direction of the two eyes, by moving
the head to produce parallax, by walking to get a different view of a scene, or
by manipulating an object to better see its shape [6].
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In computer vision and robotics, a classic solution to reconstruct the depth
of the scene is to use stereopsis. The estimates provided by stereopsis are reli-
able only within near space, and thus they are suitable only for planning and
execution of actions constrained to that area, such as reaching and grasping.
The effectiveness of other commonly used methods of distance estimation, such
as familiar size or range sonars, is also restrained to certain limits. Therefore, in
order to successfully plan and execute an action in far space, other depth cues
must be taken into account.

In this paper, we propose to use motion-based depth cues, such as motion
parallax and motion perspective to improve distance perception in far space.
Moreover, we suggest that motion-based depth cues and static depth cues should
be combined in an action-specific manner, that is depending on the action that
is to be performed. In our approach, we make use of reward-mediated learning,
where different visual cues are combined with regard to reaching and walking
action. Our results show that self-motion-based visual cues improve the accuracy
of distance perception and combined with other depth cues provide a humanoid
robot with a coherent representation of near and far space.

2 Depth estimation methods

Accurate estimation of depth is a challenging issue in the field of computer vision.
Since three dimensional real objects present in the environment are projected
into the two dimensional surfece of the camera sensor the depth information
is lost, and additional constraints are required for its extraction. This section
briefly introduces some methods of extracting absolute depth information from
static and motion-based depth cues.

2.1 Static depth cues

Familiar Size When a physical size of an object is known, its absolute depth
can be calculated by using the following equation:

zfs = f ·
Sphysical

Sobserved
(1)

where f is the focal length (in pixel term), Sphysical and Sobserved are a physical
(in meters) and an observed size (in pixel term) of a known feature, respectively.
Equation (1) assumes that the observed feature is presented orthogonally to
the camera sensor. In case such a condition is not fulfilled and no information
about inclination of the object is provided, the depth estimation can be largly
overestimated.

Stereopsis Let θ1 and θ2 be the angular positions of the left and of the right
cameras which allows for gazing a target object, the depth of such an object can
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be computed using equation (2):

zst =
b

tan(θ1) − tan(θ2)
(2)

where b is the distance (baseline) between two cameras. Equation (2) works
under the assumption that the nodal point lies on the center of rotation which is
not always true. However, the error due to this assumption is usually negligible
in many applications.

2.2 Self-motion-based depth cues

Parallax The effectiveness of motion parallax lies in the sensorimotor rela-
tionship between the observer movement and consequent retinal image motion,
which is dependent on observer movement, scene layout, and point of fixation [7].
Extracting the depth information from the parallax is straightforward once the
displacement of the camera ∆p and the displacement of the object in the image
∆x are known using equation (3):

zpx = f ·
∆p

∆x
(3)

where ∆p is the displacement of the camera. The displacement of the camera can
be provided by an inertial sensor. In the case we can access to the instantaneous
acceleration ak with a constant sample period ∆T and by assuming that the
acceleration is constant during such a period, it is possible to calculate ∆p using
the following discrete system:





∆pk+1

vk+1

ak+1
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∆pk

vk

ak



 (4)

where vk is the velocity and the only observable variable at the time k is the
acceleration ak. The problem of this system is that is a double integrator and a
bias in the measure, for example due to the change of the temperature, can lead
to an unbounded estimation error.

Motion perspective The motion perspective allows for calculating the depth
of a feature using a technique that is a mix between the stereopsis and the
parallax. As for the parallax the robot moves perpendicularly to the optical
axis, while the yaw motor of the neck is rotated to maintain the fixation as for
the stereopsis. Assuming that at the beginning the object is in front of the robot,
so the neck is in the position zero, the depth can be estimated as follows:

ztr =
∆p

tan(θ)
(5)

where θ is the angular position of the neck that allow for gazing the target
point after the displacement ∆p. The displacement can be computed as for the
parallax (see equation 4). Figure 1a shows an example of depth estimation using
the motion perspective.
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(a) Motion perspective (b) Neural network model

Fig. 1: General scheme of the reward-based learning model.

3 Depth cue integration

A reward-based learning approach has been proposed as an alternative for the
near-optimal cue integration of auditory and visual depth cues [1][5]. Following
this approach, a three-layer neural network (see Fig. 1b) is used to approximate
the state-action mapping function. The input layer consists of i = c ∗ n binary
neurons that encode the estimates of the c different depth cues covering the n
discritized distance units. The activity of the neurons xi is one at depth estimated
by the corresponding cue, otherwise zero.

The input neurons are all-to-all connected with weights vi,j to j neurons
in the hidden layer. A sigmoidal transfer function on the sum of the weighted
inputs gives the outputs yj of the hidden neurons:

yj =
1

1 + e

−

∑

i

vi,jxi

(6)

The hidden neurons are fully connected to output neurons k with weights
wj,k. All weights are drawn from uniform distributions, vi,j between −0.1 and
0.1, and wj,k between −1 and 1.

Each output units represents an action. Two types of actions, that is reach-
ing kr and walking kw, are possible. The binning size, which is the parameter
responsible for discretization of the action space is 1 cm for reaching and 3 cm
for walking action. The activation of the output neurons zk is given by the
weighted sum of the hidden layer activity, representing an approximation of the
appropriate Q-value.
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Based on the network’s outputs, one action is chosen according to the softmax

action selection rule [4]:

Pt(k) =
eQt(k)/τ

∑n
b=1 eQt(b)/τ

(7)

where Pt(k) is the probability of selecting an action k, Qt(k) is a value function
for an action k, and τ is a positive parameter called temperature that controls the
stochasticity of a decision. A high value of τ allows fo more explorative behavior,
whereas low value of τ favors more exploitative behavior. We start with a high
temperature parameter τ = τ0, so that the selection of action is only weakly
influenced by the initial reward expectations. In our experiments, τ decreases

exponentially with time τ(t) = τ
( vτ −t

vτ
)

0 , where τ0 = 10 and vτ = 50000.

After performing the selected action k̂ the true reward r(k̂) is provided.

The reward is maximal when k̂ equals the true object position kt, decaying
quadratically with increasing distance within a surrounding area with radius ρ
(in our case ρ = 4) and zero otherwise.

r(k̂|X) = max(0, (ρ − |k̂ − kt|))
2 (8)

To minimize the error between the actual and expected reward, we make use of
gradient descent method which is widely used for function approximation, and
is particularly well suited for reinforcement learning [4]:

vi,j(t + 1) = vi,j(t) − ǫ(rk̂ − zk̂)(−wj,k̂)yj(1 − yj)xi (9)

wj,k̂(t + 1) = wj,k̂(t) − ǫ(rk̂ − zk̂)(−yj) (10)

It is worth noting, that in case of the update of weights wj,k only the output

weights connected to the winning output unit k̂ are updated. The learning rate ǫ,
decreases exponentially, according to the formula ǫ(t) = ǫ0

ceil( t

vǫ
)
, where ǫ0 = 0.05,

and vǫ = 100000.

4 Experimental framework

4.1 Real data collection

Aldebaran’s comercially available humanoid robot NAO with 25 DoF is used as
a platform for the examined depth estimation methods. Although, the robot is
provided with two identical video cameras placed in the forehead, their location
does not allow the use of stereo vision methods for depth calculation. The NAO
robot is also equipped with a 3-axis linear accelerometers that can be used
to measure accelerations and four ultrasonic sensors located in the torso that
provides rough distance estimation to obstacles in its surroundings.

The following visual depth estimation methods are tested: familiar size, mo-
tion parallax and motion perspective. As sonars are widely used in mobile robots
for obstacle detection and their effectiveness is limited to a certain range, we in-
clude them for comparison reasons.
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Fig. 2: Mean distance estimation errors. Please note that these figures uses dif-
ferent scales for the sake of clarity.

The procedure for collecting depth estimation data is as follows. The object
is placed manually in front of the robot approximatelly on its eye-height. The
robot centers the objects in the image, and then it estimates the distance to
the object using static depth estimation methods (i.e. familiar size and sonar).
Afterwards, it executes a lateral movement to the right during 2.4 s. During
the movement the robot accesses the acceleration data with a constant sample
period ∆T , and calculates its displacement according to the state updating of
eq. (4), where ∆p and v at the starting time (∆p0, v0) were both set to zero.
Once the final position is reached, the object distance is calculated again by
using the motion parallax method. Then, the image is once again centered so as
to calculate the distance by motion perspective. After all distance methods have
been calculated, the object is replaced manually for the next trial. The measures
are taken every 1 cm for near distances (13 cm to 40 cm) and every 3 cm for
middle and far distances (40 cm to 140 cm). Mean estimation values are shown
in Fig. 2a. As is clearly visible, all proposed methods give good results within
near or middle space. Due to internal constraints, the estimates of the familiar
size and sonar methods worsen significantly in far space.

4.2 Results

One of the shortcomings of the reward-based methods is the large number of
training examples needed for the neural network to converge. In our simulations
we take t = 100000 time steps for the learning process. Such a large number
of repetitions would be extremely time-consuming and unfeasible for any robot
platform. Thus, in this phase weights of the neural network are learned offline
with the real data collected with the use of our robot.

Three different setups are prepared, so as to test whether the combined static
and self-motion-based methods have any predominance over the usage of only
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Table 1: Mean (and STD) of estimation errors of the neural network (in CM)

Testing scenario Near Middle Far
(13 - 40) (40 - 100) (100 - 140)

Only static 0.65 (0.64) 0.53 (1.06) 2.21 (0.74)
Only motion 0.77 (0.76) 0.92 (1.58) 1.72 (2.21)

Combined (simulation) 0.37 (0.48) 0.07 (0.36) 1.15 (1.73)
Combined (robot study) 1.83 (0.48) 3.25 (0.36) 2.47 (1.72)

static or only self-motion-based depth estimation methods. As the dataset col-
lected by the robot was quite limited (5 trials per each distance), we added a
white noise with the standard error deviation of various depth estimators to the
final training dataset. The mean estimation errors (over 10 trials) for all tested
setups are shown in Fig. 2b. For the network trained only with static depth cues,
the errors in the near and middle space are quite small. The increasing error in
distance estimation provided by sonars is nicely compensated by the relatively
good estimates given by familiar size method. However, in far space, these errors
cannot be compensated any further as the errors given by familiar size also begin
to increase, which in turn leads to quite large estimation errors. The network
trained with only motion-based depth cues gives overall good results. For very
few values, however, the errors are much bigger than the errors in their near-
est neighbourhood. These “peaks” may result from a relatively small number of
data collected per each distance and used for training, as well as high level of
noise in these data. Further work should investigate in more detail the reasons
for their occurance. The combination of static and motion-based depth cues, as
predicted, give quite small errors throughout tested distances.

The effectiveness of the proposed depth cues integration model was tested
with the NAO humanoid robot platform. Only the neural network trained with
the combination of static and motion-based depth cues was examined. The pro-
cedure was the same as for collecting data with the difference of the number of
tested positions. In this case, only 10 different equally distributed position were
tested, and the procedure was repeated 5 times. The mean distance estimations
are shown along with the results of simulated networks in Fig. 2b. As is clearly
seen, the errors given by experiments with the robot are much bigger than the
errors obtained in simulations. The real data are quite noisy, which results in
bigger errors. The results of a combined cues, however, are much better than any
single distance estimatior. The mean values of distance estimation errors in the
near, middle and far space for both simulations and robot study are shown in
Table 1. The overall estimation error obtained in robot study is less than 3.5 cm,
which is good enough to approach the target and if necessary to be corrected by
a small random movement of the hand. In case of a misalignment between the
robot’s predictions and real outcome of action, such an error signal should be
used by the robot to automatically update the weights of the network.
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5 Discussion and Future work

The results obtained by our depth-cue integration model are very promising.
At this moment, the robot is not yet able to online improve its estimations.
Thus the most straightforward future extension of the proposed work is the
implementation of real-time learning. Aforehand, however, a few issues need to
be addressed. The self-movement-based depth estimations strongly depend on
the results of the movement itself, ie. whether it is a precise lateral movement, as
well as a calculation of robot displacement. The data provided by accelerometers,
especially when they are placed in a moving robotic platform are quite noisy and
may sometimes lead to the large errors (the mean error was approx 0.6cm). The
calculation of the displacament could be based on visual information only, ie.
optic flow or based on combined optic flow and accelerometer data.

Range sonars are commonly used in mobile robots in spite of their limita-
tions. As presented in this work the estimates provided by sonars can be com-
plemented by the visual depth information. It raises, however, an interesting
problem of correspondance between these two different sensors. Sonars return
information about distance to the closest detected object which may not always
correspond to the visually determined object. Moreover, sonar sensors are sub-
jected to several problems as reflections in the corners, their cone-shaped beam
produces uncertainty in locating the target or crosstalk.

Acknowledgments This research was partly supported by Ministerio de Cien-
cia e Innovacin (FPU grant AP2007-02565,FPI grant BES-2009-027151,DPI2011-
27846), by Generalitat Valenciana (PROMETEO/2009/052) and by Fundaci
Caixa Castello-Bancaixa (P1-1B2011-54).

References

1. Karaoguz, C., Weisswange, T.H., Rodemann, T., Wrede, B., Rothkopf, C.A.:
Reward-based learning of optimal cue integration in audio and visual depth es-
timation. In: The 15th International Conference on Advanced Robotics, Tallinn,
Estonia (2011)

2. Proffitt, D.R.: Distance perception. Current Directions in Psychological Science
15(3), 131–135 (2006)

3. Proffitt, D.R.: Embodiment, Ego-Space, and Action, chap. An action-specific ap-
proach to spatial perception, pp. 177–200. Psychology Press (2008)

4. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press,
Cambridge, MA (1998)

5. Weisswange, T.H., Rothkopf, C.A., Rodemann, T., Triesch, J.: Bayesian cue inte-
gration as a developmental outcome of reward mediated learning. PLoS ONE 6(7),
1–11 (2011)

6. Wexler, M., van Boxtel, J.J.A.: Depth perception by the active observer. TRENDS
in Cognitive Sciences 9(9), 431–438 (2005)

7. Yoonessi, A., Jr., C.L.B.: Contribution of motion parallax to segmentation and
depth perception. Journal of Vision 11(9): 13, 1–21 (2011)


