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Abstract
In traditional machining operations, cutting parameters are usually selected

prior to machining according to machining handbooks and user’s experience.
However, this method tends to be conservative and sub-optimal since part ac-
curacy and non machining failures prevail over machining process efficiency. In
this paper, a comparison between traditional cutting parameter optimisation by an
expert machinist and an experimental optimisation procedure based on Soft Com-
puting methods is conducted. The optimisation procedure presented is composed
of two steps: (1) modelling the process variables of interest and (2) optimising a
multi-objective function to reach a trade-off among production rate, cutting costs
and part accuracy. The first step applies an Adaptive Neuro-fuzzy Inference Sys-
tem (ANFIS) to model the process by extracting rules from experimental data.
The second step applies Genetic Algorithms to optimise the multi-objective func-
tion which is defined by an overall desirability function approach. The proposed
methodology increased the machining performance in 6.1% and improved the
understanding of the machining operation through the ANFIS models.
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2 J.V. Abellan-Nebot

1 Introduction

Metal cutting is one of the important and widely used manufacturing processes in en-
gineering industries. The study of metal cutting focuses, among others, on the features of
tools, input work materials, and machine parameter settings influencing machining process
efficiency and output quality characteristics. A significant improvement in machining pro-
cess efficiency may be obtained by process parameter optimisation that identifies and deter-
mines the regions of critical process control factors leading to desired outputs or responses
with lower manufacturing cost (Mukherjee and Ray, 2006). However, in traditional Com-
puter Numerical Control (CNC) systems machining parameters are usually selected prior to
machining according to machining handbooks or user’s experience, which is a conservative
and sub-optimal procedure to assure part quality specifications without machining failure.

In order to overcome the limitations of traditional cutting parameter selection, exper-
imental process parameter optimisation procedures should be applied in industry. These
procedures are composed of two steps: (1) modelling of process variables relationship
through experimentation, and (2) determination of optimal or near-optimal cutting con-
ditions through optimisation algorithms. First step deals with representing the machining
process through mathematical models required for a later formulation of the process ob-
jective function. In the literature, several modelling techniques have been implemented
mainly based on statistical regressions (Cus and Balic, 2003), artificial neural networks
(Liu and Wang, 1999a; Chiang et al., 1995; Liu et al., 1999b; Zuperl and Cus, 2003; Chien
and Chou, 2001) and fuzzy set theory (Ip, Lau and Chan, 2003). Second step provides
optimal or near-optimal solution(s) to the overall optimisation problem formulated through
the previous mathematical models. In the literature, the main optimisation tools and tech-
niques applied are based on Taguchi method (Ghani, Choudhury and Hassan, 2004; Zhang,
Chen and Kirby, 2007), response surface design (Suresh, Rao and Deshmukh, 2002), ge-
netic algorithms (Liu, Zuo and Wang, 1999b; Suresh, Rao and Deshmukh, 2002; Cus and
Balic, 2003; Chien and Chou, 2001) and simulated annealing (Juan, Yu and Lee, 2003).

Cutting parameter optimisation in machining has been intensively studied in the liter-
ature as it can be stated in a recent review (Mukherjee and Ray, 2006). Liu and Wang
(1999a) proposed an adaptive control system based on two neural network models, a Back-
Propagation Neural Networks (BP NN) and an Augmented Lagrange Multiplier Neural
Network (ALM NN). The BP NN was used for modelling the state of the milling system,
using as a single input the feed parameter and sensing the cutting forces on-line. The ALM
NN was used for maximising the material removal rate which it was carried out adjusting
the feed rate. Chiang et al. (1995) presented a similar work for end-milling operations,
but surface roughness was also considered as constraint. Both research works were based
on theoretical formulas for training the neural networks and both applied an ALM NN for
optimisation. Liu, Zuo and Wang (1999b) also extended his previous work with a new
optimisation procedure based on a Genetic Algorithm (GA). Ghani, Choudhury and Has-
san (2004) optimised cutting parameters using a Taguchi’s Design of Experiments in end
milling operations. With a minimum number of trials compared with other approaches such
as a full factorial design, the methodology presented reveals the most significant factors and
interactions during cutting process which leads to choose the optimal conditions. A very
similar methodology was described by Zhang, Chen and Kirby (2007). However, both
methodologies do not permit to evaluate quadratic or non-linear relations between factors,
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and the analysis is restricted to the levels analysed in each factor. A more generic ap-
proach although more costly in experiments is based on Response Surface Model optimisa-
tion (RSMO). Suresh, Rao and Deshmukh (2002) used the Response Surface Methodology
(RSM) for modelling the surface roughness as a first and second-ordermathematical model.
The surface roughness optimisation was carried out through GA which are time consuming
and are more appropriate for optimising non-linear functions. Cus and Balic (2003) also
applied GA for optimising a multi-objective function based on minimum time necessary
for manufacturing, minimum unit cost and minimum surface roughness. All the process
models applied in their research were empirical formulaes from machining handbooks and
they were adjusted through regressions. More complex models have been also applied for
surface roughness and tool wear modelling to optimise off-line cutting parameters. Zuperl
and Cus (2003) also applied and compared feed-forward and radial basis neural networks
for learning a multi-objective function similar to the one presented by Cus and Balic (2003).
Choosing the radial basis networks due to their fast learning ability and reliability, they ap-
plied a large-scale optimisation algorithm to obtain the optimal cutting parameters. Chien
and Chou (2001) applied neural networks for modelling surface roughness, cutting forces
and cutting-tool life and applied a GA to find optimum cutting conditions for maximising
the material removal rate under the constraints of the expected surface roughness and tool
life. Ip, Lau and Chan (2003) applied fuzzy sets to optimise the material removal rate in
the manufacturing of sculptured surfaces and they demonstrated a material removal rate in-
crease of 41% in comparison with conventional constant feedrate. Juan, Yu and Lee (2003)
applied polynomial networks to model a roughing milling operation, and the production
cost was minimised using a simulated annealing method. Table 1 summaries recent re-
search works related to cutting parameter optimisation.

Table 1 Literature review on cutting parameter optimisation.
Modelling Optimisation Output

Reference Approach Approach Optimised Process
(Liu and Wang, 1999a) Feed-forward NN ALM NN MRR M
(Chiang et al., 1995) Feed-forward NN ALM NN MRR EM
(Liu et al., 1999b) Feed-forward NN GA MRR M
(Ghani et al., 2004) — TA CF, Ra EM
(Zhang et al., 2007) — TA Ra EM
(Suresh et al., 2002) Response Surface GA Ra T
(Cus and Balic, 2003) Statistical Regressions GA Unit cost, Ra T

Time
(Zuperl and Cus, 2003) Feed-forward and LSO MRR, Tl T

Radial Basis NN Ra
(Chien and Chou, 2001) Feed-forward NN GA MRR T
(Ip et al., 2003) Fuzzy Sets — MRR M
(Juan et al., 2003) Polynomial Networks SA Production cost M
MRR:Material Removal Rate; Tl: Tool-life; Ra: Surface Roughness; CF: Cutting Force;
GA: Genetic Algorithm; TA: Taguchi Approach; ALM NN: Augmented Lagrange Multiplier;
LSO: Large Scale Optimisation; SA: Simulated Annealing
T: Turning; EM: End Milling;M:Milling;

In this paper, the traditional optimisation procedure based on machinist’s expertise is
compared with an experimental cutting optimisation procedure based on Soft Computing
methods. The Soft Computing methods applied to model the process is the Adaptive Neuro-
Fuzzy Inference System (ANFIS), which describes the process knowledge in a form of If-
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Then rules. Unlike other methods presented in the literature such as Neural Networks (NN),
Fuzzy, Response Surface (see Table 1), ANFIS models let understand the process through
simple rules extracted from experimental data, so the expert machinist is able to learn new
knowledge from a particular machining operation and confirmwell-knownmachining prac-
tices/rules. The comparison is conducted in a finishing face-milling operation with Cubic
Boron Nitride (CBN) cutting tools, which are modern and expensive cutting tools. The
cutting parameter optimisation deals with a multi-objective function where surface rough-
ness, tool life, material removal rate and quality loss functions are considered through a
desirability function approach. The final optimisation algorithm is based on another soft
computing method called Genetic Algorithm (GA).

2 Machining Process Description

The machining process studied in this paper is presented in Figure 1, and it consists of a
face-milling operation on workpieces of hardened AISID3 steel (60HRc) with dimensions
250 × 250 mm. The experiments were conducted on a CNC machining centre suited for
mould and die manufacturing, and the cutting tool used was a face milling tool with Cubic
Boron Nitride (CBN) inserts. In order to generate a good surface finish and avoid run-out
problems, a single insert was mounted on a tool body with an effective diameter of 40 mm.

Figure 1 Machining process analysed: face-milling operation on workpieces of hardened AISI
D3 steel (60 HRc) with dimensions 250 × 250 mm and Cubic Boron Nitride (CBN) cutting inserts.

3 Definition of the Optimisation Problem

3.1 Objective Functions

Typically, three objective functions are considered in a cutting parameters optimisation
problem: material removal rate, surface roughness and cutting-tool life. Material Removal
Rate (MRR) is a measurement of productivity, and it can be expressed by equation (1),
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where Vc, fz and ap are the cutting speed, feed rate per tooth and depth of cut respectively.
Most of the cutting parameter optimisation procedures in roughing operations try to max-
imiseMRR constrained to cutting forces (Liu and Wang, 1999a). Surface roughness (Ra)
is the most important criterion for the assessment of the surface quality, and it is usually cal-
culated empirically through experiments. Surface roughness can be described as an empiri-
cal relationship among the cutting parameters Vc, fz , ap, and it is commonly minimised for
high quality machining operations (Zhang, Chen and Kirby, 2007; Suresh, Rao and Desh-
mukh, 2002). Cutting-tool life (T ) is the other important criterion for cutting parameters
selection, since several costs such as cutting-tool replacement cost and cutting-tool cost are
directly related with cutting-tool life. The tool life can be also described as an empirical re-
lationship among the cutting parameters Vc, fz , ap, and it is usually fixed to find a trade-off
between cutting-tool/replacement costs and production rate (Cus and Balic, 2003; Zuperl
and Cus, 2003). In addition to these three objective functions, the Taguchi’s loss quality
function (W ) can be another important objective function for finishing operations since the
surface roughness variability along part surface impacts on the final part quality. Consider-
ing a desired Ra value, the quality loss function is usually applied to estimate the cost of
manufacturing with a quality variation. AsRa,W is commonly minimised for high quality
machining operations. Therefore, the four objective functions which have to be taken into
consideration for an optimal cutting parameter selection can be listed as follows:

(1) MRR = 1000Vcfzap

(2) Ra = f(Vc, fz, ap)

(3) T = f(Vc, fz, ap)

(4) W = Arework
V 2

∆2

where ∆ = Ramax − Ratarget. Ramax and Ratarget define the maximum Ra by part
specifications and the Ra desired respectively. V 2 defines the mean squared deviation as
V 2 = ((Ratarget − y1)2 + + (Ratarget − yn)2)/n , with n the number of samples and
Arework is the part cost if the part is outside specifications. In several research works
(Suresh, Rao and Deshmukh, 2002; Cus and Balic, 2003), the surface roughness and cutting
tool life functions have been described by well-known empirical equations as follows:

(5) Ra = kV x1fx2

z ax3

p

(6) T =
KT

V α1fα2
z aα3

p

where k, x1, x2, x3, KT , α1, α2, α3 are empirical coefficients. However, for high quality
machining operations with CBN cutting tools, both equations may not provide a good esti-
mation. The main reason is that additional mechanisms such as vibrations, engagement of
the cutting tool or built up edge influence the surface roughness generationwhen machining
at very low feed speeds (Siller et al., 2008) . Furthermore, CBN tools have a different wear
process than traditional cutting-tools such as high speed steels, so equation (6) may not be
directly applied (Trent and Wright, 2000).
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6 J.V. Abellan-Nebot

3.2 Multi-Objective Function

The optimisation problem for the case study is defined as the optimisation of a multi-
objective function which is composed of the objective functions defined by Equations (1,
2, 3 and 4). Due to these objective functions are conflicting and incomparable, the multi-
objective function is defined using the desirability function approach. The desirability func-
tion approach is based on the idea that the optimal performance of a process that has multi-
ple performance characteristics is reached when the process operates under the most desir-
able performance values (NIST/SEMATECH, 2006). For each objective function Yi(x), a
desirability function di(Yi) assigns numbers between 0 and 1 to the possible values of Yi,
with di(Yi) = 0 representing a completely undesirable value of Yi and di(Yi) = 1 repre-
senting a completely desirable or ideal objective value. Depending on whether a particu-
lar objective function Yi is to be maximised or minimised, different desirability functions
di(Yi) can be used. A useful class of desirability functions was proposed by Derringer and
Suich (1980). Let Li and Ui be the lower and upper values of the objective function respec-
tively, with Li < Ui, and let Ti be the desired value for the objective function. Then, if an
objective function Yi(x) is to be maximised, the individual desirability function is defined
as

(7) di(Yi) =











0 If Yi(x) < Li
(

Yi−Li

Ti−Li

)w
If Li ! Yi(x) ! Ti

1 If Yi(x) > Ti

where the exponentw is a weighting factor which determines how important it is to hit the
target value. For w = 1, the desirability function increases linearly towards Ti; for w < 1,
the function is convex and there is less emphasis on the target; and for w > 1, the function
is concave and there is more emphasis on the target. If one wants to minimise an objective
function instead, the individual desirability is defined as

(8) di(Yi) =











1 If Yi(x) < Ti
(

Yi−Ui

Ti−Ui

)w
If Ti ! Yi(x) ! Ui

0 If Yi(x) > Ui

Figure 2 shows the individual desirability functions according to different w values.
The individual desirability functions are combined to defined the multi-objective function,
called the overall desirability of the multi-objective function. This measure of composite
desirability is the weighted geometric mean of the individual desirabilities for the objective
functions. The optimal solution (optimal operating conditions) can then be determined
by maximising the composite desirability. The individual desirabilities are weighted by
importance factors Ii. Therefore, the multi-objective function or the overall desirability
function to optimise is defined as:

(9) D = (d1(Y1)
I1 × d2(Y2)

I2 × · · · × dk(Yk)Ik)1/(I1+I2+···+Ik)

with k denoting the number of objective functions and Ii is the importance for the objective
function i (i = 1, 2, · · · , k).
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Figure 2 Individual desirability functions for minimising or maximising objective functions. The
weighting factor determines how the desirability function increases/decreases.

3.3 Constraints

Due to the limitations on the cutting process, manufacturers limit the operation range of
cutting parameters to avoid premature cutting-tool failures. Therefore, the cutting parame-
ter selection according to manufacturer specifications is constrained to:

(10) Vmin ! Vc ! Vmax fmin ! fz ! fmax ap ! amax

Surface roughness and quality loss specification are also considered as constraints that
can be expressed as

(11) Ra ! Raspec W ! Wmax

In addition, cutting power and force limitations are usual constraints, but they are more
commonly applied in roughing operations.

3.4 Summary of Optimisation Problem and Numerical Coefficients

The weights and the individual desirability coefficients for each objective function were
chosen according to machining process characteristics. First the weights were defined con-
sidering how the objective function increases or decreases as the ideal value is not matched.
In order to simplify the desirability functions, the weighting factor at each desirability func-
tion was set to 1, so all desirability functions were defined as linear functions where the
desirability increases linearly towards the target value. Secondly, the coefficients of im-
portance for each objective function were set according to machining requirements. For
the case study, it was assumed that the machining process requires as first objective a high
production rate (high MRR), a low cutting-tool costs (high T ) as a second objective, and
as a third and less important objective a high part quality (low Ra and low W ). In order
to determine the overall desirability function (the multi-objective function), a numerical
approximation of the relative importance among individual objective functions is required.
Although this estimation is subjective, it can be an easy and fast way to approximate the
cutting parameter selection to the near-optimal one. For a more accurate definition of multi-
objective functions it is required the definition of all machining costs, cutting-tools, labour
costs, product sale price, machine-tool operation cost, etc., which can be in some cases diffi-
cult to know. For the case study, the coefficient of importance for each desirability function
were set to 4, 1, 0.75, 0.75 for MRR, T , Ra and W respectively. Considering the maxi-
mum and minimum value of each objective function obtained analytically, the desirability
functions were defined as follows.
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• MRR desirability function

(12) d1(MRR) =
MRR − 390

2387− 390

MRRtarget = 2387 mm3/min. MRRminimum = 390 mm3/min. Importance
factor I1 = 4.

• Desirability function of Ra deviation objective function

(13) d2(W ) = d2(V
2) =

V 2 − 0.013

0.0001 − 0.013

V 2
target = 0.0001 µm2. V 2

maximum = 0.013 µm2. Importance factor I2 = 0.75.
Note that the desirability function of quality loss W for surface roughness can be
defined by the surface roughness deviation V 2 since Equation (4) relatesW with V 2

by a constant coefficient of Arework/∆2.

• Ra desirability function

(14) d3(Ra) =
Ra − 0.2

0.1 − 0.2

Ratarget = 0.1 µm. Ramaximum = 0.2 µm. Importance factor I3 = 0.75.

• Cutting-tool life desirability function.

(15) d4(T ) =
T − 6

46.7 − 6

Ttarget = 46.7 min. Tminimum = 6 min. Importance factor I4 = 1.

The multi-objective function or the overall desirability function to be optimised is:

(16) D = (d1(MRR)4 × d2(V
2)0.75

× d3(Ra)0.75
× d4(T )1)1/(4+0.75+0.75+1)

constrained to:

(17) 100m/min ! Vc ! 200m/min 0.04mm/rev ! fz ! 0.12mm/rev

(18) ap = 4mm Ra ! 0.2µm V 2 ! 0.013µm2

4 Parameter Optimisation based on an Expert Machinist

4.1 Methodology

Cutting tool parameters are traditionally chosen according to handbooks, cutting-tool
data catalogs and machinist’s experience. For a given cutting-tool and workpiece material,
a range of possible cutting-parameters are provided by the cutting-tool supplier, and the
machinist chooses the parameters within the admissible operation ranges using some well-
known practices in shop-floor. Some of these practices are:
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Figure 3 Parameter optimisation based on an expert machinist knowledge. Knowing product
specifications and using handbooks and catalogs, the expert selects the optimal cutting parameters.

• Higher cutting speeds increase surface roughness quality but decrease cutting tool
life.

• Higher cutting speeds decrease cutting tool life.

• Higher feed rates increase productivity as it is increased material removal rate.

• Higher feed rates decrease surface roughness quality.

• Higher feed rates decrease cutting-tool life.

• Higher axial depths of cut increase productivity.

• Higher axial depths of cut decrease cutting-tool life.

• Very low axial depths of cut burn the workpiece surface and generate a low surface
roughness quality decreasing cutting-tool life.

According to the final goal of the machining process, the machinist selects the best
cutting-tool parameters combination. For example, if the only important constraint was a
high cutting tool life, the machinist would select a low cutting speed, low feed rate and low-
medium axial depth. Figure 3 describes the typical optimisation process based on machinist
expertise.

4.2 Optimisation Results

As it was explained above for the case study (section 3.4), the MRR was considered the
most important objective function with an importance coefficient of 4 whereas less impor-
tant are tool-life, surface roughness and loss quality with importance coefficients of 1, 0.75
and 0.75 respectively. Considering only a maximum MRR value as an objective function,
the machinist would fix the maximum cutting speed and feed rate. However, although desir-
ability functions of Ra and W are less important, the machining process would require low
cutting speeds and low-medium feed rates in order to maximise them. In addition, the tool
life objective function which is also less important than MRR would require low cutting
speeds and low-medium feed rates. As the importance coefficient of the MRR objective
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function is four times more important than the others, and a medium feed rate could in-
crease the output of the objective functions surface roughness, loss quality and tool-life, the
expert machinist decided to fix the near-optimal cutting parameters at Vc = 200 m/min,
fz = 0.08 mm.

An experimentation was conducted in order to check the overall desirability function
at these cutting conditions, which are the near-optimal according to expert machinist’s rea-
soning. The experimental results showed a cutting tool life of T = 10.8 min, an average
surface roughness deviation of V 2 = 1.6× 10−3 µm2, a surface roughness of Ra = 0.135
µm and aMRR = 1592 mm3/min. The overall desirability was 0.505.

5 Parameter Optimisation based on AI

5.1 Methodology

The experimental cutting parameters optimisation methodology based on soft comput-
ing methods is shown in Figure 4. The first step of the methodology consists of an ex-
perimentation based on a Design of Experiments in order to obtain the performance of the
process in the cutting parameter region to be studied. After experimentation, the experimen-
tal data is used to model the process through an Adaptive Neuro-fuzzy Inference Systems
(ANFIS), a soft computing technique which can describe a process by a model using rules
extracted from experimental data. This technique lets extract knowledge from the process
in a If-Then form which can be used for understanding the process. An ANFIS model was
developed for each variable of interest: Ra, MRR, T and V 2. With these models, each
individual desirability function could be estimated by an ANFIS model, and the overall
desirability function could be defined by the individual desirability functions according to
equation (16). Finally, the cutting parameter optimisation was carried out through another
soft computing technique called Genetic Algorithms (GA) considering product and process
specifications.

Next subsections briefly review both soft computing methods: Adaptive Neural Fuzzy
Inference Systems and Genetic Algorithms.

5.1.1 Adaptive Neural Fuzzy Inference Systems

Adaptive-Network-based Fuzzy Inference System (ANFIS) is a method for the fuzzy
modelling procedure to learn information about a data set, in order to compute the member-
ship function parameters that best allow the associated fuzzy inference system to track the
given input/output data. This learning method works similarly to that of neural networks.
Using a given input/output data set, the membership function parameters of the fuzzy infer-
ence system are tuned using either a backpropagation algorithm alone, or in combination
with a least squares type of method. The parameters associated with the membership func-
tions will change through the learning process. In general, this type of modelling works
well if the training data presented for training the membership function parameters is fully
representative of the features of the data that the trained Fuzzy Inference System (FIS) is
intended to model.

ANFIS is functionally equal to the Takagi and Sugeno’s inference mechanism. This
type of inference system can be represented by an adaptable and hybrid neural network
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Figure 4 Parameter optimisation based on Soft Computing methods. ANFIS models are built
after conducting a Design of Experiments, and the If-Then rules extracted are verified by an expert
machinist. The ANFIS models are used to build the overall desirability function according to cutting
speeds and feed rates. A Genetic Algorithm is applied to find the optimal parameters considering
product and process specifications.

with 5 layers. Each layer represents an operation of the fuzzy inference mechanism. As-
suming an ANFIS structure defined with two inputs x and y and one output z (Figure 5),
the characteristics of each layer can be described as follows (Jang, 1993):

1. Layer 1, the fuzzy layer: Every node i in this layer is an adaptable node with a node
function

(19) O1
i = µAi

(x)

where x is the input to node i, andAi, is the linguistic label associated with this node
function. In other words, O1

i is the membership function of Ai, and it specifies the
degree to which the given x satisfies the quantifier Ai.

2. Layer 2, the product layer: Every node in this layer is a fixed node labelled
∏

which
multiplies the incoming signals and sends the product out. For instance,

(20) O2
i = wi = µAi

(x) × µBi
(y), i = 1, 2

Each node output represents the firing strength of a rule. The outputwi is the weight
function of the next layer.
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12 J.V. Abellan-Nebot

3. Layer 3, the normalised layer: Every node in this layer is a fixed node labelledN . Its
functions is to normalise the weight function in the following process:

(21) O3
i = w̄i =

wi

w1 + w2
, i = 1, 2

4. Layer 4, the de-fuzzy layer: Every node i in this layer is a adaptable node with a
node function. The output equation of this layer is the Takagi-Sugeno type output
w̄i(pim + qin + ri), where pi, qi and ri denote the linear parameters or so-called
consequent parameters of the node. The de-fuzzy relationship between the input and
output of this layer can be defined as follows:

(22) O4
i = w̄ifi = w̄i(pim + qin + ri), i = 1, 2

5. Layer 5, the total output layer: The single node in this layer is a fixed node labelled
∑

that computes the overall output as the summation of all incoming signals as

(23) O5
i =

∑

i

w̄ifi =

∑

i wifi
∑

i wi
, i = 1, 2

where O5
i denotes the layer 5 output.
















 

 







    







     

Figure 5 ANFIS structure defined with two inputs x and y and one output z. The nodes repre-
sented by squares are adaptable (their parameters are adjustable) whereas the others are fixed.

5.1.2 Genetic Algorithms

Genetic Algorithms (GAs) are search algorithms based on the mechanics of natural se-
lection and natural genetics, invented by Holland (1975), which can find the global optimal
solution in complex multidimensional search spaces. A population of strings, representing
solutions to a specified problem, is maintained by the GA. The GA then iteratively creates
new populations from the old by ranking the strings and interbreeding the fittest to create
new strings. So in each generation, the GA creates a set of strings from the previous ones,
occasionally adding random new data to keep the population from stagnating. The end re-
sult is a search strategy that is tailored for vast, complex, multimodal search spaces. GAs
are a form of randomised search, in that the way in which strings are chosen and combined
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is a stochastic process. This is a radically different approach to the problem solving meth-
ods used by more traditional algorithms, which tend to be more deterministic in nature such
as the gradient methods. However, although GA is an effective optimisation algorithm, it
usually takes a long time to find an optimal solution due to its slow convergence speed (Cus
and Balic, 2003).

Figure 6 Flowchart of a basic genetic algorithm. The recombination step to create a new popu-
lation is conducted by three genetic operators: reproduction/selection, crossover and mutation.

Figure 6 shows the iterative cycle of a basic genetic algorithm (adapted from Cus and
Balic (2003)). Firstly, an initial population of strings is created. There are two ways of
forming this initial population. The first consists of using randomly produced solutions
created by a random number generator, for example. This method is preferred for problems
about which no a priori knowledge exists or for assessing the performance of an algorithm.
The second method employs a priori knowledge about the given optimisation problem.
Using this knowledge, a set of requirements is obtained and solutions that satisfy those
requirements are collected to form an initial population. In this case, the GA starts the
optimisation with a set of approximately known solutions, and therefore convergence to
an optimal solution can take less time than with the previous method (Wang and Kusiak,
2000). The process then iteratively selects individuals from the population that undergo
some form of transformation via the recombination step to create a new population. The
new population is then tested to see if it fulfills some stopping criteria. If it does, then the
process halts, otherwise another iteration is performed.

The recombination step in GAs is inspired by the natural evolution process, and it is
basically conducted by three genetic operators: reproduction/selection, crossover and mu-
tation. The main characteristics of each operator are defined as follows (Wang and Ku-
siak, 2000):

Repositori institucional UJI
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• Reproduction/Selection: The aim of the selection procedure is to reproduce more of
individuals whose fitness values are higher than those whose fitness values are low.
The selection procedure has a significant influence on driving the search toward a
promising area and finding good solutions in a short time. However, the diversity
of the population must be maintained to avoid premature convergence and to reach
the global optimal solution. There are many different types of reproduction operators
such as roulette wheel selection, tournament selection, truncation selection, linear
ranking selection and exponential ranking selection (Cus and Balic, 2003).

• Crossover: This operation is considered the one that makes the GA different from
other algorithms, such as dynamic programming. It is used to create two new in-
dividuals (children) from two existing individuals (parents) picked from the current
population by the selection operation. There are several ways of doing this. Some
common crossover operations are one-point crossover, two-point crossover, cycle
crossover, and uniform crossover. One-point crossover is the simplest crossover op-
eration. Two individuals are randomly selected as parents from the pool of individ-
uals formed by the selection procedure and cut at a randomly selected point. The
tails, which are the parts after the cutting point, are swapped and two new individuals
(children) are produced. An example of one-point crossover is shown in Figure 6.

• Mutation: In this procedure, all individuals in the population are checked bit by
bit and the bit values are randomly reversed according to a specified rate. Unlike
crossover, this is a monadic operation. That is, a child string is produced from a
single parent string. The mutation operator forces the algorithm to search new areas.
Eventually, it helps the GA to avoid premature convergence and find the global opti-
mal solution. An example is given in Figure 6. The mutation operation is controlled
by the mutation rate.

The termination of GA could be done simply by counting if some prescribed number
of steps is reached, or by testing, if a termination criterion is fulfilled. An autonomous
stopping could be done by fitness function convergence testing or by homogeneity checking
of an entire population. If fitness function reaches global or some of local optima, then all
strings, because of preferring the best solution, tend to be equivalent. In this case, a high
degree of homogeneity could stop the procedure, or adapt GA parameters in order to move
searching of the solution to other areas of local optima as candidates for the global one (Jain
and Martin, 1998).

5.2 Design of Experiments

A full factorial 23 design of experiments with two factors and three levels per factor was
conducted to model the machining process and determine the optimal cutting parameters.
The factors considered in the experimentation were the feed per tooth (fz) and the cutting
speed (Vc). The radial depth of cut (ae) was considered constant, with a value of 31.25
mm to maximise the material removal rate and keep the cutting process in a steady-state.
The axial depth of cut (ap) was defined as constant (0.4 mm) since the machining opera-
tion studied was a finishing operation. For each experiment, the face-milling operation was
carried out until the cutting tool edge was worn (flank wear -Vb- higher than 0.3 mm, usual
value for finishing operations (ISO, 1989)) or the surface roughness was outside specifica-
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tions (Ra ≥ 0.2 µm). Table 2 shows the cutting conditions analysed and the experimental
results.
Table 2 Design of Experiments and experimental results.

Run Vc fz T MRR Ra V 2

DoE Scheme -N- (m/min) (mm) (min) (mm3/min) (µm) (µm2)
4 100 0.08 31.2 796 0.145 0.0027
5 100 0.04 43.4 398 0.121 0.0010
2 150 0.12 18.1 1790 0.177 0.0069
6 150 0.08 14.5 1194 0.134 0.0017
3 200 0.12 10.8 2387 0.201 0.0120
1 200 0.08 10.8 1592 0.135 0.0016
9 150 0.04 39.8 597 0.119 0.0006
7 200 0.04 20.3 796 0.143 0.0023
8 100 0.12 19.9 1194 0.169 0.0058

Minimum 10.8 398 0.119 0.0006
Maximum 43.4 2387 0.201 0.0120
Std Deviation 12.1 636.8 0.027 0.0037
Average 23.2 1193.8 0.149 0.0038

5.3 ANFIS Process Models

After experimentation, the experimental data was used to model the process through
Adaptive Neuro-Fuzzy Inference Systems (ANFIS). Due to the few experimental data, the
ANFIS models were initiated with two membership functions per each variable, represent-
ing the low and high variable value. The chosen membership function was the symmetric
gaussian function which is defined by two parameters: the mean and the variance. As there
are two variables (Vc and fz) with two possible membership functions (low and high), there
are four possible rules per each output variable. Therefore, to model each process output
variable, ANFIS defines four rules according to the combinations of variables and member-
ship functions. The output of each rule was defined as linear, so each output is composed of
three coefficients in the form of aVc + bfz + c. For each output variable, four rules define
the ANFIS model as follows:

(24) Rule 1 : If Vc = low and fz = low THEN Outputj = aVc + bfz + c

(25) Rule 2 : If Vc = low and fz = high THEN Outputj = dVc + efz + f

(26) Rule 3 : If Vc = high and fz = low THEN Outputj = gVc + hfz + i

(27)Rule 4 : If Vc = high and fz = high THEN Outputj = kVc + lfz + m

where Outputj can be the surface roughness, the cutting-tool wear state, the cutting-tool
life or the quality loss. The membership functions and rules were adapted to fit the experi-
mental data through a training procedure. The trainingwas based on the hybrid optimisation
procedure which is a combination of least-squares and backpropagation gradient descent
method and the training was stopped at 150 epochs. After training, each ANFIS process
model learnt the rules and membership functions which best describe the process. All rules
learnt were analysed by the expert machinist, in order to verify the process knowledge ex-
tracted by the soft computing technique. Although most of the rules learnt were expected
by the machinist, some of them were outside the expert machinist reasoning. With these
unexpected rules, the machinist improved his process knowledge. Table 3 shows the main
characteristics of the ANFIS models learnt. Table 4 shows the final ANFIS process models,
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with the initial and final membership function for each variable, the rules learnt and the
surface response. Table 5 shows the rules learnt after training each ANFIS model, with its
physical explanation and the machinist’s opinion.

Table 3 Characteristics of the Soft Computing methods applied.
ANFIS models
Inputs 2 Outputs 1
Rules 4 Training Hybrid optimisation
Input MF type Gaussian MF per input 2
Output MF type Linear MF per input 4
AND method Prod OR method Max
Defuzzification Weighted average
Genetic Algorithm
Number variables 2 Crossover fraction 0.8
Population size 20 Elite count 2
Stall generations Infinite Mutation function Gaussian
Stall time Infinite Selection function Stochastic
Generations 150 Initial ranges Vc = [100, 200]

fz = [0.04, 0.12]
MF: Membership Functions

5.4 Optimisation Results

After modelling the machining process, the final desirability function can be defined as
a function of Vc and fz . The optimal cutting parameter to maximise the overall desirability
can be obtained through an optimisation algorithm. A genetic algorithm with the main
characteristics shown in Table 3 was applied for cutting parameter optimisation. After
150 generations, the optimal cutting parameters were Vc = 165 m/min and fz = 0.11
mm, with an overall desirability function of 0.512. In order to test experimentally the
overall desirability function at the optimal cutting parameters, an experimental run with
these cutting conditions was conducted, and a final desirability value of 0.536was obtained.
Therefore, the theoretical results estimated a desirability increase of 10.1%, from 0.465 at
Vc = 200 m/min and fz = 0.08 mm (machinist’s approach) to 0.512 (soft computing
approach). However, the experimental results showed an increase of the overall desirability
function from 0.505 (machinist’s approach) to 0.536 (soft computing approach), which
means an increase of 6.1%. The prediction error on the overall desirability function from
10.1% to 6.1% could be explained due to modelling errors, especially in modelling surface
roughness and loss quality, which could be more complex than the estimated ones.

6 Conclusions

In this paper, a comparison between traditional cutting parameter optimisation using ex-
pert machinist knowledge and an experimental optimisation procedure based on Soft Com-
puting methods has been reported. The presented experimental optimisation procedure has
been composed of two steps. First, the modelling of the process variables of interest such as
material removal rate, surface roughness, cutting tool life and loss quality of part accuracy
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Table 4 ANFIS process models for surface roughness (Ra), Tool-life (T) ,material removal rate
(MRR) and loss quality (W)
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IF (Vc is low) and (fz is low) THENRa = 5.610−4Vc + 0.0024fz + 0.06

IF (Vc is low) and (fz is high) THENRa = −6.710−5Vc + 0.51fz + 0.11

IF (Vc is high) and (fz is low) THENRa = 1.8710−3Vc − 0.001fz − 0.027

IF (Vc is high) and (fz is high) THENRa = 2.510−4Vc + 1.7fz − 0.051
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Rules Learnt
IF (Vc is low) and (fz is low) THEN T = 0.6Vc − 0.49fz − 12.57

IF (Vc is low) and (fz is high) THEN T = 0.022Vc − 223.9fz + 47.38

IF (Vc is high) and (fz is low) THEN T = 0.074Vc + 0.223fz + 5.68

IF (Vc is high) and (fz is high) THEN T = 0.107Vc + 95.7fz − 21.4
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Rules Learnt
IF (Vc is low) and (fz is low) THENMRR = 2.83Vc + 58.28fz − 0.33

IF (Vc is low) and (fz is high) THENMRR = 13.59Vc − 57.34fz + 1.79

IF (Vc is high) and (fz is low) THENMRR = 2.82Vc + 145.5fz + 0.177

IF (Vc is high) and (fz is high) THENMRR = 13.61Vc − 143.8fz − 0.68
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Rules Learnt
IF (Vc is low) and (fz is low) THENW = 1.810−4Vc − 0.015fz − 0.017

IF (Vc is low) and (fz is high) THENW = −1.4610−4Vc + 0.046fz + 0.014

IF (Vc is high) and (fz is low) THENW = −1.5310−5Vc − 0.081fz + 0.0076

IF (Vc is high) and (fz is high) THENW = −5.410−5Vc + 0.254fz − 0.0063
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Table 5 Rules learnt after training each ANFIS model. Physical explanation and machinist’s opinion
Agreement with

Rules Learnt Description Physical Explanation Machinist

Ra
A
N
FI
S
m
od
el

IF (Vc is low) and (fz is low) THEN Low surface roughness for low cutting speeds and feeds. Low Vibrations / tooth marks Yes

Ra = 5.610−4Vc + 0.0024fz + 0.06 An increase of cutting speed increases roughness slightly Vibrations Not expected

IF (Vc is low) and (fz is high) THEN High roughness for low cutting speeds and high feeds Tooth marks Yes

Ra = −6.710−5Vc + 0.51fz + 0.11 An increase of feed increases roughness rapidly Tooth marks Yes

IF (Vc is high) and (fz is low) THEN High roughness for high cutting speeds and low feeds Vibrations Yes

Ra = 1.8710−3Vc − 0.001fz − 0.027 An increase of cutting speed increases roughness rapidly Vibrations Yes

IF (Vc is high) and (fz is high) THEN High roughness for high cutting speeds and high feeds Vibrations / tooth marks Yes

Ra = 2.510−4Vc + 1.7fz − 0.051 An increase of feed increases roughness rapidly Vibrations Yes

To
ol
-li
fe
A
N
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S
m
od
el IF (Vc is low) and (fz is low) THEN High tool life for low cutting speeds and feeds Cutting speed effects Yes

T = 0.6Vc − 0.49fz − 12.57 An increase in cutting speed increases tool-life slightly Cutting speed effects Not expected

IF (Vc is low) and (fz is high) THEN Medium tool life for low cutting speeds and high feeds Feed effects Yes

T = 0.022Vc − 223.9fz + 47.38 An increase of feed decreases tool life Higher chip thickness Yes

IF (Vc is high) and (fz is low) THEN Low tool life for high cutting speeds and low feeds Cutting speed effects Yes

T = 0.074Vc + 0.223fz + 5.68 An increase of cutting speed increases tool life slightly Cutting speed effects Not expected

IF (Vc is high) and (fz is high) THEN Low tool life for high cutting speeds and feeds Cut. speed effects / high chip thickness Yes

T = 0.107Vc + 95.7fz − 21.4 — —

M
RR

A
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IF (Vc is low) and (fz is low) THEN Low MRR for low cutting speeds and feeds Analytical Equation 1 Yes

MRR = 2.83Vc + 58.28fz − 0.33 — — —

IF (Vc is low) and (fz is high) THEN Medium MRR for low cutting speeds and high feeds Analytical Equation 1 Yes

MRR = 13.59Vc − 57.34fz + 1.79 — — —

IF (Vc is high) and (fz is low) THEN Medium MRR for high cutting speeds and low feeds Analytical Equation 1 Yes

MRR = 2.82Vc + 145.5fz + 0.177 — — —

IF (Vc is high) and (fz is high) THEN High MRR for high cutting speeds and feeds Analytical Equation 1 Yes

MRR = 13.61Vc − 143.8fz − 0.68 — — —

Lo
ss
qu
al
ity
A
N
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m
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el IF (Vc is low) and (fz is low) THEN Low loss quality for low cutting speeds and feeds Low vibrations / low tooth feed pass Yes

W = 1.8 × 10−4Vc − 0.015fz − 0.017 An increase in cutting speed increases loss quality slightly Low vibrations / low tooth feed pass Yes

IF (Vc is low) and (fz is high) THEN Medium loss quality for low cutting speeds and high feeds Tooth feed marks Yes

W = −1.46 × 10−4Vc + 0.046fz + 0.014 — — —

IF (Vc is high) and (fz is low) THEN Medium loss quality for high cutting speeds and low feeds Vibrations Yes

W = −1.53 × 10−5Vc − 0.081fz + 0.0076 An increase in cutting speed decreases loss quality slightly — Not expected

IF (Vc is high) and (fz is high) THEN Very high loss quality for high cutting speeds and feeds Vibrations and feed marks Yes

W = −5.4 × 10−5Vc + 0.254fz − 0.0063 — — —
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have been conducted by Adaptive Neuro-fuzzy Inference Systems. This soft computing ap-
proach models each process variable by rules extracted from the experimental data which
can be interpreted and verified by the expert machinist in order to have a better understand-
ing of the process. As a second step, it was defined a multi-objective function using the
desirability function approach and a Genetic Algorithm was applied to optimise the overall
desirability function and find the optimal cutting parameters which best define the trade-off
among production rate, cutting costs and part accuracy. The theoretical results predicted
an increase on the multi-objective function of 10.1% by the application of the experimental
cutting parameter approach presented in the paper instead of the parameter selection by the
expert machinist. After a validation run, the increase on the multi-objective function was
proved to be 6.1%. The error between theoretical and experimental results were assumed
to be due to modelling errors, especially in the surface roughness and loss quality models.

(a) (b)

Figure 7 (a) Mean population value and best sample at each generation during the optimisa-
tion by GA. (b) Comparison between the overall desirability function obtained by using the expert
machinist knowledge and the Soft Computing method proposed.
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