DISJOINTNESS PRESERVING MAPPINGS BETWEEN BSE DITKIN ALGEBRAS *

JUAN J. FONT ${ }^{\dagger}$

Abstract

Let A and B be regular Banach function algebras. A linear map T defined from A into B is said to be disjointness preserving or separating if $f \cdot g \equiv 0$ implies $T(f) \cdot T(g) \equiv 0$ for all $f, g \in A$. We prove that if there exists a disjointness preserving bijection between two BSE Ditkin algebras with a BAI, then they are isomorphic as algebras. As a corollary we can deduce that two of these algebras are algebraically isomorphic if there exists a surjective isometry between them for the supremum norm.

1.- Introduction.

Since the 40 's, when disjointness preserving mappings began to be used, many authors have studied them on several contexts. Among others, on Banach lattices (see e.g. [1], [2] or [6]), on spaces of continuous functions (see e.g. [14], [3], [7], [15] or [12]), on group algebras of locally compact Abelian groups ([8]), on Fourier algebras ([10] and [20]) and on some others (see e.g. [16], [17] or [5]).

In [9], we extended the definition of disjointness preserving mappings to the class of regular Banach function algebras. Let us recall that a linear map T defined from a regular Banach function algebra A into such an algebra B is said to be disjointness preserving or separating if $f \cdot g \equiv 0$ implies $T(f) \cdot T(g) \equiv 0$ for all $f, g \in A$.

In [8] we proved that the existence of a disjointness separating bijection between the group algebras of two locally compact Abelian groups implies that these algebras are algebraically isomorphic. A similar result was obtained

[^0]in [10] (resp. [20]) for Fourier algebras (resp. generalized Fourier algebras) of amenable locally compact groups.

In this paper we extend the above results to a wider class of regular Banach function algebras which includes group algebras and Fourier algebras: the class of BSE Ditkin algebras with a BAI (bounded approximate identity). Let us recall that BSE algebras were introduced in [21] (see the definition in section 3) motivated by the Bochner-Schoenberg-Eberlein characterization of the Fourier-Stieltjes transforms of measures on a locally compact abelian group. BSE Ditkin algebras with a BAI has recently attracted the attention of some authors. For example, one of the main results in [22] consists of an abstract analog of Cohen's Idempotent Theorem for such type of Banach algebras.

We prove here that if there exists a disjointness preserving bijection between two BSE Ditkin algebras with a BAI, then they are isomorphic as algebras. As a corollary we can deduce that two BSE Ditkin algebras with a BAI are algebraically isomorphic if there exists a surjective supremum norm isometry between them.

2.- Background.

Let $(A,\|\cdot\|)$ be a commutative Banach algebra which may or may not have an identity element. Let Φ_{A} be the (locally compact) structure space of A. The Gelfand transform of $f \in A$ is denoted by \hat{f}. \hat{A} will stand for the point-separating subalgebra of $C_{0}\left(\Phi_{A}\right)$ consisting of all $\hat{f}, f \in A$.

Next we gather the main results concerning disjointness preserving maps between regular Banach function algebras, which can be found in [9]:

In the sequel, let A and B be regular semisimple commutative Banach algebras, which is to say, regular Banach function algebras. Associated with a disjointness preserving map $T: A \longrightarrow B$, we can define a linear mapping $\hat{T}: \widehat{A} \longrightarrow \widehat{B}$ as $\hat{T}(\hat{f}):=\widehat{T(f)}$ for every $f \in A$. Since A and B are semisimple, it is easy to check that T is disjointness preserving if and only if \hat{T} is disjointness preserving. In like manner, T is injective (resp. surjective) if and only if \hat{T} is injective (resp. surjective).

If $\gamma \in \Phi_{B}$, let $\delta_{\gamma} \circ \hat{T}: \widehat{A} \rightarrow \mathbf{C}$ be the functional defined as $\left(\delta_{\gamma} \circ \hat{T}\right)(\hat{f}):=$ $\hat{T}(\hat{f})(\gamma)$ for all $f \in A$.

In general, a disjointness preserving map $T: A \longrightarrow B$ induces a continuous mapping h of Φ_{B} into $\Phi_{A} \cup\{\infty\}$, which may make no sense if A and B are
not regular. We call h the support map of T. If T is continuous, then it is a weighted composition map; i.e., $\left(\delta_{\gamma} \circ \hat{T}\right)(\hat{f})=\hat{T}(\hat{f})(\gamma)=\kappa(\gamma) \hat{f}(h(\gamma))$ for all $\gamma \in \Phi_{B}$ and all $f \in A$, where the weight function $\kappa: \Phi_{B} \rightarrow \mathbf{C}$ is continuous, and the range of h is contained in Φ_{A}. If, in addition, T is surjective, then the point-separating property of \widehat{B} easily implies that κ is nonvanishing on Φ_{B}.

The main result in [9] is the following:
Theorem 1 Let $T: A \longrightarrow B$ be a disjointness preserving bijection. If A satisfies Ditkin's condition (i.e., if A is a Ditkin algebra), then

1. T is continuous
2. T^{-1} is disjointness preserving.
3. If also B satisfies Ditkin's condition, then the support map of T, h, is a homeomorphism of Φ_{A} onto Φ_{B}.

As a consequence of this theorem and the above paragraphs, if there exists a disjointness preserving bijection T of A onto B, then $\hat{T}(\hat{f})(\gamma)=\kappa(\gamma) \hat{f}(h(\gamma))$ for all $f \in A$ and all $\gamma \in \Phi_{B}$. Since T^{-1} is also disjointness preserving and, consequently, continuous, we can write $\hat{T}^{-1}(\hat{g})(\zeta)=\Psi(\zeta) \hat{g}\left(h^{-1}(\zeta)\right)$ for all $g \in B$ and all $\zeta \in \Phi_{A}$, where h^{-1} can be proved to be the inverse of the homeomorphism h. We will call $\kappa \in C\left(\Phi_{B}\right)$ and $\Psi \in C\left(\Phi_{A}\right)$ the weight functions associated to T.

3.- The results.

Let \mathcal{A} be a semisimple commutative Banach algebra. A multiplier T on \mathcal{A} is a bounded linear operator on \mathcal{A} into itself which satisfies $T(f \cdot g)=$ $f \cdot T(g)=T(f) \cdot g$ for all $f, g \in \mathcal{A} . M(\mathcal{A})$ denotes the commutative Banach algebra consisting of all multipliers on \mathcal{A}. By [18, Corollary 1.2.1], we may identify $M(\mathcal{A})$ with the normed algebra of all bounded continuous functions ϕ on $\Phi_{\mathcal{A}}$ such that $\phi \hat{\mathcal{A}} \subset \hat{\mathcal{A}}$. It is then apparent that multipliers are examples of disjointness preserving mappings.

Theorem 2 Let A and B regular semisimple commutative Banach algebras. Then A and B are (algebra) isomorphic if and only if there exists a continuous disjointness preserving bijection between them whose (associated) weight functions are multipliers.

Proof. Let us suppose that there exists a continuous disjointness preserving bijection T of A onto B. First we claim that $\left(\hat{g} \circ h^{-1}\right) \in \widehat{A}$ for all $g \in B$. To prove this, let $\zeta \in \Phi_{A}$ and $f \in A$ such that $\hat{f}(\zeta)=1$. Hence

$$
\begin{aligned}
1=\hat{f}(\zeta) & =\hat{T}^{-1}(\hat{T}(\hat{f}))(\zeta) \\
& =\Psi(\zeta) \cdot \hat{T}(\hat{f})\left(h^{-1}(\zeta)\right) \\
& =\Psi(\zeta) \cdot \kappa\left(h^{-1}(\zeta)\right) \cdot \hat{f}\left(h\left(h^{-1}(\zeta)\right)\right) \\
& =\Psi(\zeta) \cdot \kappa\left(h^{-1}(\zeta)\right)
\end{aligned}
$$

that is, $\Psi(\zeta) \cdot \kappa\left(h^{-1}(\zeta)\right)=1$ for all $\zeta \in \Phi_{A}$. On the other hand, from the fact that \widehat{B} is an ideal in $M(B)$ (see [18]) and since, by hypothesis, $\kappa: \Phi_{B} \rightarrow \mathbf{C}$ belongs to $M(B)$, we infer that $\kappa \cdot \kappa \cdot(\hat{f} \circ h)$ belongs to \widehat{B} for every $f \in A$. Consequently,

$$
\begin{aligned}
\hat{T}^{-1}(\kappa \cdot \kappa \cdot(\hat{f} \circ h))(\zeta) & =\Psi(\zeta) \cdot \kappa\left(h^{-1}(\zeta)\right) \cdot \kappa\left(h^{-1}(\zeta)\right) \cdot \hat{f}\left(h\left(h^{-1}(\zeta)\right)\right) \\
& =\kappa\left(h^{-1}(\zeta)\right) \cdot \hat{f}(\zeta)
\end{aligned}
$$

for all $\zeta \in \Phi_{A}$. This implies that the function $\left(\kappa \circ h^{-1}\right) \cdot \hat{f}$ belongs to \widehat{A} for all $f \in A$, which is to say that $\left(\kappa \circ h^{-1}\right)$ belongs to $M(A)$. Hence, since \hat{A} is an ideal in $M(A)$ and the function $\Psi \cdot\left(\hat{g} \circ h^{-1}\right)$ belongs to \widehat{A}, we have that $\left(\kappa \circ h^{-1}\right) \cdot \Psi \cdot\left(\hat{g} \circ h^{-1}\right)=\left(\hat{g} \circ h^{-1}\right)$ belongs to \hat{A} for all $g \in B$.

In like manner, we can prove that $\hat{f} \circ h$ belongs to \widehat{B} for all $f \in A$. Hence, it is now clear, since $h: \Phi_{B} \longrightarrow \Phi_{A}$ is a homeomorphism, that the mapping $\hat{T}_{h}: \widehat{A} \longrightarrow \widehat{B}$, defined as $\hat{T}_{h}(\hat{f}):=\hat{f} \circ h$, is a surjective algebra isomorphism, which, by semisimplicity, provides the desired algebra isomorphism of A onto B.

The converse is clear.
Theorem 3 Let A and B be Ditkin algebras. Then A and B are (algebra) isomorphic if and only if there exists a disjointness preserving bijection between them whose weight functions are multipliers.

Proof. Combine Theorems 1 and 2.
Next we show that Ditkin algebras with a BAI have local units thanks to the Cohen Factorization Theorem ([13]).

Proposition 1 Let A be a Ditkin algebra which has an approximate identity of bound b. Then for each compact $K \subset \Phi_{A}$ and each $\epsilon>0$ there exists $k \in A$ such that \hat{k} has compact support, $\hat{k} \equiv 1$ on K and $\|k\|<b+\epsilon$.

Proof. Since A is regular, we can find $f \in A$ such that $\hat{f} \equiv 1$ on K. By Cohen Factorization Theorem, given $\delta>0$, we can write $f=f_{1} f_{2}$, where $f_{1}, f_{2} \in A,\left\|f_{1}\right\| \leq b$ and $\left\|f-f_{2}\right\|<\delta$. Hence, if we define $g_{1}:=f_{1}-f_{1}\left(f-f_{2}\right)$, then $\hat{g}_{1} \equiv 1$ on K and $\left\|g_{1}\right\|<b(1+\delta)$. By [19, p. 205], we know that there exists $g_{2} \in A$ such that $\hat{g_{2}}$ has compact support and $\left\|g_{1}-g_{2}\right\|<\delta$. Hence we can now define the following function in A :

$$
k=g_{2} \sum_{n=0}^{\infty}\left(g_{1}-g_{2}\right)^{n} .
$$

It is apparent that \hat{k} has compact support and that, if $x \in K$, then

$$
\hat{k}(x)=\hat{g}_{2}(x) \frac{1}{1-\hat{g}_{1}(x)+\hat{g}_{2}(x)}=1 .
$$

Furthermore, by choosing an appropiate δ,

$$
\|k\| \leq \frac{b(1+2 \delta)}{1-\delta}<b+\epsilon
$$

as was to be proved.

Let A be a commutative Banach algebra. A complex-valued function κ on $\Phi_{\mathcal{A}}$ is said to satisfy the BSE-condition if there exists $C>0$ such that, for every finite collection c_{1}, \ldots, c_{n} of complex numbers and $\alpha_{1}, \ldots, \alpha_{n}$ in $\Phi_{\mathcal{A}}$,

$$
\left|\sum_{j=1}^{n} c_{j} \kappa\left(\alpha_{j}\right)\right| \leq C\left\|\sum_{j=1}^{n} c_{j} \alpha_{j}\right\|_{A^{*}}
$$

where A^{*} denotes the dual space of A. This condition is motivated by the Bochner-Schoenberg-Eberlein theorem, which characterizes the Fourier-Stieltjes transforms of measures on a locally compact abelian group. A group algebra A is called a BSE-algebra ([21]) if the continuous functions on $\Phi_{\mathcal{A}}$ satisfying the BSE-condition are precisely the functions of the form \hat{w} where $w \in M(A)$.

Lemma 1 Let A be a Ditkin algebra with BAI and B a BSE Ditkin algebra. Let $T: A \longrightarrow B$ be a disjointness preserving bijection. Then the weight function κ belongs to $M(B)$.

Proof. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a subset of $\Phi_{\mathcal{B}}$ and $\epsilon>0$. By Proposition 1, there exists $f \in A$ such that $\|f\|<b+\epsilon$ and $\hat{f}\left(h\left(\alpha_{i}\right)\right)=1$ for $i=1, \ldots, n$.

Let $\left\{c_{1}, \ldots, c_{n}\right\} \subset \mathbf{C}$. Then, since \hat{T} is continuous (Theorem 1 (1)), we have

$$
\begin{aligned}
\left|\sum_{i=1}^{n} c_{i} \cdot \kappa\left(\alpha_{i}\right)\right| & =\left|\sum_{i=1}^{n} c_{i} \cdot \hat{T}(\hat{f})\left(\alpha_{i}\right)\right| \\
& \leq\|\hat{T}(\hat{f})\|\left\|\sum_{i=1}^{n} c_{i} \delta_{\alpha_{i}}\right\|_{A^{*}} \\
& \leq\|\hat{T}\|(b+\epsilon)\left\|\sum_{i=1}^{n} c_{i} \delta_{\alpha_{i}}\right\|_{A^{*}}
\end{aligned}
$$

Consequently, κ satisfies the BSE-condition and, as B is a BSE algebra, $\kappa \in$ $M(B)$.

Theorem 4 Let A and B be BSE Ditkin algebras with BAI. Then A and B are algebra isomorphic if and only if there exists a disjointness preserving bijection between them.

Proof. It is a straightforward consequence of Lemma 1 and Theorem 3.

Corollary 1 Let A and B be BSE Ditkin algebras with BAI. Then A and B are algebra isomorphic if and only if \hat{A} and \hat{B} are $\|\cdot\|_{\infty}$-isometric; i.e., there exists a linear bijection T of A onto B such that $\|\hat{f}\|_{\infty}=\|\hat{T}(\hat{f})\|_{\infty}$ for all $f \in A$.

Proof. By [4, Theorem 4.1 and Lemma 2.1]) we know that

$$
\partial B=\bigcup_{\zeta \in \partial A}\left\{\gamma \in \Phi_{B}:|\hat{f}(\zeta)|=|\hat{T}(\hat{f})(\gamma)| \text { for all } f \in A\right\}
$$

where ∂A and ∂B stand for the Shilov boundaries of \hat{A} and \hat{B} respectively. But, since \hat{A} is a regular subalgebra of $C_{0}\left(\Phi_{A}\right)$, it is well known that the Shilov boundary of \hat{A} coincides with Φ_{A}. Hence, we indeed have

$$
\Phi_{B}=\bigcup_{\zeta \in \Phi_{A}}\left\{\gamma \in \Phi_{B}:|\hat{f}(\zeta)|=|\hat{T}(\hat{f})(\gamma)| \text { for all } f \in A\right\}
$$

The remainder of the proof consists of checking that T is disjointness preserving and applying Theorem 4. Assume, contrary to what we claim, that there are $\hat{f}, \hat{g} \in A$ with disjoint cozero sets such that $\hat{T}(\hat{f}) \cdot \hat{T}(\hat{g}) \not \equiv 0$. Let us choose $\gamma_{0} \in \Phi_{B}$ such that $\left|\hat{T}(\hat{f})\left(\gamma_{0}\right)\right|>0$ and $\left|\hat{T}(\hat{g})\left(\gamma_{0}\right)\right|>0$. In virtue of the paragraph above, there exists $\zeta_{0} \in \Phi_{A}$ such that $\left|\hat{f}\left(\zeta_{0}\right)\right|=\left|\hat{T}(\hat{f})\left(\gamma_{0}\right)\right|$ for all $f \in A$. Since the cozero sets of \hat{f} and \hat{g} are disjoint, we have that either $\hat{f}\left(\zeta_{0}\right)=0$ or $\hat{g}\left(\zeta_{0}\right)=0$, which yields that either $\hat{T}(\hat{f})\left(\gamma_{0}\right)=0$ or $\hat{T}(\hat{f})\left(\gamma_{0}\right)=0$. This contradiction proves that T is disjointness preserving.

Remark 1 The above corollary is not true for general Banach function algebras. Indeed, H^{∞}, the Banach algebra of bounded analytic functions on the open unit disk, and H_{0}^{∞}, the subalgebra of all elements in H^{∞} which vanish at the origin, are isometric but are not algebraically isomorphic.

A similar situation can be found in [11], where the authors provide two isometric semisimple commutative Banach algebras which are not isomorphic as Banach algebras.

References

[1] Y. Abramovich, Multiplicative representation of disjointness preserving operators. Indag. Math. 45 (1983), 265-279.
[2] Y. Abramovich and A.K. Kitover, Inverses of disjointness preserving operators. Mem. Amer. Math. Soc. n. 679 (2000).
[3] J. Araujo, E. Beckenstein and L. Narici, Biseparating maps and homeomorphic realcompactifications. J. Math. Anal. Appl. 192 (1995), 258-265.
[4] J. Araujo and J.J. Font, Linear isometries between subspaces of continuous functions. Trans. Amer. Math. Soc. 349 (1997), 413-428.
[5] J. Araujo and L. Dubarbie, Biseparating maps between Lipschitz function spaces. Preprint.
[6] W. Arendt and D.R. Hart, The spectrum of quasi-invertible disjointness preserving operators. J. Funct. Anal. 68 (1986), 149-167.
[7] J.J. Font and S. Hernández, Separating maps between locally compact spaces. Arch. Math. (Basel), 63 (1994), 158-165.
[8] J.J. Font and S. Hernández, Automatic continuity and representation of certain linear isomorphisms between group algebras. Indag. Math., 6 (4) (1995), 397-409.
[9] J.J. Font, Automatic continuity of certain linear isomorphisms between regular Banach function algebras. Glasgow Math., 77 (1998), 333-343.
[10] J.J. Font, Disjointness preserving mappings between Fourier algebras. Colloq. Math., 39 (1997), 179-187.
[11] O. Hatori, T. Miura and H. Oka, An example of multiplicatively spectrum-preserving maps between non-isomorphic semi-simple commutative Banach algebras. Nihonkai Math. J., 18 (2007), 11-15.
[12] S. Hernández, E. Beckenstein and L. Narici, Banach-Stone theorems and separating maps. Manuscripta Math., 86 (1995), 409-416.
[13] C. Herz, Harmonic analysis for subgroups. Ann. Inst. Fourier, 23 (1973), 91-123.
[14] K. Jarosz, Automatic continuity of separating linear isomorphisms. Canad. Math. Bull., 33 (2) (1990), 139-144.
[15] J.S. Jeang and N. C. Wong, Weighted composition operators of $C_{0}(X)$'s. J. Math. Anal. Appl., 201 (3) (1996), 981-993.
[16] A. Jiménez-Vargas, Disjointness preserving operators between little Lipschitz algebras. J. Math. Anal. Appl., 337 (2) (2008), 984-993.
[17] A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherallymultiplicative maps. Acta Math. Sinica (Eng. Ser.), 24 (8) (2008), 1233-1242.
[18] R. Larsen, An introduction to the theory of multipliers. Springer-Verlag, Berlin (1971).
[19] R. Larsen, Banach algebras: An introduction. Marcel Dekker (1973).
[20] M.S. Monfared, Extensions and isomorphisms for the generalized Fourier algebras of a locally compact group. J. Funct. Anal., 198 (2003), 413444.
[21] S.E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type theorem. Proc. Amer. Math. Soc., 110 (1990), 149-158.
[22] A. Ulger, Multipliers with closed range on commutative semisimple Banach algebras. Studia Math., 153 (2002), 59-80.

Departamento de Matemáticas, Universidad Jaume I, Campus Riu Sec, Castellón, Spain.
E-mail address: font@mat.uji.es

[^0]: *2000 Mathematics Subject Classification: 43A15, 46J10, 47B48.
 ${ }^{\dagger}$ Research partially supported by the Spanish Ministry of Science and Education (Grant number MTM2008-04599), and by Bancaixa (Projecte P1-1B2008-26).

