
 ISSN 1889-8297 / Waves · 2010 · year 274 Waves · 2010 · year 2 / ISSN 1889-8297 75

Abstract

This paper analyzes the in!uence of new multi-
core and many-core architectures on Signal
Processing. The article covers both the architec-
tural design and the programming models of
current general-purpose multi-core processors
and graphics processors (GPU), with the goal of
identifying their possibilities and impact on sig-
nal processing applications.

Keywords: Signal Processing, Multi-core proces-
sors, GPU, High Performance Computing, Paral-
lel programming

1. Introduction

The current conception of Signal Processing is
intimately linked with the type of computation
required to perform the “Processing”. In a recent
issue of the IEEE Signal Processing Magazine [1],
José F.M. Moura, president of the Signal Process-
ing Society, noted: “As for processing, it compris-
es operations of representing, "ltering, coding,
transmitting, estimating, detecting, inferring,
discovering, recognizing, synthesizing, record-
ing, or reproducing signals by digital or analog
devices, techniques, or algorithms, in the form of
software, hardware, or "rmware”.

The Impact of the Multi-core
Revolution on Signal Processing

This de"nition emphasizes the strong depend-
ence between signal processing and the com-
putational media (digital or analogical, algo-
rithms, hardware devices, software, etc) used to
conduct it. In particular, if we focus on Digital
Signal Processing, processors (in a wide sense)
represent the most widespread digital devices in
applications within this "eld.
The increase of processors performance and
other digital devices has opened the possibil-
ity of addressing increasingly complex prob-
lems in a short period of time. This has been
exploited both in real-time applications that are
common in Signal Processing as well as other
Signal Processing applications that require the
management of very large data sets and which
cannot be tackled within a reasonable time
without the help of advanced computational
tools. In summary, the advances of the hardware
architecture of digital devices, including digital
processors, strongly in!uence the techniques
used and results produced in the "eld of Signal
Processing. Considering the computational me-
dia, the following systems can be identi"ed as
the most used in Signal Processing during the
past years:

General-purpose microprocessors (as those
present in desktop computers, servers or high

Alberto González1, José A.Belloch1, Francisco J. Martínez1, Pedro Alonso2, Víctor M. García2,
Enrique S. Quintana-Ortí3, Alfredo Remón3, and Antonio M. Vidal2

Correspondence author: agonzal@dcom.upv.es
Audio and Communications Signal Processing Group1 (GTAC) iTEAM, Universidad Politécnica de Valencia
Department of Information Systems and Computation2 (DSIC) Universidad Politécnica de Valencia
Department of Computer Science and Engineering3 (ICC) Universidad Jaume I de Castellón

Second, as predicated by Herb Sutter in 2005,
“The free lunch is over” [4]: Till 2004-2005 most
classes of applications enjoyed free and regular
performance gains, because the hardware man-
ufacturers and computer architects reliably de-
signed and produced ever-faster CPU. That enjoy-
able period is over and, although new processors
yield higher performance, only those application
developers who embrace parallel programming
will bene"t from it. In particular, Signal Process-
ing is surely one of these applications that will be
a#ected by the multi-core revolution.

As important as the hardware revolution may
seem, it is the software that will determine the
success or failure of the new products. A recent
example is the IBM/Sony/Toshiba Cell B.E. proc-
essor, an innovative heterogeneous multi-core
solution that did not succeed in the HPC arena
mainly due to the lack of an appropriate, easy-
to-use SDK-software development kit. Thus,
the major hardware multi-core and many-core
manufacturers dedicate considerable part of
their e#orts to develop and help others to cre-
ate a varied ecosystem of low-level and high-
level programming tools, which ease the task of
software developers and, in the end, allow their
designs to reach a larger number of customers.

INCO2 (www.inco2.upv.es) is a group created
with the speci"c goal of tackling the software
challenge in Signal Processing applications.
INCO2 has been recognized as a research group
in the Comunidad Valenciana (Spain) by the lo-
cal government (PROMETEO 2009/013 project
award). The research lines of INCO2 address
problems of Signal Processing from an interdis-
ciplinary perspective, providing solutions based
on high performance hardware and develop-
ing algorithm design techniques that imply a
modern and advanced software conception.
Researchers of INCO2 have a vast experience in
using parallel computing as a means of acceler-
ating the time-to-solution and focus mainly on
computers with multi-core and many-core archi-
tectures. The researchers of INCO2 are also part
of the Partnership Program of NVIDIA Company,
the world’s leading manufacturer of graphics
processing units.

The rest of the paper is organized as follows. The
following two sections o#er a brief description
of the architectural characteristics of multi-core
processors and GPU. Next, in Section 4, we dis-
cuss the possibilities of applying these architec-
tures to the solution of Signal Processing prob-
lems, and we state logical needs and appropriate
strategies needed to e#ectively tackle the prob-
lems. The "nal section of the article gathers our
conclusions.

Probably the best form of appreciating the im-
pact of the new architectures on signal process-
ing is to analyze “possible application” and the
performance reached in their solution when
multi-core/GPU architectures are used. As a

performance computers): The versatility, avail-
ability and ease of programming of these archi-
tectures have made them particularly useful in
the "eld of Signal Processing, especially in inten-
sive o#-line applications.

Digital Signal Processors (DSP): They yield
high performance as speci"c hardware for
computationally intensive applications. They
are especially appealing as components for the
embedded market: devices that require inten-
sive computing with small size, light weight, low
cost and low consumption chips (GPS, mobile
phones, etc.) [2].

Field Programmable Gate Arrays (FPGA):
These are especially useful for real-time appli-
cations that require low weight, inexpensive,
speci"c chips, with limited clock frequency, for
highly repetitive operations (FPGA are used, for
example, in space vehicles to cope with cosmic
radiation), although it is di$cult to use FPGAs as
a general-purpose tool in a large variety of Sig-
nal Processing problems.

In the last "ve years, explicitly parallel systems
are being accepted in all segments of the indus-
try, including Signal Processing, in the form of
multi-core processors and many-core hardware
accelerators. The triple hurdles of power dissipa-
tion and consumption of air-cooled chips, little
instruction-level parallelism (ILP) left to be ex-
ploited, and unchanged memory latency, com-
bined with the desire to transform the increas-
ing number of transistors dictated by Moore’s
Law into faster computers, has led the major
hardware manufacturers to design multi-core
processors as the primary means of increasing
the performance of their products. General-
purpose four-core chips from Intel and AMD are
nowadays common in desktop machines, there
exist six- and eight-core designs from these
same vendors for the server market, and the ITRS
Roadmap [3] predicts that by 2022 the number
of general-purpose cores per chip will increase
100x with respect to current designs.

On the other hand, specialized (many-core) hard-
ware with hundreds of simple cores is already
available in the form of cheap, widely-spread
NVIDIA and AMD/ATI graphics processors (GPU)
incorporated in any standard graphics card. For
example, 240 cores are embedded in NVIDIA Ge-
Force GTX280 and, in the "rst quarter of 2010,
the number of cores is promised to double in the
upcoming NVIDIA Fermi design.

General-purpose multi-core processors (which
we will refer here after as just multi-core proces-
sors) and specialized many-core accelerators like
the GPU will surely impact current and future
signal processing applications. First, these new
hardware designs deliver an enormous high-per-
formance computing capability at a remarkable
low price, and programmers of signal processing
applications will naturally want to exploit this.

The current
conception
of Signal
Processing
is intimately
linked with
the type of
computation
required to
perform the
“Processing”.

 ISSN 1889-8297 / Waves · 2010 · year 276 Waves · 2010 · year 2 / ISSN 1889-8297 77

continuation of this work, in the paper “Applica-
tions of Multi-core/GPU architectures in signal
processing: some case studies” [5] we describe
several case studies that show how paralleliza-
tion on multi-core/many-core architectures can
be applied to speci"c problems

2. The multi-core approach
 to parallelism

A multi-core processor or chip multi-processor
(CMP) is an integrated circuit composed of two
(dual core), four (quad-core) or more independ-
ent cores. Each core is an individual processor,
but the cores in a chip may share certain resourc-
es as, e.g., a given level of the cache memory; see
Figure 1.

A brief motivation of the multi-core develop-
ment
Since the 1980s, microprocessors have dominat-
ed all computer markets, from embedded sys-
tems to servers, desktop computers and high-
performance systems. Till 2004, the increasing
number of transistors dictated by Moore’s Law
was exploited by system developers and compu-
ter architects to (respectively) reduce the scale
of the chips (therefore, increasing their clock fre-
quency) and produce more elaborated designs
(e.g., with larger caches layered in multiple lev-
els, more functional units, and, in general, capa-
ble of dynamically exploiting, i.e., at run-time, a
higher amount of the instruction-level parallel-
ism exiting in the codes).

In 2004, Intel joined all the other major hardware
vendors (AMD, IBM and Sun) and declared the mul-
ti-core design as the main track to transform the
gains dictated by More’s Law into higher perform-
ance. The major reason for this is the limitation of
the current semiconductor technology in terms of
power consumption/dissipation, also known as
the Power Wall. The acceleration of the clock fre-
quency was a constant during this period: a VAX
8700 operated at 12.5 MHz while, 20 years later,

an Intel Xeon reached 3.6 GHz (a factor of 290x).
However, given the quadratic/cubic dependence
between frequency and power dissipation of cur-
rent CMOS technology, this trend came to an end:
A chip operating at 5 GHz would simply melt!

Moving into the multi-core arena is not free as
parallel programming must be explicitly ad-
dressed; however, this is currently recognized as
the only way of pushing the performance of com-
puter hardware, due to the combined e#ects of
the power wall, the increasing gap between the
processor and the memory speeds (the memory
wall), and di$culties of "nding enough paral-
lelism in a single instructions stream to keep a
single processor busy (ILP wall). Consider, e.g.,
that an increase of the clock frequency by 15%
translates into a 2x power consumption but a
potential increase in performance of only 15%.
Whether this potential gain is real also depends
on the ability of the programmer to hide the
memory latency and the availability of more ILP
in the program. On the other hand, by decreas-
ing slightly the clock frequency, it is possible to
double the number of cores in a design, main-
taining the overall power consumption, and
potentially doubling the potential performance
gain. In this case, the potential gain is resulting
from doubling the number of cores in a design is
not hampered by the memory/ILP walls.

The multi-core solution is 10+ years old in the
embedded market. Speci"c designs for mobile
phones and network chips have included mul-
tiple cores for many years now. The big change
is in the adoption of multi-core designs for the
general-purpose market as well. Current multi-
core chips for the server market include six-core
AMD Opteron (model 2435, 45 nm scale, 75 W,
2.6 GHz, 128 KB L1 cache, 512 KB L2 cache, 6144
KB L3 cache), six-core Intel Xeon (model X7460,
45 nm, 130 W, 2.66 GHz, 9 MB L2 cache, 16 MB L3
cache), 8-core Sun UltraSPARC T1 “Niagara” (0.09
micron, 72 W, 1.2 GHz, 16I+8D KB L1 cache, 3 MB
L2 cache), and AMD and Intel have announced,
respectively, 12-core and 8-core designs for the
"rst quarter of 2010. The number of cores is
expected to double with each reduction in the
integration scale (roughly, every two years), as
long as Moore’s Law holds.

CPU architecture
Current general-purpose multi-core processors
feature basically the ISA (Instruction Set Archi-
tecture) of the corresponding uni-processor
designs, with minor additions of synchroniza-
tion instructions. The major consequence and
advantage of sharing the ISA is the availability
of legacy codes and a vast amount of program-
ming tools for traditional uni-processor chips.

To increase performance, the processor data-
path of current general-purpose processors is
pipelined, so that the execution of multiple in-
structions can be overlapped. By splitting the
processing of an instruction into a series of inde-

The increase
of processors
performance
and other
digital devices
has opened
the possibil-ity
of addressing
increasingly
complex
problems in
real time.

AMD Opteron multi-core designs, are the most
spread class of multiple-issue processors. (VLIW
processors, like the Intel Itanium2 are also mul-
tiple-issue architectures, but they issue a "xed
number of operations encoded within one large
instruction which explicit the parallelism among
operations). Most general-purpose processors
today are four and six-issue designs.

Superscalar processors detect and exploit ILP at
run-time (dynamic scheduling), reordering the
!ow of instructions (out-of-order) to overcome
the stalls due data hazards (i.e., data dependen-
cies in the instruction !ow). To be e#ective, this
needs to be combined with a hardware-based
speculation mechanism, which hides the stalls
due to control hazards (due to branches in the
instruction !ow). The result is a complex hard-
ware design, which requires substantial die area,
and often is not power e$cient. Because out-
of-order multiple-issue processors are large and
power hungry, few of them can be combined in
a single chip. Thus, the current trend in multi-
core design is to use simpler cores, with limited
issue (e.g., 2-issue), with in-order scheduling,
and moderate clock frequency.

pendent stages, with storage at the end of each
step, instructions can be issued (to execution) at
the processing rate of the slowest step, which is
much faster than the time needed to perform
all steps at once. Thus, pipelining improves the
throughput of the datapath, but it does not de-
crease the execution time of a single instruction.
The classic, simple pipelined datapath consists
of four steps:

1. Fetch instruction from memory (IF).
2. Decode instruction while, simultaneously,

fetch the operands from the registers (ID).
3. Execute the operation (EX).
4. Write the result back in a register (WB).

The operation of such pipelined processor is il-
lustrated in Figure 2. Intel stressed the concept
of pipelining with 31 stages in the Prescott
microarchitecture (February 2004).

The peak instruction issue rate yield by pipelined
processors is 1 (instruction per cycle). To improve
this performance, current processors issue more
than one instruction per cycle; see Figure 3. Su-
perscalar processors, like the Intel Xeon and the

 Figure 2. Operation of a basic four-stage pipeline.

 Figure 3. Operation of a basic four-stage two-issue pipeline.

 Figure 1. Diagram of a generic dual-core mul-
tiprocessor

 ISSN 1889-8297 / Waves · 2010 · year 278 Waves · 2010 · year 2 / ISSN 1889-8297 79

Memory system
The memory system plays an important role in
multi-core processors, as the problem of feed-
ing the processing units in the cores (memory
bandwidth) is multiplied by the number of cores
with respect to that of a uni-processor design. In
general-purpose designs, caches are often made
as big as the die area and power budget allow.
As the number of transistors inside the chip in-
creased, the number of levels in on-chip caches
has increased with current processors from Intel
and AMD featuring now a third level of on-chip
cache. The "rst level of cache is usually (divided
into data and instruction caches) small, fast and
private to each core. Subsequent levels are
(shared for data and instructions,) larger, lower,
and in general shared by the cores.

Interconnect
Multi-core processors include a fast intrachip in-
terconnect that provides the required communi-
cation path among cores and is responsible for
maintaining cache coherence (if present). Sim-
ple, bus-based interconnect designs exhibit se-
rious limitations in both bandwidth and latency
and, therefore, cannot scale with the number of
cores. Alternative network-on-chip (NoCs) de-
signs, like the crossbar, overcome these limita-
tions at the cost of a more complex design.

Cache coherence maintains a single image of
the memory system (including the di#erent
caches and the main memory) and is a key issue
as it determines the programming model that is
natively supported. Broadcast-based coherence
is simple and provides a solution, e.g., for up to
eight cores in the Intel Core i7. Directory-based
coherence allows multiple coherence messages
to proceed concurrently and thus scales to a
larger number of cores. In summary, we can pro-
vide the following list of advantages and draw-
backs of the multi-core approach.

Advantages
Existence of a large scopus of programming
environments, libraries, tools and applica-
tions.
Compatible with x86 ISA codes.
Truly general-purpose.
A restricted programming model.
Moderate power consumption.

Drawbacks
Suboptimal for many applications, specially
data-parallel ones.
High cost of large clusters (high price-per-
formance ratio).
High power-performance ratio.

3. The GPU approach
to parallelism

A bit of history
Two interesting phenomena happened in the
early twenty-"rst century: the video game mar-

ket was positioned among the most vibrant
ones and graphic processors were delivering an
important computational performance. Graphic
processors are very speci"c hardware in design
and functionality. They yield high performance
in applications for which they are designed, but
the initial programming techniques in this class
of processors were closely tied to the hardware.
However, although graphic processors were and
are hardware devices specially designed to carry
out video rendering (vertex shader, primitive
assembly, rasterizer, pixel shader, etc.), many of
their features can be extrapolated with high ef-
"ciency to other applications.

When CUDA (Compute Uni"ed Device Archi-
tecture) appeared in 2006, the development of
GPU software changed signi"catively, becoming
more accesible to non-specialized developers.
In 2007, the functional units of the GPU turned
into more general-purpose units. In the next two
years, a large number of applications were ad-
dressed using GPU in a wide variety of "elds [6].
Nowadays, we are attending to the generalized
spread of GPU hardware, including multiproc-
essor systems built from GPU, the evolution of
CUDA towards the OpenCL standard, etc. Nowa-
days general-purpose GPU (GPGPU) has become
a powerful tool to the service of science and
technology community.

Structure, Functionality and Programmabil-
ity of GPUs
We can now view a GPU as a number of mul-
tiprocessors embedded in a chip. Each mul-
tiprocessor is made up of several "ne-grain
processors (or functional units). Each of these
simple processors plays the role of a core in the
current multi-core architectures. Although the
clock frequency of the system is relatively low,
the number of cores can be rather high, for ex-
ample, 240 in the NVIDIA GT280. All multiproc-
essor cores run simultaneously a set of threads
called warp and all of them execute, in principle,
the same instruction (SIMT: Single Instruction,
Multiple Thread), but each one on its own data
(SIMD model: Single Instruction Multiple Data),
as shown in Figure 4.

There are several classes of memory that can be
accessed by the processors of the GPU: shared
memory (accessible by all cores within a multi-

 Figure 4. Many-core architecture.

 Figure 5. GPU and CPU subsystems.

The
computational
power of
multi-core
processors
and GPU
outweighs by
a large factor
that of the
computers
from past
generations.

programming languages, which can then be run
at great performance on a CUDA enabled proc-
essor. Other languages will be supported in the
future, including FORTRAN and C++”.

CUDA provides instructions to transfer data
and programs from the CPU to the GPU and to
retrieve data back from the GPU to the CPU. It
also provides a set of instructions for generat-
ing kernels (programs that run on the GPU only)
which are arranged in the form of threads that
are mapped onto the GPU cores.

CUDA has greatly simpli"ed the job of program-
mers; however, its current development is not
comparable to that achieved by standard com-
pilers for other high-level languages/general-
purpose architectures. The development and use
of higher-level tools is strongly recommended.
There exist several libraries that can address
speci"c problems without having to write CUDA
cores. This o#ers the programmer a high level
programming style, similar to that commonly
used in C or FORTRAN, hiding the tasks related
with the implementation of GPU kernels inside
library functions. While the degree of optimiza-
tion has not yet reached that of standard librar-
ies for general-purpose parallel computers, these
preliminary tools represent an important aid in a
not-too-friendly programming environment.

We can mention, for example, the following li-
braries: CUBLAS (implementation of the BLAS,
Basic Linear Algebra Subprograms [www.netlib.
org]), CUFFT (FFT package [6]), CULA [8] (im-
plementation of the LAPACK [www.netlib.org]
library), JACKET [9] (varied functionality of MAT-
LAB), etc. There are also Integrated Development
Environments that try to alleviate the program-
mer’s task. One of the most signi"cant is Parallel
Nsight [6], developed by NVIDIA for the MS Win-
dows programming environments (Visual Stu-
dio 2008). It allows debugging, pro"ling and an-
alyzing GPU code using standard work!ow and

processor), global memory (read/write memory
accessible by any core in any multiprocessor
with a relatively high access cost) and constant
and texture memory (read-only memory, closely
related to the graphics processing). Communi-
cation between processors can be carried out
through various types of memory, depending
on the context.

The GPU is designed to operate in association
with a CPU that plays the role of the “master
processor (Figure 5)”. The GPU is often connect-
ed with the master processor via the PCI-Express
bus and all the communications between the
GPU and the “outside” world happens through
this bus. Thus, CPU and GPU form a dual system,
where the GPU acts as a coprocessor or hard-
ware accelerator.
Programming of GPU as general purpose ma-
chines is relatively complex, as it is partly tied
to the low level aspects of the system (assembly
language/hardware). However, the high per-
formance delivered by these machines partially
compensates for the di$cult programming.

Follo[wing Flynn’s classi"cation [7], a GPU can be
considered, from a conceptual point of view, as
an SIMD machine (Single Instruction, Multiple
Data); that is, a computer in which a single set
of instructions is executed on di#erent data sets.
Implementations of this model usually work
synchronously, with a common clock signal. An
instruction unit sends the same instruction to
all the processing elements, which then execute
simultaneously this instruction on their own
data, contained in a shared or local memory.
This model di#ers from SPMD (Single Program,
Multiple Data), which involves the simultaneous
execution of the same program by several proc-
essors but not the same instruction. A SPMD
program can have conditional statements (if...
then...else) producing the execution of di#erent
operations on di#erent processors depending
on the index of the processor. This is not the case
of SIMD machines.

The GPU programmer is in charge of generat-
ing the instructions to be executed in the GPU,
sending them from the CPU along with data and,
"nally collecting the results. This requires a suit-
able programming environment that allows to
easily implement such actions.

CUDA: an approach to a CPU-GPU architecture
Since 2006, GPUs are mostly programmed using
CUDA (Compute Uni"ed Device Architecture).
According to NVIDIA (visit [6]): “CUDA™ is a gener-
al-purpose parallel computing architecture that
leverages the parallel compute engine in NVIDIA
graphics processing units (GPU) to solve many
complex computational problems in a fraction of
the time required on a CPU. It includes the CUDA
Instruction Set Architecture (ISA) and the parallel
compute engine in the GPU. In order to program
to the CUDA architecture, developers can, today,
use C, one of the most widely used high-level

 ISSN 1889-8297 / Waves · 2010 · year 280 Waves · 2010 · year 2 / ISSN 1889-8297 81

NVIDIA also provides its own libraries for dense
linear algebra and FFT: CUBLAS and CUFFT. How-
ever, these are still suboptimal implementations
which need to be further re"ned.

Applications
High Performance Computing (HPC) is broad-
ening its scope to tackle a large variety of prob-
lems arising in many scienti"c and engineering
areas. In Signal Processing, e.g., HPC techniques
are applied to develop user applications in the
promising market of processing, transmission
and reproduction of multimedia content. The
incorporation into the market of processors with
multiple cores and the increasing use of graph-
ics processors (GPU) in general-purpose ap-
plications, is at the same time a challenge and
a great opportunity: the computing power of
the new architectures may enable the solution
of complex problems which require intensive
computing using desktop computers, provided
appropriate high performance algorithms are
developed. The result is the availability of appli-
cations for the non-expert user that until recent-
ly were unthinkable in the consumer market.

Nowadays, signal processing has become a ba-
sic tool in many applications such as (re) crea-
tion and transmission of virtual environments,
multichannel audio applications (recording and
reproduction), wireless mobile communications
systems with multiple antennas, to name just a
few related with applications traditionally de-
veloped within the INCO2 research group. These
applications often give rise to problems of high
computational cost, even when using common
signal processing algorithms, mainly due to the
application of these algorithms to multiple sig-
nals and with real-time requirements.

The implementation of advanced algorithms
for multichannel signal processing on new plat-
forms based on computation-intensive architec-
tures such as GPU and multi-cores is a scienti"c
and technological challenge, of growing interest
but unresolved at present, which will incorporate
tools and possibilities currently available only in
research to the user applications. In this line, the
implementation of user systems require tools
for massive signal processing: fast multichannel
convolution, adaptive multichannel processing,
MIMO channel equalization, and so on; as well as
its interaction with computer algebra tools tra-
ditionally used in signal processing algorithms
such as: solution of optimization problems with/
out constraints on structured matrices, matrix
decompositions (QR, SVD, etc), FFT, etc.

Only "ve years ago GPU supported a limited "xed
number of functions, mainly addressed to the
implementation of 3D graphics. Since then, GPU
have evolved (both in its hardware implementa-
tion as in its programming interface - CUDA) to
a very powerful processor, capable to carry out
general tasks. Many references in the literature il-
lustrate the generalized adoption of GPU, GP-GPU,

with regular codes that are intensive in !oating-
point arithmetic like those frequently arising in
signal processing applications. These tools can
be classi"ed in three major groups: compilers,
languages/environments, and libraries.

Current compiler technology can expose a large
fraction of the ILP providing a highly e$cient
base code for a single core. However, when deal-
ing with multiple cores, compilers still need to be
combined with some other tool (a language or
an environment) that allows the programmer to
pass additional information to the compiler. One
such clear example is OpenMP [www.openmp.
org], the current standard for shared-memory
parallel programming valid for multi-core proc-
essors. OpenMP combines three elements: a
high-level application programming interface
(API), a compiler which transforms a program
annotated with OpenMP directives into a mul-
tithreaded code, and a runtime environment
combined with a library to assist in the parallel
execution of the code.

OpenMP appeared in 1997 in response to the
lack of a standard for parallel programming
in shared-memory architectures that played a
similar role to that of MPI for distributed-mem-
ory (message-passing) architectures. Version 3.0,
released mid of 2008, includes the concept of
tasks and the task construct, specially designed
for multi-core processors. The new architectures
have also given rise to a large number of con-
tenders to OpenMP: UPC, TBB, Cilk, Chapel, etc.
It still remains tobe seen whether any of these
alternative solutions could become a real chal-
lenger to the acceptance of OpenMP as standard
approach to programm multi-core processors.

CUDA is both NVIDIA’s GPU architecture and the
corresponding programming environment. Pro-
grammers use “C for CUDA” (C with NVIDIA exten-
sions), compiled through NVIDIA C compiler, to
code algorithms for execution on the GPU. CUDA
architecture supports a range of computational
interfaces including the new standard OpenCL
[10]. High performance libraries for numeri-
cal computations, on the other hand, are much
more mature. This is no surprising, as dense lin-
ear algebra kernels and the FFT have been tra-
ditionally employed by hardware vendors as
the primary demonstrators of the performance
attained by their designs. Current libraries for
dense linear algebra include tuned multi-thread-
ed implementations of BLAS by most hardware
manufacturers (Intel, AMD, IBM, Sun, etc.), and
higher level libraries as LAPACK and lib!ame. It
is interesting to note that both LAPACK and lib-
!ame routines initially relied in BLAS to extract
parallelism. However, the increase in the number
of cores did require a redesign of these libraries,
to extract a higher degree of (data) parallelism.
The FFT has also received special attention over
the last decades and, specially, with the multi-
core revolution. FFTW, Spiral DFT and Intel MKL
all include tuned implementations of the FFT.

tools. Parallel Nsight supports CUDA C, OpenCL,
Direct Compute, Direct3D, and OpenGL.

Performance
The performance of GPUs can be spectacular,
especially if one only considers the peak per-
formance of these machines. A proper use of the
cores allows full concurrency, thus maximizing
the whole power of parallelism (for example, 240
cores in the case of the GTX 280 card). This can
potentially reduce execution times by an order of
magnitude when compared with those achieved
on a CPU; see Figure 6 obtained from [6].

However, several remarks are due here. Perform-
ance is much higher when using single-preci-
sion arithmetic. For example, on 2009 NVIDIA
GPU processors, there is a single double-preci-
sion unit per multiprocessor; thus, e.g., only 30
double-precision units are present in a GT280.
Furthermore, in a general application, the GPU
attains a real performance that is typically much
lower than its peak performance. To conclude
this review of GPU, the following advantages
and drawbacks can be remarked:

Advantages:
Very high bene"ts in terms of Giga!ops/
second.
Excellent Price/Performance ratio.
Existence of programming environments
(CUDA, OpenCL...)
Existence of libraries and tools.
Many possible applications (see [5]).

Drawbacks
A restricted programming model (SIMD
model).
CPU-GPU and I/O communications.
Low-level programming.
Insu$cient tools.
High power consumption.

4. Multi-core/many-core architec-
tures in Signal Processing

Possibilities
From the discussion of multi-core processors and

GPU in the two previous sections, it should be
clear that the computational power of multi-core
processors and GPU outweights by a large factor
that of the computers from past generations. The
new architectures also exhibit a more favourable
power/price ratio, which may greatly facilitate
their adoption and use in many application, even
in those where the price may be a critical point.
A preliminary conclusion is that the immediate
future of computing, also in Signal Processing
applications, seems tied to these architectures.

The Signal Processing "eld cannot remain indif-
ferent to the computational advantages o#ered
by the multi-core/many-core architectures. In-
deed, these new systems can be an appealing
alternative to the more traditional approach
based on DSPs and FPGAs, as some practical Sig-
nal Processing applications have already shown;
see, for example, [6]. Nevertheless, it must be yet
established whether these architectures/tools
are going to be widely incorporated as the pri-
mary choice in Signal Processing.

The adoption of a technology in a "eld of science
or engineering may be in!uenced by factors
other than the mere computational power pro-
vided by the hardware. For instance, program-
ming models can strongly in!uence the pace
and success of adoption. Also the nature and/or
the scope of the problems may represent a limit-
ing factor. As an example, some applications do
not "t in the SIMD model, so that the use of GPU
may not be appropriate or even viable; in some
of these cases, the more !exible multi-core ap-
proach can solve the problem. Finally, the exist-
ence of a large scopus of legacy software or the
lack of e$cient software tuned for the new ar-
chitectures can be a conditioning factor as well.

Only after a detailed analysis of these factors, it
is possible to determine the usefulness of the
multi-core/ many-core architectures in Signal
Processing. Let us thus review the most popular
programming tools and models available nowa-
days for the multi-core processors and GPU.

Multi-core is about running two or more actual
CPUs (cores) on one chip. While these designs
are not fundamentally di#erent from previous
multiprocessor architectures, the fundamental
turning point lies in software development for
applications targeting general-purpose desktop
computers and low-end servers. In particular, the
greatest software revolution in the past was the
move from structured programming to object-
oriented programming. The current “concur-
rency” revolution is an equally fundamental and
far-reaching change in software development:
Applications will only bene"t from the continued
exponential throughput advances in new proc-
essors if they are rewritten in terms of e$cient
concurrent (usually multithreaded) codes.

Luckily, there are many tools to help us in adapt-
ing software to the new architectures, especially

 Figure 6. GPU vs CPU GFlops.

The number
of cores is
expected
to double
with each
reduction in
the integration
scale (roughly,
every two
years), as long
as Moore’s Law
holds.

 ISSN 1889-8297 / Waves · 2010 · year 282 Waves · 2010 · year 2 / ISSN 1889-8297 83

conductors, “International roadmap for sem-
iconductors-System drivers,” in http://www.
itrs.net/Links/2009ITRS/2009Chapters_2009
Tables/2009_SysDrivers.pdf, 2009

[4] Herb Sutter, “The free lunch is over: A fun-
damental turn toward concurrency in soft-
ware,” in Dr. Dobb’s Journal, vol. 30, no. 3,
March 2005

[5] A. Gonzalez, J. A. Belloch, G. Piñero, J. Lorente,
M. Ferrer, S. Roger, C. Roig, F. J. Martínez, M.
de Diego, P. Alonso, V. M. García, E. S. Quin-
tana-Ortí, A. Remón and A. M.Vidal “Applica-
tion of Multi-core and GPUs Architectures on
Signal Processing: Case Studies,” in Waves,
vol. 2, 2010.

[6] http://www.nvidia.com/object/cuda_home_
new.html

[7] M. J. Flynn, “Some computer organizations
and their E#ectivness,” in IEEE Transactions
on Computers, vol. 21 pp. 948–960, 1972

[8] http://www.culatools.com/
[9] http://www.accelereyes.com/
[10] Khronos Group, “OpenCL - The open stand-

ard for parallel programming of heteroge-
neous systems”, in http://www.khronos.org/
opencl , 2009

[11] E. Gallo and N. Tsingos, “E$cient 3D Audio
Processing with the GPU”, in ACM Workshop
on General Purpose Computing on Graphics
Processors, Los Angeles, August 2004.

[12] J.D. Owens, M. Houston, D. Luebke, S. Green,
J.E. Stone and J.C. Phillips, “GPU Computing”,
in Proc. of the IEEE, vol. 96, no. 5, pp. 879-899,
May 2008.

[13] M.D. McCool, “Signal Processing and Gen-
eral-Purpose Computing and GPUs,” in IEEE
Signal Processing Magazine, vol. 24, no 3,
pp. 109-114, May 2007.

[14] P.A. Nelson, F. Orduña-Bustamante, and H.
Hamada, “Multichannel signal processing
techniques in the reproduction of sound,” in
J. Audio Eng. Soc., vol.44, no 11, pp.973-989,
November 1996.

[15] Y. Huang, J. Benesty, G.W. Elko, “Source local-
ization, in Audio Signal Processing for Next-
Generation Multimedia Communication
Systems, Y. Huang, J. Benesty (Eds.), Kluwer
Academic, Boston, MA, 2004 (Chapter 9).

Biographies

Antonio M. Vidal
receives his M.S. degree in
Physics from the Universi-
dad de Valencia, Spain, in
1972, and his Ph.D. degree
in Computer Science from
the Universidad Politéc-
nica de Valencia, Spain, in
1990. Since 1992 he has

been in the Universidad Politécnica de Valencia,
Spain, where he is currently a full professor in the
Department of Computer Science. He is the co-
ordinator of the project High Performance Com-

also in applications other than image processing.
Concerning the use of GPU for applications in dig-
ital audio processing, the oldest references date
back to 2004 [11]. However, only very recently
(2007 and 2008), the use of GPU has been em-
ployed in this area. The reason for this should be
attributed to the GPU programming tools, quite
complex in the beginning and with the constraint
of using graphic processing procedures and
terms: rendering, textures, etc. A second factor
against the general adoption of GPU was that, for
some time, the computational power provided by
a general-purpose uni-processor was enough to
give support for real-time applications.

Currrent proposals for possible applications of
audio and acoustics on GPGPU include (www.
gpgpu.org):

- Mixing audio signals.
- Modelling the acoustics of rooms and the

Head Related Transfer Function (HRTF) for
virtual environments.

- Adding sound e#ects (www.monalisa-au.org).

Other potential applications of digital signal
processing on GPU can be found in the last
paragraphs of [12] and [13]. An abbreviated list
includes:

- Classical processing algorithms: FFT, con-
volution algorithms for solving di#erential
equations, pattern recognition, sequence
alignment (general algorithms using hid-
den Markov models), tracking.

- Algorithms for matrix massive computation:
QR decomposition, Cholesky, SVD, etc.

- Wireless Applications: Implementation of
some blocks of the physical layer, very suit-
able for standards based on OFDM, where
FFT should be calculated (WiFi, WiMAX).

All the signal processing strategies developed to
deal with a single signal or a few of them can be
addressed when tackling multiple signals, taking
advantage of its inherent parallel nature and the
characteristics of the new hardware and soft-

ware tools. One example of this is multichannel
acoustic signal processing. This "eld has experi-
enced a large growth in the last years, due to the
increase in the number of sound sources used in
new commercial applications for sound repro-
duction, and in the growing needs to include
innovative e#ects and capabilities to the listen-
ing experience [14][15]. Moreover, the increas-
ing market of advanced multimedia contents
for home users creates the necessity of new
multichannel sound processing tools, capable of
extracting all the features that can be included
in these contents. The creation of these contents
requires as well multichannel signal processing
tools, for stage analysis, signal "ltering, noise re-
duction, etc.

The main multichannel recording-reproduction
problem can be modelled as a discrete MIMO
(Multiple Input, Multiple Output) system of
sound signals. The problem of sound recording
presents some analogies (in terms of multichan-
nel signal processing) with the reproduction sys-
tem; however, there are some distinct features.
Particularly, it is possible to extract certain pa-
rameters from the analysis of the sound scene:
number of sources, location of these, etc. A large
number of applications of spatial sound can be
derived from the scheme displayed in Figure 7,
in applications that perform reproduction either
through speakers or through headphones. Usu-
ally, we focus on reproduction through speak-
ers (and recording by arrays of microphones)
because this is the problem that poses harder
scienti"c and technological challenges, and
has a larger number of potential applications.
In any case, it is always possible, from a generic
viewpoint, to extrapolate the results obtained in
reproduction by loudspeakers to headphones
reproduction, if the physical phenomena and ef-
fects caused by the propagation of waves in the
listening room are not taken into account.

From the acoustic man-machine interface de-
picted in Figure 7, which uses multiple channels
for sound reproduction and acquisition, and in
general can serve multiple mobile sources and
listeners, the fundamental problems of signal
processing can be identi"ed. Some of these
problems can be: multichannel acoustic echo
cancellation, processing of signals from micro-
phone arrays for beamforming, interference can-
cellation, signal separation, source localization,
room equalization, active noise cancellation and
spatial source location.

5. Conclusions

General-purpose multi-core processors and GPU
will surely impact future signal processing appli-
cations, with the reason for this being twofold.
First, these new hardware components exhibit
a vast high-performance computing capability
with a much favourable price-performance ratio,
and programmers of signal processing applica-

tions will naturally want to exploit this. Second,
only those application developers who embrace
the explicit parallel programming model intrin-
sic to these architectures will bene"t from the
multi-core revolution.

It seems that GPU may not represent the opti-
mal model for general-purpose parallel ma-
chines, but they state an important trend
that other existing architectures (for exam-
ple multi-cores) cannot ignore. In this sense
GPU architectures are here to stay, either in
its current form or as part of a hybrid design.
As a special-purpose machines, GPU have as-
sured their presence in the short and medium
term. The market for video games and graphic
applications is an appropriate "eld for GPU
that provides the necessary economic support.
Nonetheless, there are also important scienti"c
and engineering problems which exhibit a con-
siderable degree of data parallelism, which can
bene"t much from the important and cheap
source of computational power in GPU. There is
a considerable amount of literature that delves
into this line of research, to which this paper is
intended to contribute.

Multicore represents a good alternative for
general-purpose parallel machine, with a simple
and widespreath programming model and high
performance in its application scope. However,
it may not be the best approach for many real-
time or "ne-grain signal processing applications
that require real time.

Both types of architectures represent the future
for many scienti"c applications, including signal
processing as well. In this paper we have reviewed
the rationale and the state-of-the-art of both ar-
chitectures. In a second part, we o#er a brief de-
scription of some case studies developed within
the INCO2 group that illustrate the use of the new
architectures [5]. These examples aim at covering
issues of low/medium level, with applicability in
multiple Signal Processing applications.

Acknoledgments

This work has been supported by Generalitat Va-
lenciana Project PROMETEO/2009/013 and par-
tially supported by Spanish Ministry of Science
and Innovation through TIN2008-06570-C04
and TEC2009-13741 Projects.

References

[1] José M. F. Moura, “What is Signal Processing?,”
in IEEE Signal Processing magazine, vol. 26,
no. 6, pp. 6-6, November 2009

[2] R. Schneiderman, “DSPs Are Helping to Make
It Hard to Get Lost,” in IEEE Signal Processing
magazine, vol. 26, no. 6, pp. 9-13, November
2009

[3] International Technology Roadmap for Semi-

General-
purpose
multi-core
processors and
GPU represent
the future for
many scienti!c
applications,
including
signal
processing as
well.

 Figure 7. Basic Scheme of a multichannel recording-reproduction system.

 ISSN 1889-8297 / Waves · 2010 · year 284 Waves · 2010 · year 2 / ISSN 1889-8297 85

puting on Current Architectures for Problems of
Multiple Signal Processing”, currently developed
by INCO2 Group and "nanced by the Generalitat
Valenciana, in the frame of PROMETEO Program
for research groups of excellence. His main areas
of interest include parallel computing with ap-
plications in numerical linear algebra and signal
processing.

Alberto Gonzalez
was born in Valencia,
Spain, in 1968. He re-
ceived the Ingeniero de
Telecomunicacion degree
from the Universidad Po-
litecnica de Catalonia,
Spain in 1992, and Ph.D
degree from de Universi-

dad Politecnica de Valencia (UPV), Spain in 1997.
His dissertation was on adaptive "ltering for ac-
tive control applications. From January 1995, he
visited the Institute of Sound and Vibration Re-
search, University of Southampton, UK, where
he was involved in research on digital signal
processing for active control. He is currently
heading the Audio and Communications Sig-
nal Processing Research Group (www.gtac.upv.
es) that belongs to the Institute of Telecommu-
nications and Multimedia Applications (i-TEAM,
www.iteam.es). Dr. Gonzalez serves as Professor
in digital signal processing and communications
at UPV where he heads the Communications De-
partment (www.dcom.upv.es) since April 2004.
He has published more than 70 papers in jour-
nals and conferences on signal processing and
applied acoustics. His current research interests
include fast adaptive "ltering algorithms and
multichannel signal processing for communica-
tions, 3D sound reproduction and MIMO wire-
less systems.

Francisco José
Martínez Zaldívar
was born in Paiporta, Spain,
in 1966. He received the
Licenciado en Informática
and Ph.D. degrees from the
Universidad Politécnica de
Valencia, Spain, in 1990
and 2007 respectively.

He is currently Lecturer at the Departamento de
Comunicaciones, Universidad Politécnica de Va-
lencia. His current research interests include paral-
lel computing in signal processing.

Pedro Alonso
was born in Valencia,
Spain, in 1968. He re-
ceived the engineer de-
gree in computer science
from the Universidad
Politecnica de Valencia,
Spain, in 1994 and the
PhD degree from the

same University in 2003. His dissertation was on
the design of parallel algorithms for structured
matrices with application in several "elds of dig-
ital signal analysis. Since 1996 he has been a sen-
ior lecturer in the Department of Computer Sci-
ence of the Universidad Politecnica de Valencia.
He is a member of the High Performance Net-
working and Computing Research Group of the
Universidad Politecnica de Valencia. His main ar-
eas of interest include parallel computing for the
solution of structured matrices with application
in digital signal processing.

Alfredo Remón
was born in Valencia,
Spain. In 2001 he received
the B.S. in Computer Sci-
ence from the Polytechnic
University of Valencia, and
the Ph.D. in 2008 from the
Jaume I University of Cas-
tellón. He is currently an

assistant researcher in the University Jaume I.
His research interest include high performance
computing of serial and parallel codes applied to
dense linear algebra

Víctor M. García
obtained a degree in
Mathematics and Compu-
ter Science (Universidad
Complutense, Madrid) in
1991, later an MSc degree
in Industrial Mathematics
(University of Strathclyde,
Glasgow) in 1992 and a Ph.

D. degree in Mathematics (Universidad Politéc-
nica de Valencia) in 1998. He is a T.U. (senior lec-
turer) in the Universidad Politécnica de Valencia,
and his areas of interest are Numerical Comput-
ing, parallel numerical methods and applications.

Enrique S.
Quintana-Ortí
is professor in Compu-
ter Architecture at the
University Jaume I of Cas-
tellón, Spain.

His research interests are in
parallel and high-perform-

ance computing and numerical linear algebra.
Enrique has a PhD in Computer Science from the
Polytechnic University of Valencia.

José Antonio Belloch
was born in Requena,
Spain, in 1983. He re-
ceived the degree in Elec-
trical Engineering from
the Universidad Politéc-
nica de Valencia, Spain, in
2007. In 2008, he worked
for the Company Ge-

temed (Teltow, Germany) as a software develop-
er. His interest in parallel programming for Signal
processing led him to enroll in a PhD program in
2009 with the Audio and Communications Sig-
nal Processing Group (GTAC). Currently, he is "n-
ishing a Master in Parallel and Distributed Com-
puting at the UPV. He shares his studies in the
Master with his research on multichannel Audio-
Signal Processing onto the CUDA environment.

