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Abstract

This paper analyzes the in!uence of new multi-
core and many-core architectures on Signal 
Processing. The article covers both the architec-
tural design and the programming models of 
current general-purpose multi-core processors 
and graphics processors (GPU), with the goal of 
identifying their possibilities and impact on sig-
nal processing applications. 

Keywords: Signal Processing, Multi-core proces-
sors, GPU, High Performance Computing, Paral-
lel programming 

1. Introduction

The current conception of Signal Processing is 
intimately linked with the type of computation 
required to perform the “Processing”. In a recent 
issue of the IEEE Signal Processing Magazine [1], 
José F.M. Moura, president of the Signal Process-
ing Society, noted: “As for processing, it compris-
es operations of representing, "ltering, coding, 
transmitting, estimating, detecting, inferring, 
discovering, recognizing, synthesizing, record-
ing, or reproducing signals by digital or analog 
devices, techniques, or algorithms, in the form of 
software, hardware, or "rmware”. 

The Impact of the Multi-core 
Revolution on Signal Processing

This de"nition emphasizes the strong depend-
ence between signal processing and the com-
putational media (digital or analogical, algo-
rithms, hardware devices, software, etc) used to 
conduct it. In particular, if we focus on Digital 
Signal Processing, processors (in a wide sense) 
represent the most widespread digital devices in 
applications within this "eld.
The increase of processors performance and 
other digital devices has opened the possibil-
ity of addressing increasingly complex prob-
lems in a short period of time. This has been 
exploited both in real-time applications that are 
common in Signal Processing as well as other 
Signal Processing applications that require the 
management of very large data sets and which 
cannot be tackled within a reasonable time 
without the help of advanced computational 
tools. In summary, the advances of the hardware 
architecture of digital devices, including digital 
processors, strongly in!uence the techniques 
used and results produced in the "eld of Signal 
Processing. Considering the computational me-
dia, the following systems can be identi"ed as 
the most used in Signal Processing during the 
past years: 

General-purpose microprocessors (as those 
present in desktop computers, servers or high 
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Second, as predicated by Herb Sutter in 2005, 
“The free lunch is over” [4]: Till 2004-2005 most 
classes of applications enjoyed free and regular 
performance gains, because the hardware man-
ufacturers and computer architects reliably de-
signed and produced ever-faster CPU. That enjoy-
able period is over and, although new processors 
yield higher performance, only those application 
developers who embrace parallel programming 
will bene"t from it. In particular, Signal Process-
ing is surely one of these applications that will be 
a#ected by the multi-core revolution.

As important as the hardware revolution may 
seem, it is the software that will determine the 
success or failure of the new products. A recent 
example is the IBM/Sony/Toshiba Cell B.E. proc-
essor, an innovative heterogeneous multi-core 
solution that did not succeed in the HPC arena 
mainly due to the lack of an appropriate, easy-
to-use SDK-software development kit. Thus, 
the major hardware multi-core and many-core 
manufacturers dedicate considerable part of 
their e#orts to develop and help others to cre-
ate a varied ecosystem of low-level and high-
level programming tools, which ease the task of 
software developers and, in the end, allow their 
designs to reach a larger number of customers.

INCO2 (www.inco2.upv.es) is a group created 
with the speci"c goal of tackling the software 
challenge in Signal Processing applications. 
INCO2 has been recognized as a research group 
in the Comunidad Valenciana (Spain) by the lo-
cal government (PROMETEO 2009/013 project 
award). The research lines of INCO2 address 
problems of Signal Processing from an interdis-
ciplinary perspective, providing solutions based 
on high performance hardware and develop-
ing algorithm design techniques that imply a 
modern and advanced software conception. 
Researchers of INCO2 have a vast experience in 
using parallel computing as a means of acceler-
ating the time-to-solution and focus mainly on 
computers with multi-core and many-core archi-
tectures. The researchers of INCO2 are also part 
of the Partnership Program of NVIDIA Company, 
the world’s leading manufacturer of graphics 
processing units.

The rest of the paper is organized as follows. The 
following two sections o#er a brief description 
of the architectural characteristics of multi-core 
processors and GPU. Next, in Section 4, we dis-
cuss the possibilities of applying these architec-
tures to the solution of Signal Processing prob-
lems, and we state logical needs and appropriate 
strategies needed to e#ectively tackle the prob-
lems. The "nal section of the article gathers our 
conclusions.

Probably the best form of appreciating the im-
pact of the new architectures on signal process-
ing is to analyze “possible application” and the 
performance reached in their solution when 
multi-core/GPU architectures are used. As a 

performance computers): The versatility, avail-
ability and ease of programming of these archi-
tectures have made them particularly useful in 
the "eld of Signal Processing, especially in inten-
sive o#-line applications.
 
Digital Signal Processors (DSP): They yield 
high performance as speci"c hardware for 
computationally intensive applications. They 
are especially appealing as components for the 
embedded market: devices that require inten-
sive computing with small size, light weight, low 
cost and low consumption chips (GPS, mobile 
phones, etc.) [2]. 

Field Programmable Gate Arrays (FPGA): 
These are especially useful for real-time appli-
cations that require low weight, inexpensive, 
speci"c chips, with limited clock frequency, for 
highly repetitive operations (FPGA are used, for 
example, in space vehicles to cope with cosmic 
radiation), although it is di$cult to use FPGAs as 
a general-purpose tool in a large variety of Sig-
nal Processing problems.

In the last "ve years, explicitly parallel systems 
are being accepted in all segments of the indus-
try, including Signal Processing, in the form of 
multi-core processors and many-core hardware 
accelerators. The triple hurdles of power dissipa-
tion and consumption of air-cooled chips, little 
instruction-level parallelism (ILP) left to be ex-
ploited, and unchanged memory latency, com-
bined with the desire to transform the increas-
ing number of transistors dictated by Moore’s 
Law into faster computers, has led the major 
hardware manufacturers to design multi-core 
processors as the primary means of increasing 
the performance of their products. General-
purpose four-core chips from Intel and AMD are 
nowadays common in desktop machines, there 
exist six- and eight-core designs from these 
same vendors for the server market, and the ITRS 
Roadmap [3] predicts that by 2022 the number 
of general-purpose cores per chip will increase 
100x with respect to current designs.

On the other hand, specialized (many-core) hard-
ware with hundreds of simple cores is already 
available in the form of cheap, widely-spread 
NVIDIA and AMD/ATI graphics processors (GPU) 
incorporated in any standard graphics card. For 
example, 240 cores are embedded in NVIDIA Ge-
Force GTX280 and, in the "rst quarter of 2010, 
the number of cores is promised to double in the 
upcoming NVIDIA Fermi design. 

General-purpose multi-core processors (which 
we will refer here after as just multi-core proces-
sors) and specialized many-core accelerators like 
the GPU will surely impact current and future 
signal processing applications. First, these new 
hardware designs deliver an enormous high-per-
formance computing capability at a remarkable 
low price, and programmers of signal processing 
applications will naturally want to exploit this. 

The current 
conception 
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continuation of this work, in the paper “Applica-
tions of Multi-core/GPU architectures in signal 
processing: some case studies” [5] we describe 
several case studies that show how paralleliza-
tion on multi-core/many-core architectures can 
be applied to speci"c problems 

2. The multi-core approach
 to parallelism

A multi-core processor or chip multi-processor 
(CMP) is an integrated circuit composed of two 
(dual core), four (quad-core) or more independ-
ent cores. Each core is an individual processor, 
but the cores in a chip may share certain resourc-
es as, e.g., a given level of the cache memory; see 
Figure 1.

A brief motivation of the multi-core develop-
ment
Since the 1980s, microprocessors have dominat-
ed all computer markets, from embedded sys-
tems to servers, desktop computers and high-
performance systems. Till 2004, the increasing 
number of transistors dictated by Moore’s Law 
was exploited by system developers and compu-
ter architects to (respectively) reduce the scale 
of the chips (therefore, increasing their clock fre-
quency) and produce more elaborated designs 
(e.g., with larger caches layered in multiple lev-
els, more functional units, and, in general, capa-
ble of dynamically exploiting, i.e., at run-time, a 
higher amount of the instruction-level parallel-
ism exiting in the codes). 

In 2004, Intel joined all the other major hardware 
vendors (AMD, IBM and Sun) and declared the mul-
ti-core design as the main track to transform the 
gains dictated by More’s Law into higher perform-
ance. The major reason for this is the limitation of 
the current semiconductor technology in terms of 
power consumption/dissipation, also known as 
the Power Wall. The acceleration of the clock fre-
quency was a constant during this period: a VAX 
8700 operated at 12.5 MHz while, 20 years later, 

an Intel Xeon reached 3.6 GHz (a factor of 290x). 
However, given the quadratic/cubic dependence 
between frequency and power dissipation of cur-
rent CMOS technology, this trend came to an end: 
A chip operating at 5 GHz would simply melt! 

Moving into the multi-core arena is not free as 
parallel programming must be explicitly ad-
dressed; however, this is currently recognized as 
the only way of pushing the performance of com-
puter hardware, due to the combined e#ects of 
the power wall, the increasing gap between the 
processor and the memory speeds (the memory 
wall), and di$culties of "nding enough paral-
lelism in a single instructions stream to keep a 
single processor busy (ILP wall). Consider, e.g., 
that an increase of the clock frequency by 15% 
translates into a 2x power consumption but a 
potential increase in performance of only 15%. 
Whether this potential gain is real also depends 
on the ability of the programmer to hide the 
memory latency and the availability of more ILP 
in the program. On the other hand, by decreas-
ing slightly the clock frequency, it is possible to 
double the number of cores in a design, main-
taining the overall power consumption, and 
potentially doubling the potential performance 
gain. In this case, the potential gain is resulting 
from doubling the number of cores in a design is 
not hampered by the memory/ILP walls.  

The multi-core solution is 10+ years old in the 
embedded market. Speci"c designs for mobile 
phones and network chips have included mul-
tiple cores for many years now. The big change 
is in the adoption of multi-core designs for the 
general-purpose market as well. Current multi-
core chips for the server market include six-core 
AMD Opteron (model 2435, 45 nm scale, 75 W, 
2.6 GHz, 128 KB L1 cache, 512 KB L2 cache, 6144 
KB L3 cache), six-core Intel Xeon (model X7460, 
45 nm, 130 W, 2.66 GHz, 9 MB L2 cache, 16 MB L3 
cache), 8-core Sun UltraSPARC T1 “Niagara” (0.09 
micron, 72 W, 1.2 GHz, 16I+8D KB L1 cache, 3 MB 
L2 cache), and AMD and Intel have announced, 
respectively, 12-core and 8-core designs for the 
"rst quarter of 2010. The number of cores is 
expected to double with each reduction in the 
integration scale (roughly, every two years), as 
long as Moore’s Law holds.

CPU architecture
Current general-purpose multi-core processors 
feature basically the ISA (Instruction Set Archi-
tecture) of the corresponding uni-processor 
designs, with minor additions of synchroniza-
tion instructions. The major consequence and 
advantage of sharing the ISA is the availability 
of legacy codes and a vast amount of program-
ming tools for traditional uni-processor chips.

To increase performance, the processor data-
path of current general-purpose processors is 
pipelined, so that the execution of multiple in-
structions can be overlapped. By splitting the 
processing of an instruction into a series of inde-

The increase 
of processors 
performance 
and other 
digital devices 
has opened 
the possibil-ity 
of addressing 
increasingly 
complex 
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real time.

AMD Opteron multi-core designs, are the most 
spread class of multiple-issue processors. (VLIW 
processors, like the Intel Itanium2 are also mul-
tiple-issue architectures, but they issue a "xed 
number of operations encoded within one large 
instruction which explicit the parallelism among 
operations). Most general-purpose processors 
today are four and six-issue designs.

Superscalar processors detect and exploit ILP at 
run-time (dynamic scheduling), reordering the 
!ow of instructions (out-of-order) to overcome 
the stalls due data hazards (i.e., data dependen-
cies in the instruction !ow). To be e#ective, this 
needs to be combined with a hardware-based 
speculation mechanism, which hides the stalls 
due to control hazards (due to branches in the 
instruction !ow). The result is a complex hard-
ware design, which requires substantial die area, 
and often is not power e$cient. Because out-
of-order multiple-issue processors are large and 
power hungry, few of them can be combined in 
a single chip. Thus, the current trend in multi-
core design is to use simpler cores, with limited 
issue (e.g., 2-issue), with in-order scheduling, 
and moderate clock frequency. 

pendent stages, with storage at the end of each 
step, instructions can be issued (to execution) at 
the processing rate of the slowest step, which is 
much faster than the time needed to perform 
all steps at once. Thus, pipelining improves the 
throughput of the datapath, but it does not de-
crease the execution time of a single instruction. 
The classic, simple pipelined datapath consists 
of four steps:

1. Fetch instruction from memory (IF).
2. Decode instruction while, simultaneously, 

fetch the operands from the registers (ID).
3. Execute the operation (EX).
4. Write the result back in a register (WB).

The operation of such pipelined processor is il-
lustrated in Figure 2. Intel stressed the concept 
of pipelining with 31 stages in the Prescott 
microarchitecture (February 2004). 

The peak instruction issue rate yield by pipelined 
processors is 1 (instruction per cycle). To improve 
this performance, current processors issue more 
than one instruction per cycle; see Figure 3. Su-
perscalar processors, like the Intel Xeon and the 

  Figure 2.  Operation of a basic four-stage pipeline.

  Figure 3.  Operation of a basic four-stage two-issue pipeline.

  Figure 1.  Diagram of a generic dual-core mul-
tiprocessor
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Memory system
The memory system plays an important role in 
multi-core processors, as the problem of feed-
ing the processing units in the cores (memory 
bandwidth) is multiplied by the number of cores 
with respect to that of a uni-processor design. In 
general-purpose designs, caches are often made 
as big as the die area and power budget allow. 
As the number of transistors inside the chip in-
creased, the number of levels in on-chip caches 
has increased with current processors from Intel 
and AMD featuring now a third level of on-chip 
cache. The "rst level of cache is usually (divided 
into data and instruction caches) small, fast and 
private to each core. Subsequent  levels are 
(shared for data and instructions,) larger, lower, 
and in general shared by the cores.

Interconnect
Multi-core processors include a fast intrachip in-
terconnect that provides the required communi-
cation path among cores and is responsible for 
maintaining cache coherence (if present). Sim-
ple, bus-based interconnect designs exhibit se-
rious limitations in both bandwidth and latency 
and, therefore, cannot scale with the number of 
cores. Alternative network-on-chip (NoCs) de-
signs, like the crossbar, overcome these limita-
tions at the cost of a more complex design. 

Cache coherence maintains a single image of 
the memory system (including the di#erent 
caches and the main memory) and is a key issue 
as it determines the programming model that is 
natively supported. Broadcast-based coherence 
is simple and provides a solution, e.g., for up to 
eight cores in the Intel Core i7. Directory-based 
coherence allows multiple coherence messages 
to proceed concurrently and thus scales to a 
larger number of cores. In summary, we can pro-
vide the following list of advantages and draw-
backs of the multi-core approach.

Advantages
Existence of a large scopus of programming 
environments, libraries, tools and applica-
tions.
Compatible with x86 ISA codes.
Truly general-purpose.
A restricted programming model.
Moderate power consumption.

Drawbacks
Suboptimal for many applications, specially 
data-parallel ones.
High cost of large clusters (high price-per-
formance ratio).
High power-performance ratio.

  
 

3. The GPU approach  
to parallelism 

A bit of history 
Two interesting phenomena happened in the 
early twenty-"rst century: the video game mar-

ket was positioned among the most vibrant 
ones and graphic processors were delivering an 
important computational performance. Graphic 
processors are very speci"c hardware in design 
and functionality. They yield high performance 
in applications for which they are designed, but 
the initial programming techniques in this class 
of processors were closely tied to the hardware. 
However, although graphic processors were and 
are hardware devices specially designed to carry 
out video rendering (vertex shader, primitive 
assembly, rasterizer, pixel shader, etc.), many of 
their features can be extrapolated with high ef-
"ciency to other applications.

When CUDA (Compute Uni"ed Device Archi-
tecture) appeared in 2006, the development of 
GPU software changed signi"catively, becoming 
more accesible to non-specialized developers. 
In 2007, the functional units of the GPU turned 
into more general-purpose units. In the next two 
years, a large number of applications were ad-
dressed using GPU in a wide variety of "elds [6]. 
Nowadays, we are attending to the generalized 
spread of GPU hardware, including multiproc-
essor systems built from GPU, the evolution of 
CUDA towards the OpenCL standard, etc. Nowa-
days general-purpose GPU (GPGPU) has become 
a powerful tool to the service of science and 
technology community.

Structure, Functionality and Programmabil-
ity of GPUs
We can now view a GPU as a number of mul-
tiprocessors embedded in a chip. Each mul-
tiprocessor is made up of several "ne-grain 
processors (or functional units). Each of these 
simple processors plays the role of a core in the 
current multi-core architectures. Although the 
clock frequency of the system is relatively low, 
the number of cores can be rather high, for ex-
ample, 240 in the NVIDIA GT280. All multiproc-
essor cores run simultaneously a set of threads 
called warp and all of them execute, in principle, 
the same instruction (SIMT: Single Instruction, 
Multiple Thread), but each one on its own data 
(SIMD model: Single Instruction Multiple Data), 
as shown in Figure 4.

There are several classes of memory that can be 
accessed by the processors of the GPU: shared 
memory (accessible by all cores within a multi-

 Figure 4. Many-core architecture.

 Figure 5. GPU and CPU subsystems.

The 
computational 
power of 
multi-core 
processors 
and GPU 
outweighs by 
a large factor 
that of the 
computers 
from past 
generations.

programming languages, which can then be run 
at great performance on a CUDA enabled proc-
essor. Other languages will be supported in the 
future, including FORTRAN and C++”.

CUDA provides instructions to transfer data 
and programs from the CPU to the GPU and to 
retrieve data back from the GPU to the CPU. It 
also provides a set of instructions for generat-
ing kernels (programs that run on the GPU only) 
which are arranged in the form of threads that 
are mapped onto the GPU cores. 

CUDA has greatly simpli"ed the job of program-
mers; however, its current development is not 
comparable to that achieved by standard com-
pilers for other high-level languages/general-
purpose architectures. The development and use 
of higher-level tools is strongly recommended. 
There exist several libraries that can address 
speci"c problems without having to write CUDA 
cores. This o#ers the programmer a high level 
programming style, similar to that commonly 
used in C or FORTRAN, hiding the tasks related 
with the implementation of GPU kernels inside 
library functions. While the degree of optimiza-
tion has not yet reached that of standard librar-
ies for general-purpose parallel computers, these 
preliminary tools represent an important aid in a 
not-too-friendly programming environment. 

We can mention, for example, the following li-
braries: CUBLAS (implementation of the BLAS, 
Basic Linear Algebra Subprograms [www.netlib.
org]), CUFFT (FFT package [6]), CULA [8] (im-
plementation of the LAPACK [www.netlib.org] 
library), JACKET [9] (varied functionality of MAT-
LAB), etc. There are also Integrated Development 
Environments that try to alleviate the program-
mer’s task. One of the most signi"cant is Parallel 
Nsight [6], developed by NVIDIA for the MS Win-
dows programming environments (Visual Stu-
dio 2008). It allows debugging, pro"ling and an-
alyzing GPU code using standard work!ow and 

processor), global memory (read/write memory 
accessible by any core in any multiprocessor 
with a relatively high access cost) and constant 
and texture memory (read-only memory, closely 
related to the graphics processing). Communi-
cation between processors can be carried out 
through various types of memory, depending 
on the context.

The GPU is designed to operate in association 
with a CPU that plays the role of the “master 
processor (Figure 5)”. The GPU is often connect-
ed with the master processor via the PCI-Express 
bus and all the communications between the 
GPU and the “outside” world happens through 
this bus. Thus, CPU and GPU form a dual system, 
where the GPU acts as a coprocessor or hard-
ware accelerator.
Programming of GPU as general purpose ma-
chines is relatively complex, as it is partly tied 
to the low level aspects of the system (assembly 
language/hardware). However, the high per-
formance delivered by these machines partially 
compensates for the di$cult programming.

Follo[wing Flynn’s classi"cation [7], a GPU can be 
considered, from a conceptual point of view, as 
an SIMD machine (Single Instruction, Multiple 
Data); that is, a computer in which a single set 
of instructions is executed on di#erent data sets. 
Implementations of this model usually work 
synchronously, with a common clock signal. An 
instruction unit sends the same instruction to 
all the processing elements, which then execute 
simultaneously this instruction on their own 
data, contained in a shared or local memory. 
This model di#ers from SPMD (Single Program, 
Multiple Data), which involves the simultaneous 
execution of the same program by several proc-
essors but not the same instruction. A SPMD 
program can have conditional statements (if...
then...else) producing the execution of di#erent 
operations on di#erent processors depending 
on the index of the processor. This is not the case 
of SIMD machines.

The GPU programmer is in charge of generat-
ing the instructions to be executed in the GPU, 
sending them from the CPU along with data and, 
"nally collecting the results. This requires a suit-
able programming environment that allows to 
easily implement such actions.

CUDA: an approach to a CPU-GPU architecture
Since 2006, GPUs are mostly programmed using 
CUDA (Compute Uni"ed Device Architecture). 
According to NVIDIA (visit [6]): “CUDA™ is a gener-
al-purpose parallel computing architecture that 
leverages the parallel compute engine in NVIDIA 
graphics processing units (GPU) to solve many 
complex computational problems in a fraction of 
the time required on a CPU. It includes the CUDA 
Instruction Set Architecture (ISA) and the parallel 
compute engine in the GPU. In order to program 
to the CUDA architecture, developers can, today, 
use C, one of the most widely used high-level 
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NVIDIA also provides its own libraries for dense 
linear algebra and FFT: CUBLAS and CUFFT. How-
ever, these are still suboptimal implementations 
which need to be further re"ned.

Applications
High Performance Computing (HPC) is broad-
ening its scope to tackle a large variety of prob-
lems arising in many scienti"c and engineering 
areas. In Signal Processing, e.g., HPC techniques 
are applied to develop user applications in the 
promising market of processing, transmission 
and reproduction of multimedia content. The 
incorporation into the market of processors with 
multiple cores and the increasing use of graph-
ics processors (GPU) in general-purpose ap-
plications, is at the same time a challenge and 
a great opportunity: the computing power of 
the new architectures may enable the solution 
of complex problems which require intensive 
computing using desktop computers, provided 
appropriate high performance algorithms are 
developed. The result is the availability of appli-
cations for the non-expert user that until recent-
ly were unthinkable in the consumer market.

Nowadays, signal processing has become a ba-
sic tool in many applications such as (re) crea-
tion and transmission of virtual environments, 
multichannel audio applications (recording and 
reproduction), wireless mobile communications 
systems with multiple antennas, to name just a 
few related with applications traditionally de-
veloped within the INCO2 research group. These 
applications often give rise to problems of high 
computational cost, even when using common 
signal processing algorithms, mainly due to the 
application of these algorithms to multiple sig-
nals and with real-time requirements.

The implementation of advanced algorithms 
for multichannel signal processing on new plat-
forms based on computation-intensive architec-
tures such as GPU and multi-cores is a scienti"c 
and technological challenge, of growing interest 
but unresolved at present, which will incorporate 
tools and possibilities currently available only in 
research to the user applications. In this line, the 
implementation of user systems require tools 
for massive signal processing: fast multichannel 
convolution, adaptive multichannel processing, 
MIMO channel equalization, and so on; as well as 
its interaction with computer algebra tools tra-
ditionally used in signal processing algorithms 
such as: solution of optimization problems with/
out constraints on structured matrices, matrix 
decompositions (QR, SVD, etc), FFT, etc.

Only "ve years ago GPU supported a limited "xed 
number of functions, mainly addressed to the 
implementation of 3D graphics. Since then, GPU 
have evolved (both in its hardware implementa-
tion as in its programming interface - CUDA) to 
a very powerful processor, capable to carry out 
general tasks. Many references in the literature il-
lustrate the generalized adoption of GPU, GP-GPU, 

with regular codes that are intensive in !oating-
point arithmetic like those frequently arising in 
signal processing applications. These tools can 
be classi"ed in three major groups: compilers, 
languages/environments, and libraries.

Current compiler technology can expose a large 
fraction of the ILP providing a highly e$cient 
base code for a single core. However, when deal-
ing with multiple cores, compilers still need to be 
combined with some other tool (a language or 
an environment) that allows the programmer to 
pass additional information to the compiler. One 
such clear example is OpenMP [www.openmp.
org], the current standard for shared-memory 
parallel programming valid for multi-core proc-
essors. OpenMP combines three elements: a 
high-level application programming interface 
(API), a compiler which transforms a program 
annotated with OpenMP directives into a mul-
tithreaded code, and a runtime environment 
combined with a library to assist in the parallel 
execution of the code.

OpenMP appeared in 1997 in response to the 
lack of a standard for parallel programming 
in shared-memory architectures that played a 
similar role to that of MPI for distributed-mem-
ory (message-passing) architectures. Version 3.0, 
released mid of 2008, includes the concept of 
tasks and the task construct, specially designed 
for multi-core processors. The new architectures 
have also given rise to a large number of con-
tenders to OpenMP: UPC, TBB, Cilk, Chapel, etc. 
It still remains tobe seen whether any of these 
alternative solutions could become a real chal-
lenger to the acceptance of OpenMP as standard 
approach to programm multi-core processors.
 
CUDA is both NVIDIA’s GPU architecture and the 
corresponding programming environment. Pro-
grammers use “C for CUDA” (C with NVIDIA exten-
sions), compiled through NVIDIA C compiler, to 
code algorithms for execution on the GPU. CUDA 
architecture supports a range of computational 
interfaces including the new standard OpenCL 
[10]. High performance libraries for numeri-
cal computations, on the other hand, are much 
more mature. This is no surprising, as dense lin-
ear algebra kernels and the FFT have been tra-
ditionally employed by hardware vendors as 
the primary demonstrators of the performance 
attained by their designs. Current libraries for 
dense linear algebra include tuned multi-thread-
ed implementations of BLAS by most hardware 
manufacturers (Intel, AMD, IBM, Sun, etc.), and 
higher level libraries as LAPACK and lib!ame. It 
is interesting to note that both LAPACK and lib-
!ame routines initially relied in BLAS to extract 
parallelism. However, the increase in the number 
of cores did require a redesign of these libraries, 
to extract a higher degree of (data) parallelism. 
The FFT has also received special attention over 
the last decades and, specially, with the multi-
core revolution. FFTW, Spiral DFT and Intel MKL 
all include tuned implementations of the FFT. 

tools. Parallel Nsight supports CUDA C, OpenCL, 
Direct Compute, Direct3D, and OpenGL.

Performance
The performance of GPUs can be spectacular, 
especially if one only considers the peak per-
formance of these machines. A proper use of the 
cores allows full concurrency, thus maximizing 
the whole power of parallelism (for example, 240 
cores in the case of the GTX 280 card). This can 
potentially reduce execution times by an order of 
magnitude when compared with those achieved 
on a CPU; see Figure 6 obtained from [6].

However, several remarks are due here. Perform-
ance is much higher when using single-preci-
sion arithmetic. For example, on 2009 NVIDIA 
GPU processors, there is a single double-preci-
sion unit per multiprocessor; thus, e.g., only 30 
double-precision units are present in a GT280. 
Furthermore, in a general application, the GPU 
attains a real performance that is typically much 
lower than its peak performance. To conclude 
this review of GPU, the following advantages 
and drawbacks can be remarked:

Advantages:
Very high bene"ts in terms of Giga!ops/
second. 
Excellent Price/Performance ratio.
Existence of programming environments 
(CUDA, OpenCL...)
Existence of libraries and tools.
Many possible applications (see [5]).

Drawbacks
A restricted programming model (SIMD 
model).
CPU-GPU and I/O communications.
Low-level programming.
Insu$cient tools.
High power consumption. 

4. Multi-core/many-core architec-
tures in Signal Processing

Possibilities
From the discussion of multi-core processors and 

GPU in the two previous sections, it should be 
clear that the computational power of multi-core 
processors and GPU outweights by a large factor 
that of the computers from past generations. The 
new architectures also exhibit a more favourable 
power/price ratio, which may greatly facilitate 
their adoption and use in many application, even 
in those where the price may be a critical point. 
A preliminary conclusion is that the immediate 
future of computing, also in Signal Processing 
applications, seems tied to these architectures.

The Signal Processing "eld cannot remain indif-
ferent to the computational advantages o#ered 
by the multi-core/many-core architectures. In-
deed, these new systems can be an appealing 
alternative to the more traditional approach 
based on DSPs and FPGAs, as some practical Sig-
nal Processing applications have already shown; 
see, for example, [6]. Nevertheless, it must be yet 
established whether these architectures/tools 
are going to be widely incorporated as the pri-
mary choice in Signal Processing. 

The adoption of a technology in a "eld of science 
or engineering may be in!uenced by factors 
other than the mere computational power pro-
vided by the hardware. For instance, program-
ming models can strongly in!uence the pace 
and success of adoption. Also the nature and/or 
the scope of the problems may represent a limit-
ing factor. As an example, some applications do 
not "t in the SIMD model, so that the use of GPU 
may not be appropriate or even viable; in some 
of these cases, the more !exible multi-core ap-
proach can solve the problem. Finally, the exist-
ence of a large scopus of legacy software or the 
lack of e$cient software tuned for the new ar-
chitectures can be a conditioning factor as well.

Only after a detailed analysis of these factors, it 
is possible to determine the usefulness of the 
multi-core/ many-core architectures in Signal 
Processing. Let us thus review the most popular 
programming tools and models available nowa-
days for the multi-core processors and GPU.

Multi-core is about running two or more actual 
CPUs (cores) on one chip. While these designs 
are not fundamentally di#erent from previous 
multiprocessor architectures, the fundamental 
turning point lies in software development for 
applications targeting general-purpose desktop 
computers and low-end servers. In particular, the 
greatest software revolution in the past was the 
move from structured programming to object-
oriented programming. The current “concur-
rency” revolution is an equally fundamental and 
far-reaching change in software development: 
Applications will only bene"t from the continued 
exponential throughput advances in new proc-
essors if they are rewritten in terms of e$cient 
concurrent (usually multithreaded) codes.

Luckily, there are many tools to help us in adapt-
ing software to the new architectures, especially 

 Figure 6. GPU vs CPU GFlops. 
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also in applications other than image processing.
Concerning the use of GPU for applications in dig-
ital audio processing, the oldest references date 
back to 2004 [11]. However, only very recently 
(2007 and 2008), the use of GPU has been em-
ployed in this area. The reason for this should be 
attributed to the GPU programming tools, quite 
complex in the beginning and with the constraint 
of using graphic processing procedures and 
terms: rendering, textures, etc. A second factor 
against the general adoption of GPU was that, for 
some time, the computational power provided by 
a general-purpose uni-processor was enough to 
give support for real-time applications.

Currrent proposals for possible applications of 
audio and acoustics on GPGPU include (www.
gpgpu.org):

- Mixing audio signals.
- Modelling the acoustics of rooms and the 

Head Related Transfer Function (HRTF) for 
virtual environments.

- Adding sound e#ects (www.monalisa-au.org).

Other potential applications of digital signal 
processing on GPU can be found in the last 
paragraphs of [12] and [13]. An abbreviated list 
includes:

- Classical processing algorithms: FFT, con-
volution algorithms for solving di#erential 
equations, pattern recognition, sequence 
alignment (general algorithms using hid-
den Markov models), tracking.

-  Algorithms for matrix massive computation: 
QR decomposition, Cholesky, SVD, etc.

- Wireless Applications: Implementation of 
some blocks of the physical layer, very suit-
able for standards based on OFDM, where 
FFT should be calculated (WiFi, WiMAX).

All the signal processing strategies developed to 
deal with a single signal or a few of them can be 
addressed when tackling multiple signals, taking 
advantage of its inherent parallel nature and the 
characteristics of the new hardware and soft-

ware tools. One example of this is multichannel 
acoustic signal processing. This "eld has experi-
enced a large growth in the last years, due to the 
increase in the number of sound sources used in 
new commercial applications for sound repro-
duction, and in the growing needs to include 
innovative e#ects and capabilities to the listen-
ing experience [14][15]. Moreover, the increas-
ing market of advanced multimedia contents 
for home users creates the necessity of new 
multichannel sound processing tools, capable of 
extracting all the features that can be included 
in these contents. The creation of these contents 
requires as well multichannel signal processing 
tools, for stage analysis, signal "ltering, noise re-
duction, etc.

The main multichannel recording-reproduction 
problem can be modelled as a discrete MIMO 
(Multiple Input, Multiple Output) system of 
sound signals. The problem of sound recording 
presents some analogies (in terms of multichan-
nel signal processing) with the reproduction sys-
tem; however, there are some distinct features. 
Particularly, it is possible to extract certain pa-
rameters from the analysis of the sound scene: 
number of sources, location of these, etc. A large 
number of applications of spatial sound can be 
derived from the scheme displayed in Figure 7, 
in applications that perform reproduction either 
through speakers or through headphones. Usu-
ally, we focus on reproduction through speak-
ers (and recording by arrays of microphones) 
because this is the problem that poses harder 
scienti"c and technological challenges, and 
has a larger number of potential applications. 
In any case, it is always possible, from a generic 
viewpoint, to extrapolate the results obtained in 
reproduction by loudspeakers to headphones 
reproduction, if the physical phenomena and ef-
fects caused by the propagation of waves in the 
listening room are not taken into account.

From the acoustic man-machine interface de-
picted in Figure 7, which uses multiple channels 
for sound reproduction and acquisition, and in 
general can serve multiple mobile sources and 
listeners, the fundamental problems of signal 
processing can be identi"ed. Some of these 
problems can be: multichannel acoustic echo 
cancellation, processing of signals from micro-
phone arrays for beamforming, interference can-
cellation, signal separation, source localization, 
room equalization, active noise cancellation and 
spatial source location.

5. Conclusions

General-purpose multi-core processors and GPU 
will surely impact future signal processing appli-
cations, with the reason for this being twofold. 
First, these new hardware components exhibit 
a vast high-performance computing capability 
with a much favourable price-performance ratio, 
and programmers of signal processing applica-

tions will naturally want to exploit this. Second, 
only those application developers who embrace 
the explicit parallel programming model intrin-
sic to these architectures will bene"t from the 
multi-core revolution.

It seems that GPU may not represent the opti-
mal model for general-purpose parallel ma-
chines, but they state an important trend 
that other existing architectures (for exam-
ple multi-cores) cannot ignore. In this sense 
GPU architectures are here to stay, either in 
its current form or as part of a hybrid design. 
As a special-purpose machines, GPU have as-
sured their presence in the short and medium 
term. The market for video games and graphic 
applications is an appropriate "eld for GPU 
that provides the necessary economic support. 
Nonetheless, there are also important scienti"c 
and engineering problems which exhibit a con-
siderable degree of data parallelism, which can 
bene"t much from the important and cheap 
source of computational power in GPU. There is 
a considerable amount of literature that delves 
into this line of research, to which this paper is 
intended to contribute.

Multicore represents a good alternative for 
general-purpose parallel machine, with a simple 
and widespreath programming model and high 
performance in its application scope. However, 
it may not be the best approach for many real-
time or "ne-grain signal processing applications 
that require real time.

Both types of architectures represent the future 
for many scienti"c applications, including signal 
processing as well. In this paper we have reviewed 
the rationale and the state-of-the-art of both ar-
chitectures. In a second part, we o#er a brief de-
scription of some case studies developed within 
the INCO2 group that illustrate the use of the new 
architectures [5]. These examples aim at covering 
issues of low/medium level, with applicability in 
multiple Signal Processing applications.
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