
1

Informe Técnico ICC 01-05-2008

Out-of-Core Solution of Linear Systems
on Graphics Processors

Maribel Castillo, Francisco D. Igual, Rafael Mayo, Rafael Rubio,
Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́, Robert van de Geijn

Mayo de 2008

Departamento de Ingenierı́a y Ciencia de Computadores

Correo electrónico: {castillo, figual, mayo,
gquintan, quintana}@icc.uji.es,

rvdg@cs.utexas.edu

Universidad Jaime I
Campus de Riu Sec, s/n
12.071 - Castellón

España

2

3

Out-of-Core Solution of Linear Systems
on Graphics Processors

Maribel Castillo1,
Francisco D. Igual2,
Rafael Mayo3,
Rafael Rubio4,

Gregorio Quintana-Ortı́5,
Enrique S. Quintana-Ortı́6,
Robert van de Geijn7,

Abstract:
We combine two high-level application programming interfaces to solve large-scale

linear systems with the data stored on disk using current graphics processors. The result
is a simple yet powerful tool that enables a fast development of object-oriented codes,
implemented as MATLAB M-scripts, for linear algebra operations.

The approach enhances the programmability of the solutions in this problem domain
while unleashing the high performance of graphics processors. Experimental results
are reported from OCTAVE , linked with the implementation of BLAS by NVIDIA, and
executed on a G80 processor.

Keywords:
Graphics processors (GPUs), general purpose computing on GPU, linear algebra,

BLAS, high performance.

1 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: castillo@icc.uji.es.

2 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

3 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

4 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: rubio@icc.uji.es.

5 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: gquintan@icc.uji.es.

6 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.

7 Computer Science Department. The University of Texas at Austin
E-mail: rvdg@cs.utexas.edu.

4

5

Resolución Out-of-Core de Sistemas Lineales sobre
procesadores gráficos

Maribel Castillo8,
Francisco D. Igual9,
Rafael Mayo10,
Rafael Rubio11,

Gregorio Quintana-Ortı́12,
Enrique S. Quintana-Ortı́13,
Robert van de Geijn14,

Resumen:
Se combinan dos APIs de alto nivel para la resolución de sistemas lineales de gran

escala con los datos almacenados en disco, mediante el uso de procesadores gráficos
de última generación. El resultado es una herramienta simple, aunque de gran potencia,
que permite el rápido desarrollo de códigos orientados a objetos, implementados como
M-scripts, para operaciones de álgebra lineal.

Nuestra propuesta mejora la facilidad de programación para este tipo de problemas,
y a la vez aprovecha el elevado rendimiento de los procesadores gráficos. Los resulta-
dos experimentales han sido extraı́dos de OCTAVE, enlazado con la implementación de
BLAS de NVIDIA, y ejecutados sobre un procesador G80.

Palabras clave:
Procesadores gráficos (GPUs), procesamiento de carácter general sobre GPUs, álgebra

lineal, BLAS, altas prestaciones.

8 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: castillo@icc.uji.es.

9 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

10 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

11 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: rubio@icc.uji.es.

12 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: gquintan@icc.uji.es.

13 Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.

14 Computer Science Department. The University of Texas at Austin
E-mail: rvdg@cs.utexas.edu.

6

Out-of-Core Solution of Linear Systems
on Graphics Processors

Maribel Castillo1, Francisco D. Igual1, Rafael Mayo1, Enrique S. Quintana-Ortı́1,
Gregorio Quintana-Ortı́1, Rafael Rubio1, and Robert van de Geijn2

1 Depto. de Ingenierı́a y Ciencia de Computadores
Universidad Jaume I

12.071–Castellón, Spain
{castillo,figual,mayo,quintana,gquintan,rubio}@icc.uji.es

2 Department of Computer Sciences,
The University of Texas at Austin, Austin, Texas 78712,

rvdg@cs.utexas.edu

Abstract We combine two high-level application programming interfaces to solve
large-scale linear systems with the data stored on disk using current graphics pro-
cessors. The result is a simple yet powerful tool that enables a fast development
of object-oriented codes, implemented as MATLAB M-scripts, for linear algebra
operations.
The approach enhances the programmability of the solutions in this problem do-
main while unleashing the high performance of graphics processors. Experimen-
tal results are reported from OCTAVE , linked with the implementation of BLAS
by NVIDIA, and executed on a G80 processor.

Key words: Out-of-core computing, linear algebra, high-level APIs, user-friendly
problem-solution environments, graphics processors (GPUs).

1 Introduction

The OOC solution of dense linear algebra problems arises, among others, in Boundary
Element Methods (BEM) for integral equations in electromagnetics and acoustics, and
in radial functionmethods [7,9,10]. When the data structures involved in these problems
are too large to fit in memory, the only solution is to rely on disk storage. Although such
additional memory can be accessed via virtual memory, careful design of Out-of-Core
(OOC) algorithms is generally required to attain high performance.

ScaLAPACK and SOLAR contain parallel routines for the OOC solution of lin-
ear systems on distributed-memory parallel systems [14,8]. The POOCLAPACK pack-
age [6] offers a more friendly, object-oriented (OO) application programming interface
(API) for OOC computing also on this type of platforms.

Our approach departs from the previous OOC software efforts in two crucial as-
pects, which are the main contributions of this paper: 1) We follow and extend the tools
in the FLAME project (http://www.cs.utexas.edu/users/flame) with a
new high-level OO API for constructing OOC dense linear algebra algorithms from
user-friendly environments like MATLAB, OCTAVE, or LABVIEW. We believe such

8 M. Castillo et al.

an API offers an important added value of wide appeal to a majority of scientists and
engineers, who prefer this class of environments to perform complex analysis, model-
ing, and simulations; and 2) we target a fundamentally different architecture, namely
graphics processor (or GPU), which is rapidly becoming a standard hardware accel-
erator for certain computing-intensive operations. Our experimental results reveals the
remarkable properties of graphics processors to deal with large-scale dense linear alge-
bra problems.

The rest of the paper is structured as follows. In Section 2 we offer a few remarks
on the OOC solution of linear systems. Sections 3 and 4 are devoted, respectively, to
briefly reviewing the FLAME approach to coding dense linear algebra operations and
presenting in more detail the corresponding extension for OOC computing on graphics
processors. Experimental results on a NVIDIA graphics processor G80 report the per-
formance of the approach in Section 5 and, finally, the conclusions follow in Section 6.

2 OOC Solution of Linear Systems

In this paper we employ the Cholesky factorization as a representative example of the
OOC solution dense linear systems. In this operation, a symmetric positive definite
n × n matrix A is decomposed into the product A = LLT , where the lower triangular
n × n matrix L is the Cholesky factor of A. (Alternatively, A can be decomposed as
A = UT U , with U an n × n upper triangular matrix.)

In this factorization, roughly n3/3 floating-point arithmetic operations (flops) are
performed on n2 numbers. (In practice, the entries of the Cholesky factor L overwrite
the corresponding entries of the lower triangular part of A as they are computed so
that only one matrix is involved.) This results in a computationally-bounded operation
of wide appeal to current desktop systems, with a deep memory hierarchy, and also to
graphics processors, as will be shown later.

OOC algorithms for the Cholesky factorization usually proceed by logically parti-
tioning the matrix stored on disk into t × t tiles, Āi,j , (or square blocks):

A =





Ā0,0 Ā0,1 . . . Ā0,N−1

Ā1,0 Ā1,1 . . . Ā1,N−1
...

...
. . .

...
ĀN−1,0 ĀN−1,1 . . . ĀN−1,N−1




,

and bringing in-core only those tiles that participate in the current suboperation [11] .
(In general, between 1 and 3 tiles are kept in-core at any given stage.)

Procedures for the OOC computation of the LU factorization with partial pivoting
and the QR factorization, on the other hand, have traditionally viewed the matrix as par-
titioned into n×s slabs (column blocks or panels). More recently, tiled algorithms have
been proposed for the QR factorization [11] and the LU factorization with incremental
pivoting [12,13]. Thus, the use of tiles as the basic building block for the OOC API that
is advocated here is general enough to cover the solution of linear systems (and linear
least-squares problems).

Out-of-Core Solution of Linear Systems on Graphics Processors 9

Algorithm: A := CHOL UNB(A)

Partition A →
„

ATL AT R

ABL ABR

«

where AT L is 0 × 0
while m(ATL) < m(A) do

Repartition
„

AT L ATR

ABL ABR

«
→

0

@
A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1

A

where α11 is 1 × 1

aT
10 := aT

10TRIL(A00)−T

α11 := α11 − aT
10a10

α11 :=
√

α11

Continue with
„

AT L ATR

ABL ABR

«
←

0

@
A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1

A

endwhile

Algorithm: A := CHOL BLK(A)

Partition A →
„

AT L AT R

ABL ABR

«

where ATL is 0 × 0
while m(AT L) < m(A) do
Determine block size nb

Repartition
„

AT L AT R

ABL ABR

«
→

0

@
A00 A01 A02

A10 A11 A12
A20 A21 A22

1

A

where A11 is nb × nb

A10 := A10TRIL(A00)−T

A11 := A11 − A10AT
10

A11 := CHOL UNB(A11)

Continue with
„

AT L AT R

ABL ABR

«
←

0

@
A00 A01 A02
A10 A11 A12

A20 A21 A22

1

A

endwhile

Figure 1. Left-looking unblocked (left) and blocked (right) algorithms for computing the
Cholesky factorization.

The OOC solution of the triangular linear systems resulting from the previous fac-
torizations basically implies the same techniques described next while presenting a mi-
nor computational cost. Therefore, we do not discuss that final stage further.

3 An OO API to Coding Dense Linear Algebra Algorithms

The FLAME project encompasses a formal methodology for deriving algorithms for
dense linear algebra operations, a notation to express these algorithms with a high level
of abstraction, and several APIs to transform the algorithms into codes [4]. Key to
FLAME is the use of an OO approach, much as in scientific computing projects like
PLAPACK [15] or PETSc [1], for both expressing algorithms and codes. This is illus-
trated in Figure 1, which exposes unblocked and blocked algorithms for the Cholesky
factorization of a matrix using the FLAME notation. There, m(B) and TRIL(B) de-
note, respectively, the number of rows and the lower triangular part of B. We believe
the rest of notation to be intuitive; for details, visit the FLAME website or consult [5].

Using the FLAME@lab M-script API, the blocked algorithm in Figure 1 (right) is
encoded as shown in Figure 2. A comparison of these two figures illustrates how the
use of a high-level API allows the code to closely mirror the algorithm, thus hiding
implementation details into data objects (blocks or submatrices) and the corresponding
functions following an OO approach. In particular, note how FLAME avoids compli-
cated indexing by creating views, new objects or references into an existing matrix or
vector, through the partitioning operations.

10 M. Castillo et al.

1 function [A_out] = FLA_Chol(A, nb_alg)
2
3 [ATL, ATR, ...
4 ABL, ABR] = FLA_Part_2x2(A, ...
5 0, 0, ’FLA_TL’);
6
7 while (FLA_Obj_length(ATL) < FLA_Obj_length(A))
8 b = min(nb_alg, FLA_Obj_length(ABR);
9 [A00, A01, A02, ...
10 A10, A11, A12, ...
11 A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...
12 ABL, ABR, ...
13 b, b, ’FLA_BR’);
14
15 %--%
16 A10 = A10 / tril(A00)’; % A10 := A10 * TRIL(A00)ˆ-T
17 A11 = A11 - A10 * A10’; % A11 := A11 - A10 * A10ˆT
18 A11 = chol(A11)’; % A11 := Chol(A11)’
19 %--%
20
21 [ATL, ATR, ...
22 ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...
23 A10, A11, A12, ...
24 A20, A21, A22, ...
25 ’FLA_TL’);
26 end
27 A_out = ATL;
28 return

Figure 2. FLAME@lab code to compute the Cholesky factorization of a matrix.

4 An OO API to Coding OOC Dense Linear Algebra Algorithms

The need to operate on the GPU with data matrices initially residing on disk and pro-
duce results that eventually will be transferred back to disk led us to develop a collection
of routines in the OOC API structured in three major groups:

– OOC data structure handling (FLAOOC): Routines in the FLAOOC@lab API [15]
to create and destroy matrices-by-tiles on disk, set and retrieve their contents, and
track the movement through them during the execution of the tiled OOC algorithm.

– I/O transfer (FLAGOOC): Routines to move data between disk and GPU memory.
– GPU computation (FLAG): Routines in the FLAG@lab API [3] to compute with
matrices stored on the GPU memory.

We next describe the major elements of the FLAGOOC@lab API in each one of these
groups using the Cholesky factorization as the guiding example.

4.1 OOC data structure handling

The fragment of M-script code in Figure 3 allocates space on disk for an n × n SPD
matrix

A =
(

B B/t
B/t B

)
,

with B = diag(1, 2, . . . , t) being a diagonal matrix and tile size t = n/2 (lines 5-7).
Routine FLAOOC Obj create there allows the user to specify the data type of the

Out-of-Core Solution of Linear Systems on Graphics Processors 11

entries of the OOC matrix (real or complex), its dimensions (rows/columns) and tile
size, and the name to use for the file on disk. We note that the n × n matrix is never
explicitly formed and only resides on disk. In particular, A is an object (or descriptor)
for the OOC matrix. The tile size is a user-selected parameter that must be tuned for
optimal performance depending on the problem dimensions, the size of the GPU mem-
ory, and the number of tiles that must be kept in the GPU during the algorithm. The tile
size dictates how the partitioning/repartitioning routines operating on this matrix will
proceed.

The contents of the t × t tiles in the lower triangular part are initialized next with
three calls to FLAOOC Axpy matrix to object (lines 9-14); each invokation to
this routine adds the contents of the object B, scaled by the first argument, to the part
of the OOC matrix A starting at the entry specified by the last two arguments. Routine
FLAGOOC Chol (to be illustrated later) is invoked then to compute the Cholesky fac-
torization (line 16) and, after using the result, the space for A on disk is deallocated
(line 18).

1 n = ...; % Matrix size
2 t = n/2; % Tile size
3 B = diag([1:t]); % Building block
4
5 A = FLAOOC_Obj_create(’FLA_REAL’, % Entries are real numbers
6 n, n, t, % n x n matrix with tile size t
7 ’File_for_A’); % File name on disk
8
9 FLAOOC_Axpy_matrix_to_object(1, B, % B in A(1:t,1:t)
10 A, t, t);
11
12 FLAOOC_Axpy_matrix_to_object(1/t, B, % B/t in A(t+1:n,1:n)
13 A, t+1, 1);
14
15 FLAOOC_Axpy_matrix_to_object(1, B, % B in A(t+1:n,t+1:n)
16 A, t+1, t+1);
17
18 A = FLAGOOC_Cholesky(A); % Compute the Cholesky factor
19 ... % Somehow use the result
20 FLAOOC_Obj_destroy(A); % Free storage

Figure 3. Computation of the Cholesky factorization of an OOC matrix.

Figure 4 illustrates an OOC algorithm for the Cholesky factorization encoded us-
ing the OOC API. Note the similarities with the blocked code in Figure . The par-
titioning and repartitioning in the OOC code are just indexing operations which do
not modify the contents of the matrix. These operations track the initial partition-
ing of the OOC matrix into t × t tiles that was defined upon creation of the matrix.
Thus, e.g., in the 3 × 3 repartitioning resulting from FLAOOC Repart 2x2 to 3x3,
A11 is a tile extracted from ABR, which is later incorporated into ATL in the call to
FLAOOC Cont with 3x3 to 2x2. Thus, the fact that the algorithm operates on ma-
trices partitioned and stored on disk by tiles is mostly transparent to the user. All results
and arguments in the partitioning routines are objects or descriptors to the OOC matrix,
not matrices themselves.

12 M. Castillo et al.

4.2 I/O transfer

All movement of data between disk and the GPU memory is done using two routines:
FLAGOOC OOC to GPU and FLAGOOC GPU to OOC (see, e.g., lines 20 and 25 in
Figure 4). The result and arguments of these two routines are objects or descriptors of
matrices which reside on disk or GPU memory.

4.3 GPU computation

All the actual operations on the data occur in between the dashed lines of the code; see
Figure 4. RoutinesFLAGOOC Trsm and FLAGOOC Syrk employ the FLAGOOC@lab
API to solve a triangular linear system and compute a symmetric rank-k update, respec-
tively. Figure 5 provides a special instance of the implementation of the latter. As shown
there, at the bottom level routine FLAGOOC Syrk routine is decomposed into calls to
FLAG Syrk, a routine from the FLAG@lab API. This GPU API covers the function-
ality of the basic linear algebra subprograms (BLAS). Similarly, FLAGOOC Trsm is
decomposed into calls to the routines in FLAG@lab.

1 function [A_out] = FLAGOOC_Chol(A)
2 [ATL, ATR, ...
3 ABL, ABR] = FLAOOC_Part_2x2(A, ...
4 0, 0, ’FLA_TL’);
5
6 while (FLAOOC_Obj_length(ATL) < FLAOOC_Obj_length(A))
7 [A00, A01, A02, ...
8 A10, A11, A12, ...
9 A20, A21, A22] = FLAOOC_Repart_2x2_to_3x3(ATL, ATR, ...
10 ABL, ABR, ...
11 1, 1, ’FLA_BR’);
12 %--%
13 A10 = FLAGOOC_Trsm(’FLA_RIGHT’, ’FLA_LOWER_TRIANGULAR’,
14 ’FLA_TRANSPOSE’, ’FLA_NONUNIT_DIAG’,
15 1, A00,
16 A10); % A10 := A10 * TRIL(A00)ˆ-1
17 AGPU = FLAGOOC_OOC_to_GPU(A11); % Copy A11 from OOC to GPU
18 AGPU = FLAGOOC_Syrk(’FLA_LOWER_TRIANGULAR’, ’FLA_NO_TRANSPOSE’,
19 -1, A10,
20 1, AINC); % A11 := A11 - A10 * A10ˆT
21 AGPU = FLAG_Chol(AGPU); % A11 := chol(A11)
22 FLAGOOC_GPU_to_OOC(AGPU, A11); % Copy AGPU from GPU to OOC
23 %--%
24
25 [ATL, ATR, ...
26 ABL, ABR] = FLAOOC_Cont_with_3x3_to_2x2(A00, A01, A02, ...
27 A10, A11, A12, ...
28 A20, A21, A22, ...
29 ’FLA_TL’);
30 end
31 A_out = ATL;
32 return

Figure 4. FLAGOOC@lab code to compute the Cholesky factorization of an OOC matrix.

A careful inspection of these codes reveals a certain inefficiency in the manner of
computing the Cholesky factorization: some of the copies that transfer tiles of A10 to

Out-of-Core Solution of Linear Systems on Graphics Processors 13

1 function [C_out] = FLAGOOC_Syrk(uplo, trans, alpha, A, beta, C)
2 % Assumption: A is a row of tiles (row panel) and
3 % C is a single tile already in the GPU
4
5 C = FLAG_Scal(beta, C); % C := C + beta * C
6
7 [AL, AR] = FLAOOC_Part_1x2(A, ...
8 ’FLA_LEFT’);
9
10 while (FLAOOC_Obj_width(AL) < FLAOOC_Obj_width(A))
11
12 [A0, A1, A2]= FLAOOC_Repart_1x2_to_1x3(AL, AR, ...
13 1, ’FLA_RIGHT’);
14
15 %--%
16 AGPU = FLAGOOC_OOC_to_GPU(A1); % Copy A1 from OOC to GPU
17 C = FLAG_Syrk(uplo, trans,
18 alpha, AGPU,
19 1, C); % C := C + alpha * A1 * A1’
20 %--%
21
22 [AL, AR] = FLAOOC_Cont_with_1x3_to_1x2(A0, A1, A2, ...
23 ’FLA_LEFT’);
24
25 end
26 C_out = C;
27 return

Figure 5. FLAGOOC@lab code to compute the symmetric rank-k update involved int eh
Cholesky factorization of an OOC matrix.

GPU memory during execution of the routine FLAGOOC Trsm could be, in principle,
overlapped with those performed inside FLAGOOC Syrk. For the sake of simplicity,
we obviate this detail in the presentation of the codes. Also, during the execution of
these routines, the contents of the strictly upper triangular part of the diagonal t× t tiles
of A is destroyed. Once more, for clarity, we prefer to obviate how this can be fixed in
the codes.

5 Experimental Results

In this section we offer some results that illustrate the performance of the OOC rou-
tine for the Cholesky factorization in Figure 4. The experiment was conducted using
single-precision arithmetic on an NVIDIA GeForce 8800 Ultra (processor G80 run-
ning at 575MHz with 768 Mbyte of DDR RAM memory). OCTAVE 2.9.19 linked
with the implementation of the CUDA BLAS (CUBLAS 1.1) was employed. Our own
tuned codes were built upon the NVIDIA BLAS to solve triangular linear systems
(FLAG Trsm), compute a rank-k update (FLAG Syrk), and obtain the Cholesky fac-
torization (FLAG Chol). The CPU of the server for the GeForce board is an Intel
Core2Duo with two cores at 1.86 GHz and 1 Gbyte of DDR RAM, running a Linux
kernel version 2.6.18.

Figure 6 reports de GFLOPs delivered by the routine. For reference, we also include
the GFLOPs attained by MATLAB routine chol, that internally invokes the routine
spotrf from the MKL 10.0 implementation of LAPACK on the CPU, using one core
of the Intel processor. Similar behavior has been observed when using both cores.

14 M. Castillo et al.

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
FL

O
PS

Matrix dimension

FLAGOOC performance for the Cholesky factorization routine

MKL 10.0 schol
FLAGOOC Cholesky

Figure 6. Performance of the Cholesky factorization of an OOC matrix compared with the per-
formance of the MKL implementation of the routine

For the OOC routine, we carry out several experiments to determine the optimal
tile size t, but only report the results for the best value. Due to the stream oriented
architecture of the GPUs, the best performance results are usually achieved for big data
streams. The only limitation in our case is the physical memory limit imposed by the
GPU (768Mbytes in our experimental setup). The observed optimal value for the block
size for the GeForce system was t = 6000.

The figure shows that, when the matrix dimension exceeds the RAM capacity, the
virtual memory system does not handle efficiently the data, and the performance of the
routine chol decreases rapidly. On the other hand, the OOC routine, while attaining a
smaller percentage of peak performance than its MATLAB counterpart (basically due
to I/O overhead), maintains its performance for large-scale problems.

In addition to the data transfer bottleneck, there are three main reasons why the peak
performance of the FLAGOOC is still relatively low. First, current GPUs only operate in
simple precision, while the OCTAVE setup used in our experiments only works in double
precision. Though future generationsmay support double precision arithmetics natively,
it is necessary to perform an intermediate conversion of data before transferring it to the
videomemory, or back to OCTAVE objects. Second, the CUBLAS implementation is not
fully optimized [2], specially for routines that are heavily used in our algorithm (TRSM
and SYRK). Being a CUBLAS-based implementation, FLAG@lab relies on the per-
formance of the underlying BLAS implementation developed by NVIDIA. Third, there
exist some intrinsic limitations in the MATLAB/OCTAVE code that suppose an important
overhead for the final performance. In addition to the interpreted nature of the M-script
code, there is an extra overhead related to the mechanism used by MATLAB/OCTAVE
to manage the invocation of external compiled codes. In our implementation, intensive
CUDA/CUBLAS calls are performed, with an important performance penalty related
to this limitation.

However, besides the quantitative performance results, that can be solved by using
alternative solutions (e.g. C implementations), our prototype implementation throws

Out-of-Core Solution of Linear Systems on Graphics Processors 15

interesting qualitative results, mainly observed for big matrices, for which MKL, or any
other implementation with no specific support for OOC situations, cannot attain high
performance.

6 Concluding Remarks

The FLAGOOC@lab API provides an easy-to-use tool to develop codes for dense lin-
ear algebra operations with matrices stored on disk and execute them on a graphics
processor. The simplicity of the solution comes from the adoption of the FLAME nota-
tion and tools (including the FLASH API for hierarchically storing matrices by blocks),
while much of its appeal is in the user-friendly access to the FLAGOOC@lab API via
environments like MATLAB/OCTAVE. Combined with an implementation of BLAS for
a graphics processor, the proposed interface allows an efficient solution of large-scale
OOC dense linear algebra problems on this class of architectures.

Acknowledgements

This research was partially sponsored by NSF grants CCF-0540926 and CCF-0702714.
The researchers at the Universidad Jaime I of Castellón were supported by the CICYT
project TIN2005-09037-C02-02 and FEDER, and projects No. P1-1B2007-19 and P1-
1B2007-32 of the Fundación Caixa-Castellón/Bancaixa and UJI. We thank the other
members of the FLAME team for their support.

Any opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).

References

1. Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith. PETSc 2.0 users
manual. Technical Report ANL-95/11, Argonne National Laboratory, Oct. 1996.

2. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ortı́. Evaluation and
tuning of the level 3 CUBLAS for graphics processors. In Proceedings of PDSEC08, 2008.

3. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ortı́. FLAG@lab: An
M-script API for linear algebra operations on graphics processors. FLAME Working Note
#30 Technical Report ICC 01-02-2008, Depto. de Ingenieria y Ciencia de Computadores,
Universidad Jaume I, February 2008.

4. Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and
Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM
Trans. Math. Soft. submitted.

5. Paolo Bientinesi, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Representing linear
algebra algorithms in code: The FLAME application programming interfaces. ACM Trans-
actions on Mathematical Software, 31(1):27–59, March 2005.

6. Wesley C. and Robert A. van de Geijn. POOCLAPACK: Parallel Out-of-Core Linear Algebra
Package. Technical Report CS-TR-99-33, Department of Computer Sciences, The University
of Texas at Austin, Nov. 1999.

16 M. Castillo et al.

7. Tom Cwik, Robert van de Geijn, and Jean Patterson. The application of parallel computation
to integral equation models of electromagnetic scattering. Journal of the Optical Society of
America A, 11(4):1538–1545, April 1994.

8. E. F. D’Azevedo and J. J. Dongarra. The design and implementation of the parallel out-of-
core scalapack LU, QR, and Cholesky factorization routines. LAPACK Working Note 118
CS-97-247, University of Tennessee, Knoxville, Jan. 1997.

9. L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of elastic scattering problems in linear
acoustics using h-p boundary element method. Comp. Meths. Appl. Mech. Engrg, 101:251–
282, 1992.

10. C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions: have we
been doing it all wrong? Technical Report TR-95-40, Department of Computer Sciences,
The University of Texas at Austin, 1995.

11. Brian C. Gunter, Wesley C. Reiley, and Robert A. van de Geijn. Parallel out-of-core Cholesky
and QR factorizations with POOCLAPACK. In Proceedings of the 15th International Par-
allel and Distributed Processing Symposium (IPDPS). IEEE Computer Society, 2001.

12. Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Rapid development
of high-performance out-of-core solvers. In Proceedings of PARA04.

13. Enrique S. Quintana-Ortı́ and Robert van de Geijn. Updating an lu factorization with pivot-
ing. ACM Trans. Math. Soft.

14. Sivan Toledo and Fred G. Gustavson. The design and implementation of SOLAR, a portable
library for scalable out-of-core linear algebra computation. In Proc. of IOPADS ’96, 1996.

15. Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

