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Abstract:

We present several algorithms to compute the solution of a linear system of equa-
tions on a GPU, as well as general techniques to improve their performance, such as
padding and hybrid GPU-CPU computation. We also show how iterative refinement
with mixed-precision can be used to regain full accuracy in the solution of linear sys-
tems. Experimental results on a G80 using CUBLAS, the implementation of BLAS for
NVIDIA R© GPUs with unified architecture, are given to illustrate the performance of
the different algorithms and techniques proposed.
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Resumen:

El presente informe describe diferentes algoritmos para calcular la solución de un
sistema lineal sobre una GPU, ası́ como técnicas generales para mejorar su renidimento,
como padding y técnicas hı́bridas CPU-GPU. Además, se hace uso de técnicas de refi-
namiento iterativo con precisión mixta, para conseguir mayor precisión en la solución
obtenida. Se incluyen resultados experimentales sobre el procesador G80 haciendo uso
de CUBLAS, la implementación de BLAS desarrollada por NVIDIA R© para GPUs con
arquitectura unificada.
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Abstract We present several algorithms to compute the solution of a linear sys-
tem of equations on a GPU, as well as general techniques to improve their perfor-
mance, such as padding and hybrid GPU-CPU computation. We also show how
iterative refinement with mixed-precision can be used to regain full accuracy in
the solution of linear systems. Experimental results on a G80 using CUBLAS,
the implementation of BLAS for NVIDIA R© GPUs with unified architecture, are
given to illustrate the performance of the different algorithms and techniques pro-
posed.
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1 Introduction

The improvements in performance, functionality, and programmability of the current
generation of graphics processors (GPUs) have renewed the interest in this class of
hardware for general-purpose computation. These advances also apply to dense linear
algebra, with important gains in the performance delivered for basic linear algebra op-
erations. The interest in using GPUs for dense linear algebra is not new. Several earlier
studies have evaluated the performance of this type of operations on former genera-
tions of GPU. Some of them were specifically focused in the evaluation of different
procedures for solving dense linear systems [1,2].

In this paper we focus on the Cholesky and LU factorizations and update the stud-
ies in [1,2], using the current generation of GPUs and the implementation of BLAS
optimized for graphics processors with unified architecture. In particular, we compare
several algorithmic variants of the factorization procedures and evaluate their perfor-
mance on a G80 graphics processor. In addition, we describe techniques to improve the
performance of the basic implementations and, as a result, we obtain optimized routines
that outperform the CPU-based implementations. Finally, we also employ an iterative
method, which combines single and double-precision arithmetic, to refine the solution
of a linear system of equations to achieve full precision accuracy.
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The new generation of GPUs, that exhibit a new unified architecture, solves many of
the problems that limited the performance of older generations of graphics processors,
mainly in terms of memory hierarchy, interconnection buses and programmation abili-
ties. In particular, CUDA has been released by NVIDIA as a general-purpose oriented
API for its graphics hardware, with the G80 processor as target platform. In addition,
CUBLAS is an optimized version of the BLAS built on top of CUDA, and adapted to
the peculiarities of this type of platforms [3,4].

The rest of the paper is structured as follows. Section 2 reviews the algorithms
for the Cholesky and LU factorization implemented in our study. Section 3 describes
several strategies that are applied to improve the performance of the initial algorithms.
The impact of these techniques is evaluated in Section 4. Finally, Section 5 collects the
conclusions of this analysis.

2 Overview of the Cholesky and LU factorization methods

Let A ∈ Rn×n be symmetric positive definite, and consider its Cholesky factorization
given by

A = LLT , (1)

where L is a lower triangular matrix known as the Cholesky factor of A.
There exist three different variants for obtaining the Cholesky factorization [5].

Blocked algorithms for the different variants are given in Figure 1 (left) in a nota-
tion that has been developed as part of the FLAME project [6,7]. The thick lines in
the figure denote how far the computation of the factorization has proceeded; the no-
tation TRIL (B) refers to the lower triangular part of matrix B, and nB stands for the
number of columns of B. We believe the rest of the notation to be intuitive. Upon com-
pletion, the entries of the Cholesky factor L overwrite the corresponding entries of A.
Despite being different from the algorithmic point of view, all variants perform exactly
the same operations. However, the performance of the implementations depends on the
way and order in which these operations are executed, and also on the specific BLAS
implementation employed.

Given a matrix A, the LU factorization with partial pivoting decomposes this matrix
into two matrices, L and U , such that

PA = LU, (2)

where P is a permutation matrix, L is a unit lower triangular matrix, and U is an upper
triangular matrix.

Three different variants for obtaining the LU factorization with partial pivoting are
given in Figure 1 (right) in FLAME notation. As for the Cholesky factorization, all vari-
ants perform the same operations, but in different order, and the triangular factors L and
U overwrite the corresponding entries of A upon completion. The notation TRILU(B)
stands for the unit lower triangular matrix stored in B.

For each variant shown in Figure 1, we also include the name of the BLAS-3 ker-
nel used to carry out the corresponding operation. For the Cholesky factorization, the
performance of the SYRK kernel, invoked to update A22, will determine the final per-
formance of Variant 1 of the blocked algorithm; the TRSM and SYRK kernels, used to



Algorithm: A := CHOL BLK(A)

Partition A →
„

AT L AT R

ABL ABR

«

where AT L is 0× 0
while n(AT L) < n(A) do

Determine block size nb

Repartition

„
AT L AT R

ABL ABR

«
→
0
@
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A10 A11 A12
A20 A21 A22

1
A

where A11 is nb × nb

Variant 1:
A11 := CHOL UNB(A11)

A21 := A21TRIL (A11)
−T (TRSM)

A22 := A22 − A21AT
21 (SYRK)

Variant 2:
A10 := A10TRIL (A00)

−T (TRSM)

A11 := A11 − A10AT
10 (SYRK)

A11 := CHOL UNB(A11)

Variant 3:
A11 := A11 − A10AT

10 (SYRK)
A11 := CHOL UNB(A11)

A21 := A21 − A20AT
10 (GEMM)

A21 := A21TRIL (A11)
−T (TRSM)

Continue with
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endwhile

Algorithm: [A, p] := LUP BLK(A)

Partition
A→
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!
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where AT L is 0× 0 and pT has 0 elements
while n(AT L) < n(A) do
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where A11 is nb×nb and p1 has nb elements
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«
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–
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«
:= P (p1)
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Variant 2:
A11 := A11 − A10A01 (GEMM)
A21 := A21 − A20A01 (GEMM)»„
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A12 := A12 − A10A02 (GEMM)
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Figure 1. Multiple blocked variants of the Cholesky factorization (left) and the LU factorization
with partial pivoting (right). CHOL UNB and LUP UNB refer to the unblocked versions of the
Cholesky and the LU factorization procedures.

update A10 and A11, are the dominant operations for Variant 2; and the majority of the
operations in Variant 3 are performed through the GEMM kernel when updating the sub-
matrix A21. As a result, the performance of these BLAS-3 kernels will determine which
of the proposed variants of the Cholesky factorization yields a higher performance.

Similar considerations can be made for the study of the LU factorization variants
described in Figure 1 (right).



3 Computing the Cholesky and LU factorizations on GPUs

Starting from these basic implementations, the following subsections introduce refine-
ments that can be applied simultaneously in order to improve both the performance of
the factorization process and the accuracy of the solution of the linear system. These
improvements include padding, a hybrid CPU-GPU implementation, a recursive imple-
mentation, and an iterative refinement procedure.

3.1 Padding

Experiments in [8] have shown that Level 3 BLAS implementations of CUBLAS (spe-
cially the GEMM kernel) deliver much higher performance when operating on matrices
with dimensions that are a multiple of 32. This is due to memory alignment issues [3].

Therefore, it is possible to improve the overall performance of the blocked Cholesky
factorization (and, similarly, the LU factorization) process by applying the correct pad
to the input matrix and selecting the appropriate block sizes. Starting from a block size
nb that is multiple of 32, we pad the n× n matrix A to compute the factorization

Ā =
(

A 0
0 Ik

)
=

(
L 0
0 Ik

)(
L 0
0 Ik

)T

,

where Ik denotes the identity matrix of order k, and k is the difference between the ma-
trix size n and the nearest integer multiple of nb larger than n. By doing this, all BLAS-3
calls operate on submatrices of dimensions that are a multiple of 32, and the overall per-
formance is improved. Moreover, there is no communication overhead associated with
padding as only the matrix A and the resulting factor L are transfered between main
memory and video memory. On the other hand, we incur in a computation overhead
due to useless arithmetic operations which depends on the relation between n and 32.

3.2 Hybrid algorithm

We have also developed a hybrid version of the blocked algorithm for the Cholesky
and LU factorizations which delegates some of the calculations previously performed
on the GPU to the CPU. This approach aims to exploit the different abilities of each
type of processor to deal with specific operations, and additionally, take profit from the
higher performance of the CPU when operating with small matrices, see Figure 2. In
particular, the factorization of the diagonal block A11 on the blocked algorithm (for
the Cholesky factorization) carries out a series of fine-grained arithmetic operations,
specially the square root calculation, that are not well suited for graphics processors.

The hybrid algorithm sends the diagonal block from video memory to main mem-
ory, factorizes this block on the CPU (where square root are easily computed, and the
computation of small matrices is more efficient), and transfers back the results to video
memory before the computation on the GPU continues. Whether this technique delivers
a performance gain will depend on the overhead introduced by the transference between
video memory and main memory.

The same technique has been applied in the LU factorization. In this case, the fac-

torization of the current column panel
„

A11

A21

«
is computed on the CPU.



3.3 Recursive implementation

It is quite straight-forward to obtain a recursive version of the blocked variants for the
Cholesky factorization. The recursive version partitions the matrix into 2 × 2 square
blocks, of similar dimensions, and then factorizes the upper-left block using the same
algorithm, which results in a first level of recursion; the procedure is then repeated
recursively at each deeper level.

We have implemented recursive implementations of Variants 1 and 2 for the Cholesky
and LU factorizations, respectively, which perform a single level of recursion and em-
ploy the hybrid algorithm at the bottom stage. Performing several recursive steps did
not improve the performance of the algorithm in our experiments.

3.4 Iterative refinement

The G80 processor only provides single-precision arithmetic. Therefore, computing the
Cholesky or LU factorization on the GPU will yield half of the precision that is usually
employed in numerical linear algebra. However, iterative refinement can be used to
regain full (double-) precision when the factors obtained after the factorization process
on the GPU are employed to solve the linear system A · x = b, as described next.

This basic procedure for iterative refinement can be modified to use a mixed preci-
sion approach following the strategy in [9] for the Cell B.E. The factorization of ma-
trix A is first computed on the GPU (in single-precision arithmetic) using any of the
algorithms proposed in previous sections. A first solution is then computed and iter-
atively refined on the CPU to double-precision arithmetic; see Algorithm 1.1. In this
algorithm, the (32) subscript indicates single-precision storage, while the absence of
subscript means double-precision format. Thus, only the matrix-vector product A · x is
performed in double-precision (kernel GEMV), at a cost of O(n2) flops (floating-point
arithmetic operations), while the rest of the arithmetic operations involve only single-
precision operands.

Algorithm 1.1. Solution of a symmetric positive definite system using mixed preci-
sion with iterative refinement. The Cholesky factorization is computed on the GPU. A
similar strategy can be applied to general systems using the LU factorization.
A(32), b(32) ← A, b
L(32) ← GPU CHOL BLK(A(32))

x
(1)

(32) ← L−T
(32)(L

−1
(32)b(32))

x(1) ← x
(1)

(32)

i← 0
r e p e a t

i← i + 1

r(i) ← b−A · x(i)

r
(i)

(32) ← r(i)

z
(i)

(32) ← L−T
(32)(L

−1
(32)r

(i)

(32))

z(i) ← z
(i)

(32)

x(i+1) ← x(i) + z(i)

u n t i l x(i+1) i s a c c u r a t e enough



Our implementation of the iterative refinement algorithm iterates until the solution,
x(i+1), satisfies the following condition:

‖r(i)‖
‖x(i)‖ <

√
ε,

where ε corresponds to the machine precision of the platform. When this condition is
met, the algorithm iterates twice more, and the solution is then considered to be accurate
enough [9].

4 Experimental results

Starting from a basic blocked implementation, we show how the techniques proposed
in the previous section (padding, hybrid approaches and recursive implementation) im-
prove the final performance and accuracy of the GPU implementations.

4.1 Experimental setup

The system used for the performance evaluation is based on an Intel Core2Duo CPU
(codename Crusoe E6320) running at 1.86 GHz. On the GPU side, all the implementa-
tions have been tested on a Nvidia 8800 Ultra board, with a Nvidia G80 processor.

We have developed Fortran 77 implementations of the blocked factorization algo-
rithms linked with CUDA 1.0 (with the same version of CUBLAS library) for the GPU.
In the CPU, the algorithms were implemented on top of GotoBLAS version 1.19, using
LAPACK version 3.0 when necessary. The compilers include GNU Fortran Compiler
version 3.3.5 and NVCC (NVIDIA compiler) release 1.0, version 0.2.1221.

All the results on the GPU presented hereafter include the time required to transfer
the data from the main memory to the GPU memory and retrieve the results back. The
kernels all operate on single-precision real data (except when iterative refinement is
considered) and results are reported in terms of GFLOPS (109 flops per second). A
single core of the Intel processor was employed in the experiments.

4.2 Basic blocked implementations on CPU and GPU

The first set of experiments are based on the basic blocked implementations illustrated
in Figure 1, executed on both CPU and GPU. Figure 2 reports the performance of the
three implemented variants of the blocked algorithms for the Cholesky and LU factor-
izations. These results are a first comparison between the CPU and the GPU implemen-
tations.

On both the CPU and the GPU, the variants of the blocked algorithm deliver a
considerable higher performance than their unblocked counterparts; therefore, results
for the unblocked implementations are not included in the figures. Due to its stream-
oriented architecture, the GPU only outperforms the CPU starting from matrices of
large dimension (around n = 3000 for Cholesky, and n = 1500 for LU). These initial
implementations on GPU obtain speedups of 1.91 and 2.10 for Cholesky and the LU,
respectively, comparing the best variants on each platform.



A detailed study of the results shows how the different variants of the blocked algo-
rithm executed on GPU exhibit a much different performance. This can be explained by
the different behavior of the underlying CUBLAS kernels, as we argue next. A detailed
comparison between the Level 3 CUBLAS routines underlying the Cholesky and LU
factorization routines (GEMM, TRSM, and SYRK) can be found in [8]. The results show
that the GEMM kernel in CUBLAS is thoroughly tuned, while considerably less atten-
tion has been paid to the optimization of SYRK and TRSM. This fact helps to explain the
differences in the performance of the three variants of the Cholesky factorization. As
noted in Figure 1, SYRK is the dominant operation in Variant 1; the bulk of the compu-
tation in Variant 2 is cast in terms of TRSM and SYRK; and the GEMM kernel is the most
important in Variant 3.
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Figure 2. Performance of the three blocked variants for the Cholesky and LU factorization. High-
est performances attained on the GPU are 23.7, 12.2, and 33.7 GFLOPS for Cholesky, and 14.9,
34, and 31.4 GFLOPS for the LU. Peak performances on CPU for the best variants are 17.6
GFLOPS for Cholesky and 14.9 GFLOPS for the LU.

Variant 1 of the LU factorization in Figure 2 obtains a poor performance compared
with Variants 2 and 3. As explained before, the underlying BLAS implementation de-
termines the final performance of the LU factorization process. The update of the A01

block in this variant is implemented on top of the TRSM routine. Through a detailed
performance evaluation of the CUBLAS TRSM routine, we have observed that this
operation yields worse results when large triangular matrices are involved. The vari-
ant implemented suffers from this poor performance of the TRSM implementation of
CUBLAS when updating matrices with m À n.

4.3 Blocked implementation with padding

Padding is a simple but effective method for improving the performance of the Level 3
CUBLAS implementations [8]. Our goal here is to exploit the high performance achieved
by padding the Level 3 CUBLAS operations (see the difference between GEMM with
and without padding in [8] for more details) to improve the overall performance.

Figure 3 shows the results of the three variants of the Cholesky and LU factoriza-
tions when the appropriate padding is applied to the input matrices. Comparing the



results with those without padding, it is possible to distinguish a small improvement in
the final performance of the three variants of both factorizations. In [8] it was noted that
the performance gain that is attained when applying padding to the Level 3 BLAS rou-
tines in CUBLAS is higher for GEMM than for SYRK. Thus, it is natural that Variant 3 of
the Cholesky factorization (based on GEMM) benefits more than the other two variants.
In fact, the improvement for Variant 2 is minimal when applying this optimization, as
for Variant 1 of the LU factorization, in which TRSM is the main routine.
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Figure 3. Performance of the three blocked variants for the Cholesky and LU factorization with
padding applied. Highest performances attained on the GPU are 26.7, 12.9, and 37.6 GFLOPS
for Cholesky, and 16.2, 37.8, and 34.6 GFLOPS for the LU. Comparing the best CPU and GPU
implementations, the achieved speedup is 2.13 for Cholesky, and 2.32 for the LU.

The application of padding masks the irregular behavior of all the implementations
for matrix sizes multiples of 32 (see Figure 2, for m = 4000). In addition, the overall
performance is considerably improved: maximum speedups for the Cholesky factoriza-
tion variants compared with the basic GPU implementations are 1.27, 1.10, and 1.12,
while the speedups attained for the LU are 1.09, 1.12, and 1.12, respectively.

4.4 Hybrid and recursive implementations

We next evaluate our hybrid and recursive blocked algorithms, including padding, for
the Cholesky and LU factorizations based on Variants 1 and 2, respectively. We have
chosen these variants because they have obtained the best results for each type of fac-
torization. Figure 4 shows that the hybrid approach delivers notable performance gains
compared with the basic implementation for both algorithms. Recursion, however, is
only positive when applied to the Cholesky factorization, not to the LU.

Due to the overhead associated with the factorization of the small current diagonal
block/column panel on the GPU, the hybrid approach introduces a significant improve-
ment over to the basic implementation of both Cholesky/LU factorization processes.
Similar benefits are to be expected for the other two variants. In addition, Figure 4 also
shows the improvement attained for a hybrid implementation combined with a recursive
approach for the factorization process. The combination of padding, hybrid execution
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Figure 4. Left: performance of the implementations of Variant 1 of the blocked algorithm for the
Cholesky factorization: basic implementation, hybrid implementation, and a combination of the
recursive and hybrid implementations. Highest performances are 27.9, 33.5, and 41.2 GFLOPS,
respectively. Right: same implementations for the Variant 2 of the blocked algorithm for the LU
factorization. Peak performances are 37.8, 47.9, and 46.9 GFLOPS, respectively.

and recursion has improved the original blocked implementation on GPU (see Sec-
tion 4.2), achieving a maximum speedup of 2.34 for the best Cholesky variant, and 3.14
for the LU when comparing the GPU implementations with the CPU ones.

4.5 Iterative refinement

We next perform a time-based comparison using the basic implementation of Vari-
ant 1 for the blocked algorithms. Using the GPU as a general-purpose coprocessor, our
mixed-precision implementation first computes a solution using the Cholesky or LU
factorization computed on the GPU (single-precision), which is then refined to double-
precision accuracy. The overhead of the iterative refinement stage is reported in Figure 5
as the difference between the mixed and single-precision implementations. The figure
also includes the time for the corresponding full double-precision routine in LAPACK,
executed exclusively on CPU.

Although the mixed-precision version introduces some overhead, the execution time
is much lower than that of a full double-precision version executed on the CPU. In fact,
the number of iterations required to achieve the desired accuracy was lower than 6
in our experiments. Due to the higher performance of the GPU implementations, the
mixed-precision strategy is a good choice to achieve accureate results in less time, as
the overhead introduced by the refinement process does not have a significant impact
on the overall performance.

5 Conclusions

We have evaluated three blocked variants of the Cholesky and the LU factorizations
using highly tuned implementations of BLAS on a G80 graphics processor and an In-
tel processor. The study reports that padding, hybrid GPU-CPU computation, and re-
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Figure 5. Execution time of mixed-precision iterative refinement compared with those of a full
single-precision solution on the GPU and a full double-precision solution on the CPU. A single
right-hand side vector is considered.

cursion are simple but attractive techniques which deliver important increases in the
performance of the implementations.

Furthermore, iterative refinement with mixed precision is revealed as an inexpensive
technique to regain full accuracy in the solution of a linear system of equations. In addi-
tion, similar results and techniques (padding, hybrid CPU-GPU computation, recursion
and iterative refinement) can be expected to apply also to other dense linear algebra
factorization procedures, such as the QR factorization, attaining high performance and
accuracy on a low cost and widely available hardware platform.
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