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Abstract We propose an efficient implementation of the Balanced Trun-
cation (BT) method for model order reduction when the state-space ma-
trix is symmetric (positive definite). Most of the computational effort re-
quired by this method is due to the computation of matrix inverses. Two
alternatives for the inversion of a symmetric positive definite matrix on
multi-core platforms are studied and evaluated, the traditional approach
based on the Cholesky factorization and the Gauss-Jordan elimination
algorithm. Implementations of both methods have been developed and
tested. Numerical experiments show the efficiency attained by the pro-
posed implementations on the target architecture.
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1 Introduction

Model order reduction is a highly useful tool in the analysis and simulation of dy-
namical systems, control design, circuit simulation, structural dynamics, CFD,
and many other disciplines involving complex physical models [1][2]. In partic-
ular, consider a linear time-invariant system corresponding, e.g., to a physical
process, defined in state-space form by

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0,

(1)

where A ∈ Rn×n , B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, x0 ∈ Rn is the initial
state of the system, and n is the order of the model. The goal for model reduction
is to find a reduced-order realization

ẋr(t) = Arxr(t) + Bru(t), t > 0, xr(0) = x̂0,
yr(t) = Crxr(t) + Dru(t), t ≥ 0,

(2)

where Ar ∈ Rr×r , Br ∈ Rr×m, Cr ∈ Rp×r, Dr ∈ Rp×m, x̂0 ∈ Rn is the initial
state of the system, r is the order of the new model, with r # n, and ‖y − yr‖



is “small”. In other words, the purpose of model reduction is to obtain a new
model with a smaller order (r), which can potentially replace the original model
in subsequent computations yielding important time and resource cost savings.
While just a few years ago, model reduction of dense large-scale models (state-
space dimension n of O(104−105)) would have required the use of a cluster with
a moderate number of nodes [3], modern multi-core processors provide enough
computational power to tackle the major matrix computations appearing in
model order reduction methods.

In previous works we have addressed the cases where the state-space matrix
A is sparse [4], a general dense matrix [5], and a band matrix [6]. In this work
we focus in the case when −A is a dense symmetric positive definite (SPD)
matrix. In this case, the structure and properties of the matrix can be exploited
reporting important savings due to a significant reduction on the number of
required operations.

The rest of the paper is structured as follows. Section 2 describes the state-
of-the-art methods and libraries for model order reduction. Section 3 introduces
the sign function method for the solution of Lyapunov equations. Then, in Sec-
tion 4, we review the two approaches for computing the matrix inverse of an SPD
matrix. Several high performance implementations of each method on multi-core
processors are described and evaluated in Sections 5 and 6. Finally, a few con-
cluding remarks and future work are offered in Section 7.

2 State-of-the-Art in methods and libraries

Model order reduction methods can be classified into two different families: mo-
ment matching-based methods and SVD-based methods (for a thorough analysis
of these two families of methods, see [1]). The efficacy of model order reduction
methods strongly relies on the problem and there is no technique that can be
considered optimal in an overall sense. In general, moment matching methods
employ numerically stable and efficient Arnoldi and Lanczos procedures in order
to compute the reduced-order realizations. These methods, however, are special-
ized for certain problem classes and often do not preserve important properties of
the system such as stability or passivity. On the other hand, SVD-based methods
usually preserve these properties, and also provide bounds on the approxima-
tion error. However, SVD-based methods present a higher computational cost.
In particular, all SVD-based methods require, as the most time consuming stage,
the solution of two Lyapunov (or analogous matrix) equations. When balanced
truncation is applied to (1), the Lyapunov equations that arise are

AWc + WcA
T + BBT = 0,

AT Wo + WoA + CT C = 0.
(3)

In general, A is a stable matrix (i.e., all its eigenvalues have negative real part)
and, therefore, matrices Wc, Wo are symmetric and positive semi-definite. Un-
fortunately, Wc, Wo are dense, square n × n matrices even if A is sparse. These
equations can for instance be solved using direct Lyapunov solvers [7][8] from



the SLICOT library[9], which allows the reduction of small LTI systems (roughly
speaking, n = 5, 000 on current desktop computers). Larger problems, with tens
of thousands of state-space variables, can be reduced using the sign function-
based methods in PLiCMR [10][3] on parallel computers [3]. The difficulties of
exploiting the usual sparse structure of the matrices that appear at the Lyapunov
equations using direct or sign function-based solvers limits the applicability of
the SVD-based algorithms in these two libraries. However, those methods are
completely based on high performance kernels from numerical linear algebra
libraries, specifically BLAS and LAPACK.

3 The sign function method

The matrix sign function was introduced in [11] as an efficient tool to solve stable
(standard) Lyapunov equations. The following variant of the Newton iteration
for the matrix sign function [12] can be used for the solution of the Lyapunov
equations (3):

Algorithm CECLNC:

A0 ← A, S̃0 ← BT , R̃0 ← C
k ← 0
repeat

Ak+1 ← 1√
2

(

Ak + A−1
k

)

S̃k+1 ← 1√
2

[

S̃k, S̃k(A−1
k )T

]

R̃k+1 ← 1√
2

[

R̃k, R̃kA−1
k

]

k ← k + 1
until convergence

On convergence, after j iterations, S̃ = 1√
2
S̃j and R̃ = 1√

2
R̃j of dimensions

k̃o ×n and k̃c ×n are, respectively, full rank approximations of S and R, so that
Wc = ST S ≈ S̃T S̃ and Wo = RT R ≈ R̃T R̃.

Two main reasons make the Newton iteration an appealing method for solv-
ing Lyapunov equations: its implementation is suitable to parallel programming
and it usually presents a fast convergence rate, which is ultimately quadratic.

Each iteration of algorithm CECLNC requires O(n3) flops (floating-point arith-
metic operations), where n is the dimension of matrix A. In particular, the fol-
lowing four operations are performed at each iteration:

1. Compute A−1
k , the matrix inverse of an SPD matrix (n3 flops)

2. Compute the addition of two symmetric matrices and scale the result (n2

flops)
3. Compute S̃k+1 via a matrix-matrix product (n2 × k̃o flops)
4. Compute R̃k+1 via a matrix-matrix product (n2 × k̃c flops)



Therefore, most of the computational effort is concentrated on the calcula-
tion of the matrix inverse Ak

−1. This is reinforced from the numerical results
reported in a previous work, where the same method is employed to solve a single
Lyapunov equation (only steps 1 to 3 are required) with general dense coefficient
matrices [5]. In that work, despite the use of a GPU to accelerate the compu-
tation of the inverse, this operation represented the 85% and 91% of the total
computation time for two problems of dimension 5, 177 and 9, 699 respectively.

Also, there are high performance implementations for multi-core processors
available for the rest of the operations involved in algorithm CECLNC, i.e. the
matrix-matrix product (required at steps 3 and 4) and the matrix addition and
scale (required at step 2) using e.g. the kernels provided in the BLAS library
and OpenMP respectively.

This implies that, provided we can develop an efficient method for the com-
putation of a matrix inverse, we can obtain a high performance Lyapunov solver
and, thus, an efficient model-order reduction implementation. The rest of the pa-
per is focused on the development of a high performance kernel for the inversion
of an SPD matrix.

4 High performance matrix inversion of SPD matrices

In this section we survey two different algorithms for computing the inverse of
an SPD matrix. The first algorithm is based on the computation of the Cholesky
factorization, while the second algorithm employs the Gauss-Jordan elimination
[13]. Both algorithms present the same computational cost, but the properties
of the Gauss-Jordan elimination procedure are more suitable for parallel archi-
tectures.

4.1 Matrix inversion based on the Cholesky factorization

The traditional approach to compute the inverse of an SPD matrix A ∈ Rn×n

is based on the Cholesky factorization and consist of the three following steps:

1. Compute the Cholesky factorization A = UT U , where U ∈ Rn×n is an upper
triangular matrix.

2. Invert the triangular factor U → U−1.
3. Obtain the inverse from the matrix-matrix product U−1U−T = A−1.

By exploiting the symmetry of A, the computational and storage cost of
the algorithm can be significantly reduced. In particular, as stated above, the
computational cost is n3 flops (compared, e.g., with the 2n3 flops required to
invert a nonsymmetric matrix). In-place inversion of the matrix (i.e., inversion
using only the storage provided in A) is possible which, besides, only references
the upper triangular part of the matrix. However, for performance, A is stored
as a full n × n matrix.



Algorithm: [A] := GJEblk v1(A)

Partition A →

„

ATL ATR

! ABR

«

where ATL is 0 × 0 and ABR is n × n

while m(ATL) < m(A) do

Determine block size b

Repartition

„

ATL ATR

! ABR

«

→

0

@

A00 A01 A02

! A11 A12

! ! A22

1

A

where A11 is b × b

W := −A00 · A01 SYMM
A11 := A11 + A

T
01 · A01 GEMM

A11 := chol(A11) POTRF
triu(A11) := triu(A11)

−1 TRTRI
W := W · A11 TRMM

A01 := W · AT
11 TRMM

A00 := A00 + W · W T SYRK
A11 := triu(A11) · triu(A11)

T LAUUM

Continue with

„

ATL ATR

! ABR

«

←

0

@

A00 A01 A02

! A11 A12

! ! A22

1

A

endwhile

Figure 1. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 1).

4.2 Matrix inversion based on the Gauss-Jordan elimination
algorithm

The Gauss-Jordan elimination (GJE) algorithm is, in essence, a reordering of
the computations performed by the traditional approach. Thus, it presents the
same computational cost. The reordering reduces notably the number of sweeps
through the matrix (and, therefore, the number of memory accesses) as well as
yields a much more balanced workload distribution in a parallel execution [14].

This method can also be carefully designed to exploit the symmetric structure
of the matrix and produce in-place results.

Figures 1 and 2 show two blocked GJE-based algorithms using the FLAME
notation [15][16]. There, m(·) stands for the number of rows of its argument;
triu(·) returns the upper triangular part of a matrix; and “!” specifies blocks
in the lower triangular part of the matrix, which are not referenced. We believe
the rest of the notation is intuitive. Next to each operation, we provide the name



Algorithm: [A] := GJEblk v2(A)

Partition A →

„

ATL ATR

! ABR

«

where ATL is 0 × 0 and ABR is n × n

while m(ATL) < m(A) do

Determine block size b

Repartition

„

ATL ATR

! ABR

«

→

0

@

A00 A01 A02

! A11 A12

! ! A22

1

A

where A11 is b × b

A11 := chol(A11) POTRF
triu(A11) := triu(A−1

11
) TRTRI

A01 := A01 · A11 TRMM
A00 := A00 + A01 · AT

01 SYRK
A01 := A01 · A11 TRMM
A12 := A

−T

11
· A12 TRMM

A22 := A22 − A
T
12 · A12 SYRK

A02 := A02 − A01 · A12 GEMM
A12 := −(A11 · A12) TRMM
A11 := A11 · A

T
12 LAUUM

Continue with

„

ATL ATR

! ABR

«

←

0

@

A00 A01 A02

! A11 A12

! ! A22

1

A

endwhile

Figure 2. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 2).

of the BLAS kernel that is employed to perform the corresponding operation. In
both algorithms the inverse overwrites the initial matrix.

Up to eight operations are carried out at each iteration of the algorithm in
Figure 1. Two factors will limit the performance of its parallel implementation.
First, data dependencies serialize the execution of most of the operations. Sec-
ond, except the update of block A00, the computations involve uniquely blocks
of reduced size (taking into account that, for performance reasons, the value of
the block size b is chosen to be small compared with n). This limits the inherent
parallelism of the variant, specially during the first iterations of the loop, when
A00 is also a small block.

Figure 2 shows a second variant of the GJE algorithm where all the elements
of the upper part of the matrix are updated at each iteration. This results in
a constant computational effort during the iterations. Again, data dependen-



cies serialize the execution of most operations. Thus, parallelism can only be
extracted from within the invocation of single operations. In this variant, the
updates of blocks A00 and A22 concentrate most of the computations, while
the rest of operations involve small blocks. This implementation presents two
advantages respect the previous variant:

– It does not require any additional work space.
– The computational cost of each iteration is constant.

5 High performance implementations

5.1 Implementations based on the Cholesky factorization

The algorithm based on the Cholesky factorization for the computation of the
inverse of an SPD matrix (see Section 4.1) is composed of three steps that must
be executed in order. This means that parallelism can only be extracted inside
the execution of each step.

The Intel MKL library [17] offers kernels for the Cholesky factorization of an
SPD matrix (routine potrf, Step 1) and the inversion from its triangular factors
(routine potri, Steps 2 and 3). The use of a multi-thread version of MKL offers
parallelism and efficiency for the execution of both routines on a multi-core CPU.

5.2 Implementations based on the Gauss-Jordan elimination

In this subsection we describe the two variants of the GJE algorithm introduced
in Section 4.

In both variants, most of the computations are cast in terms of matrix-
matrix products. In particular, the operation that involves a higher number of
flops is a symmetric rank-k update (a special case of the matrix-matrix product).
The MKL library offers high performance implementations of this computational
kernel as well as the remaining operations present in algorithms GJEBLK V 1 and
GJEBLK V 2. Routines GJE v1 and GJE v2 implement those algorithms using
MKL kernels. Parallelism is obtained, once more, within the execution of each
single operation invoking the multi-threaded version of MKL.

6 Experimental results

In this section we evaluate the performance and scalability of the implementa-
tions presented in Section 5.

All experiments in this section were performed using IEEE single precision
arithmetic. Results are shown for SPD matrices of dimension 1,000, . . . , 15,000.
Different algorithmic block-sizes were tested (1024, 512, 256, 128, 64 and 32)
but, for simplicity, we only report the performance obtained with the optimal
algorithmic block-size.

The platform employed at the experiments consists of four Intel Xeon X7550
processors (with 8 cores per processor) running at 2.0 GHz. More details from



the hardware can be found in Table 1. Kernels from the Intel MKL 11.0 multi-
threaded implementation of BLAS and LAPACK are used for most of the com-
putations.

Processors #cores Freq. L2 Memory
(GHz) (MB) (GB)

Intel Xeon X7550 (8×4) 32 2.0 18 124

Table 1. Hardware employed in the experiments.
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Figure 3. Performance of the matrix inversion codes.

Figure 3 shows the performance attained by the LAPACK and the GJE
based implementations described in Section 5 using 32 threads (one thread per
core on the target platform). The implementation of the first variant (GJE V1)
is notoriously more efficient than LAPACK, specially for large matrices (e.g.,
it is approximately 8× faster for matrices of dimension 15,000). However, the
best performance is obtained by the implementation of the second variant of
the algorithm (GJE V2). It achieves more than 300 GFLOPS for matrices of
dimension 15,000, being more than 10× faster than LAPACK. To sum up, both
GJE implementations offer better performance than LAPACK but, due to the
properties of the second variant, its implementation renders a higher efficiency.

Figure 4 shows the results obtained by the GJE V1 implementation using 1,
2, 4, 8, 16 and 32 threads. The use of more threads increments the performance
considerably, except for the inversion of matrices of dimension up to 8,000 using
more than 16 threads. These results demonstrate the scalability of GJE V1.
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Figure 4. Performance of the matrix inversion using the GJE V1 version.
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Figure 5. Performance of the matrix inversion using the GJE V2 version.



Finally, Figure 5 is the analogous for the GJE V2 variant. Again the results
obtained demonstrate the scalability of the developed implementation.

7 Concluding remarks

We have studied the inversion of symmetric positive definite matrices. This op-
eration appears in model reduction and requires a high computational effort.
This asks for the use of high performance architectures like multi-core CPUs.
The study includes the evaluation of two different algorithms, the traditional
algorithm based on the Cholesky factorization and the GJE algorithm, more
suitable for parallel architectures.

Several implementations are presented for each algorithm and the studied
architecture, which extract parallelism from computational kernels in multi-
threaded implementations of BLAS, like Intel MKL.

Experimental results demonstrate that higher performance is attained by
the routines based on the GJE algorithm. This algorithm exhibits a remarkable
scalability in all its implementations.
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