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Reliable non-prehensile door opening through the
combination of vision, tactile and force feedback
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Abstract Whereas vision and force feedback – either
at the wrist or at the joint level – for robotic manipula-
tion purposes has received considerable attention in the
literature, the benefits that tactile sensors can provide
when combined with vision and force have been rarely
explored.

In fact, there are some situations in which vision
and force feedback cannot guarantee robust manipula-
tion. Vision is frequently subject to calibration errors,
occlusions and outliers, whereas force feedback can only
provide useful information on those directions that are
constrained by the environment. In tasks where the vi-
sual feedback contains errors, and the contact config-
uration does not constrain all the cartesian degrees of
freedom, vision and force sensors are not sufficient to
guarantee a successful execution.

Many of the tasks performed in our daily life that do
not require a firm grasp belong to this category. There-
fore, it is important to develop strategies for robustly
dealing with these situations. In this article, a new fra-
mework for combining tactile information with vision
and force feedback is proposed and validated with the
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task of opening a sliding door. Results show how the
vision-tactile-force approach outperforms vision-force and
force-alone, in the sense that it allows to correct the vi-
sion errors at the same time that a suitable contact
configuration is guaranteed.

1 INTRODUCTION

Robotic mobile manipulation is a field which has to deal
with significant uncertainties when considering real sce-
narios. Except some specific cases (Petrovskaya and Ng,
2007), errors in sonar and laser-based localization are
far from the precission needed for most manipulation
tasks. Trying to reach an object just based on local-
ization information would lead to unacceptable errors
in the final hand position. There is a need for addi-
tional sensing capabilities that are able to provide a
more accurate object pose with respect to the robot.
Vision is the most suitable sensor for this purpose. It
potentially allows to locate quite precisely the target
object in the environment and to track its motion in
the case of movable objects. Although at the contact
level it is possible to precisely perform a manipulation
task without the need for vision, it is still very helpful
in order to perceive the effects of our interaction with
the world. However, for most manipulation cases, only
part of the object is visible in the image, which, in ad-
dition, can be easily occluded by the robot hand and
subject to illumination changes. This normally leads to
a poor visual feature set, from which it is almost impos-
sible to estimate an accurate object pose. All of these
errors result in a hand misalignment with respect to the
object, which can lead the task to failure. The ability
of a robot to properly use its sensors for dealing with
such uncertainties is completely necessary for ensuring
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a successful manipulation. In particular, force and tac-
tile feedback are the main sources of information that
humans use for robust physical interaction.

In this paper, we develop an approach for combin-
ing vision, force and tactile feedback with applications
to manipulation in household environments. We first
analyze the accuracy of a vision-based pose estimation
method for manipulation tasks, and conclude that sig-
nificant errors in the estimated pose can appear in some
singular cases. In order to deal with such errors, we pro-
pose to combine the visual information with real-time
feedback coming from tactile and force sensors, lead-
ing to a vision-tactile-force control approach. The new
approach provides the robot with a rich sensory experi-
ence which is used for performing a door opening task
in a robust manner. The same task is performed when
only vision and force feedback is available, and results
show how the use of tactile information highly increases
the robot performance.

In our approach, vision and tactile information is
combined first, togheter with object-robot localization
information, and then used as input for a stiffness force
controller. The vision controller implements a position-
based visual servoing approach (Martinet and Gallice,
1999), based on the Virtual Visual Servoing (VVS) method
for model-based pose estimation and tracking of artic-
ulated objects (Marchand and Chaumette, 2002). The
tactile controller is in charge of up to three cartesian
degrees of freedom (d.o.f’s), allowing to keep always a
good contact. Force control is performed through a pro-
grammed stiffness, which allows to deal with external
forces on all the cartesian directions. The redundant
nature of the sensors allows to perform the task even
if a sensor is not available or provides innacurate data.
Throughout this article, the terms sensor integration

and sensor combination will be used without distinc-
tion to refer to the control-level combination of different
sensor feedback, in contrast to sensor fusion which is
normally understood as the combination at the sensor
level.

1.1 Related work

Many works have considered the use of vision for manip-
ulation purposes (Kragic and Christensen, 2002; Stem-
mer et al, 2006; Dune et al, 2008). In general, vision is
normally used in order to obtain an estimation of the
object position and orientation that allows the robot to
perform a specific action with it. Pose estimation tech-
niques in robot vision can be classified in appearance-
based or model-based approaches (Lepetit and Fua, 2005).
Appearance-based methods work by comparing the 2D
image of the object with those stored in a database

containing previously acquired views from multiple an-
gles. The main advantage of these methods is that they
do not need a 3D object model, although a previous
process must be performed in order to include a new
object in the database. Model-based methods obtain
better accuracy and robustness, because of the use of
model information for anticipating events like object
self-occlusions. Some approaches consider a combina-
tion of both methods, like (Kragic and Christensen,
2002), where an appearance-based method is used first
for getting an initial pose estimation, which is then used
as initialization for a model-based algorithm.

Force sensing has been also adopted for estimating
the 6 d.o.f pose of objects in the environment, nor-
mally following state estimation techniques based on
probabilistic approaches. For example, Bruyninckx et al
(2003) adopted techniques already developed in the SLAM
community for both mapping and localization of ob-
jects in the context of autonomous manipulation. A
similar approach was adopted by Petrovskaya et al (2006),
where a new approach called Scaling Series Particle Fil-
ter (SSPF) was developed for estimating the complete
pose of polygonal objects, from contacts estimated from
a force sensor. These methods have the advantage of es-
timating an accurate hand-object relative pose in a ro-
bust manner, even when the initial uncertainty is very
high. Our approach differs from these methods mainly
in that we focus on the task execution part. We pro-
pose a reactive controller in order to keep a good con-
tact configuration while the task is being performed,
without necessarily knowing the full pose of the manip-
ulated object, and without any kind of replanning or
model update. We assume that vision provides a initial
pose estimation which is suitable enough for approach-
ing the hand to the part of the object to be manipu-
lated. In the cases where vision is not available or its
information is highly innaccurate, localization methods
as the ones previously mentioned could be adopted as a
previous step to our approach, or even simultaneously.

In order to deal with the uncertainties inherent to
vision processing, the use of vision for robotic manipula-
tion is normally considered jointly with force feedback.
Some approaches have adopted either passive compli-
ance at the robot joints (Edsinger and Weber, 2004) or
torque control on torque-controlledmanipulators (Wyrobek
et al, 2008; Albu-Schaffer et al, 2008). However, the
most frequent method is still active force control, since
it can be implemented on standard manipulators. To
combine visual and force information at the control
level, two main approaches (impedance-based and hybrid-
based strategies) have been studied (Hosoda et al, 1996;
Nelson and P.K.Khosla, 1996; Morel et al, 1998; Baeten
et al, 2003). In these schemes the idea is merely to re-
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place the classical position controller (Khalil and Dom-
bre, 2002) by a vision-based controller. Hybrid control
separates vision control and force control into two sep-
arate control loops, that operate in orthogonal direc-
tions. With this approach, it is not possible to control
a direction simultaneously from both vision and force
feedback. With the impedance-based control, the six
degrees of freedom can be simultaneously vision- and
force-controlled. However, coupling is done at the con-
trol level and local minima can appear during conver-
gence. Recently, external vision-force control was pro-
posed (Mezouar et al, 2007; Prats et al, 2008), which
makes the combination in sensor-space, allowing to con-
trol vision and force on all the degrees of freedom,
whereas only the vision control law is directly connected
to the robot.

Whereas vision and force integration techniques have
been extensively studied in the literature, tactile infor-
mation has been rarely considered jointly with those
sensors. Touch is the ability to sense at the finger-
object level (Howe, 1994), and it has been shown that
people have difficulties to perform manipulation tasks
when deprived of tactile feedback (Johansson andWest-
ling, 1984). It is known that there are about 17000
mechanoreceptors distributed along the fingers and the
palm of the human hand, which provide rich informa-
tion, mainly about the contact distribution, limb mo-
tion and forces (Howe, 1994). Several attempts to mim-
ick the human sense of touch exist (Tegin and Wikan-
der, 2005), being the tactile array sensors – able to per-
ceive the pressure distribution of the contact and the
local shape – the most common approach.

Vision-tactile-force combination was already addressed
in (Allen et al, 1999), where some guidelines for detect-
ing useful manipulation events with these sensors were
given, without addressing the robot control problem. In
(Son et al, 1996), an approach for combining vision and
tactile feedback in a control law was proposed, where
force along one direction was also considered, and mea-
sured from the tactile sensors. A recent paper (Schmid
et al, 2008), makes a comparison between tactile-alone,
force-alone and force-tactile integration in the task of
opening a door, where vision is used in a previous step
in order to detect the door handle.

1.2 Summary of our approach

Our approach differs from the previous ones in the fol-
lowing aspects:

– First, instead of an ad-hoc vision processing algo-
rithm, we make use of the VVS approach (Marc-
hand and Chaumette, 2002) for model-based pose

estimation and tracking of articulated objects. This
makes our approach amenable to be used for differ-
ent objects and tasks with little modification of the
vision part, and provides a robust estimation, based
on a well-established theory. We assume that this
method provides a suitable initial pose estimation
that allows to reach for the object without requir-
ing contact-based localization techniques.

– Second, we consider a dedicated force/torque sen-
sor providing 6 degrees of freedom, instead of a one-
dimensional force computed from the tactile sensor
(tactile-based force) or hand strain gauge. In ad-
dition, contacts are also detected with a dedicated
tactile sensor, instead of estimating the contact po-
sition from the force information (Petrovskaya et al,
2006). This would not be possible in our case due to
the lack of accurate models of the hand and fingers,
and the high noise and low resolution of the force
sensor signal.

– Finally, we consider full vision-tactile-force combi-
nation, in the sense that all the three sensors can be
present at the same time. In addition, sensor combi-
nations such as vision-force, tactile-force and vision-
tactile are also allowed. The task is performed in a
reactive manner, without any kind of replanning or
model update.

The VVS pose estimation method is outlined in
Section 2, and its suitability for two typical cases in
mobile manipulation is analyzed. The first corresponds
to the case where an object is fully visible in the im-
age, either because it has a small size, or because it
is seen from a far position. The second case consists
of a big object seen from a close position, suitable for
reaching and manipulation. It is shown how the sec-
ond case normally lacks enough image information for
a robust vision-based manipulation. Then, in Section
3, we propose to integrate the vision-based controller
with other controllers built up from tactile and force
feedback. As tactile sensors provide very accurate and
robust contact information, they are used in order to
correct the hand-object misalignments generated dur-
ing vision-based reaching. In addition, force control is
implemented as a programmable stiffness at the robot
hand, allowing to deal with undesired forces generated
by those misalignments. Some experiments are performed
in Section 4, involving the opening of a cabinet door
when image information is not enough for computing
an accurate object pose. Results show how the addi-
tion of tactile information allows to robustly deal with
situations that cannot be controlled with just vision
and force feedback.
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Fig. 1 The experimental environment consists of a mobile ma-
nipulator, an external camera and a cabinet with a sliding door
that must be pushed open to the left. The mobile manipulator
is located at frame R given with respect to the world frame, W .
The camera is at frame C, and calibrated with respect to R. The
object frame, O is supposed to be known in world coordinates.
Finally, frames H, G and T denote the hand, grasp and task
frames, and are given with respect to R and O respectively. They
are used as auxiliary entities for grasp and task description and
execution (Prats et al, 2010).

1.3 Mobile manipulation environment

Our mobile manipulation environment consists of a mo-
bile robot with manipulation capabilities, placed in front
of the object that has to be manipulated, as shown in
Figure 1. The task considered in this article is to open
a sliding door by pushing towards the left. This is a
particularly interesting task for two reasons. The first
is that it is a common task performed continuously in
human environments, and, therefore, of great interest
from the service robotics point of view. The second rea-
son, more interesting from a scientific point of view, is
that the task does not require a firm grasp, and, there-
fore, not all the cartesian d.o.f’s are constrained. Thus,
force sensors cannot report misalignments on the un-
constrained directions, and, therefore, it is difficult to
keep a suitable contact configuration just by vision and
force feedback.

It is assumed that the mobile robot has map-based
localization capabilities so that it is possible to know
approximately the robot pose in the map world co-
ordinates, which will be denoted by the homogeneous
transformation matrix WMR. It is out of the scope of
this article to define a specific localization method. In-
stead, the reader is referred to the literature, where sev-
eral robot localization approaches have been proposed,

with different accuracy depending on the type of sen-
sors used for measuring the environment features: sonar
(Drumheller, 1987), laser (Castellanos et al, 1996), robot
vision (Se et al, 2001), ceiling cameras (Broxvall et al,
2006), etc. Using one or a combination of these meth-
ods, the robot can be localized quite precisely inside a
map of the environment, which can be acquired pre-
viously, or simultaneously to the localization process
(Durrant-Whyte, 2006). In addition, it is also assumed
that the target object is included inside the map, at
WMO, and that a CAD model of the object exists, in-
cluding significant features such as vertex, edges and
joints in the case of articulated objects.

We consider a camera, located at frameC, and linked
with the robot base frame through RMC . This homoge-
neous transformation is calibrated in our case, although
it could also be computed from robot kinematics in the
case of a humanoid head kinematically linked to the
body, for example. It is also assumed that the camera
intrinsic parameters are known from a previous calibra-
tion step.

We assume that a task-oriented grasp planning algo-
rithm, based on our previous work (Prats et al, 2007b,
2010), exists, providing the following information:

– A task-oriented hand preshape (Prats et al, 2007b)
suitable for performing the particular grasp and task.

– A hand frame, H , attached to the part of the hand
used for the grasp, and known with respect to the
manipulator end-effector frame through hand kine-
matics. This homogeneous transformation will be
denoted by EMH .

– A grasp frame, G, attached to the part of the object
where the hand must be moved to, and expressed
with respect to the object frame, O, through the
homogeneous transformation matrix OMG.

The manipulation task consists of two steps: reach-
ing and interaction. Reaching is specified as a desired
transformation to achieve between the hand and the
grasp frame, denoted by HM∗

G, whereas interaction is
determined by a force reference, T f∗, given in a task
frame, T , which is related to the object with OMT ,
and aligned with the natural object motion constraints,
as specified in the Task Frame Formalism (Bruyninckx
and Schutter, 1996). In this article, we will focus on
the interaction part. For previous work on vision-based
reaching, refer to (Prats et al, 2008).

2 Vision-based pose estimation for mobile

manipulation

It is known that humans use 3D information rather than
2D features for vision-based manipulation (Hu et al,
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1999). In addition, the use of 3D information allows
to easily integrate the vision part with the task and
grasp planning algorithms. For these reasons, we adopt
a model-based approach for vision-based pose estima-
tion and manipulation.

There are two main methods in the literature for
model-based pose estimation and tracking of articu-
lated objects, both based on full-scale non-linear opti-
mization. The first, developed by Drummond and Cipolla
(2002), is formulated from the Lie algebra point of view,
whereas the second, proposed by Comport et al (2004b,a),
is based on the Virtual Visual Servoing (VVS) method
(Marchand and Chaumette, 2002). Both methods im-
plement robust estimation techniques and have shown
to be very suitable for real-time tracking of common
articulated objects in real environments. A comparison
between both approaches is reported in (Comport et al,
2005), where it is shown that both formulations are
equivalent, although some differences in performance
can appear at run time. In our mobile manipulator, we
have implemented the VVS approach (Comport et al,
2004a; Marchand and Chaumette, 2002), mainly for its
computational efficiency and because it is based on a
solid background theory, i.e. 2D visual servoing, which
convergence conditions, stability, robustness, etc. have
been widely studied in the visual servoing community
(Hutchinson et al, 1996). In addition, almost any kind
of visual feature can be used and combined with this
approach (points, lines, ellipses, etc.), as long as the
corresponding interaction matrix can be computed. Dif-
ferent examples of the interaction matrix for the most
common features are shown in (Espiau et al, 1992).

In the following sections, we study the advantages
and limitations of the VVS approach for manipulation
tasks, and propose a sensor integration scheme that al-
lows to use force and tactile information to complement
the vision sensor when the data it provides is not com-
plete or inaccurate.

2.1 The concept

The concept of the VVS approach, developed in (Marc-
hand and Chaumette, 2002), is to apply visual servoing
techniques to a virtual camera, so that a set of object
features projected in the virtual image from a model,
match with those extracted from the real image. Un-
der this approach, the pose estimation and tracking
problem can be seen as equivalent to the problem of
2D visual servoing (Comport et al, 2004b), which has
been extensively studied in the visual servoing commu-
nity (Hutchinson et al, 1996). Taking as input an object
model, and an initial estimation of the camera pose in
object coordinates, denoted as a pose vector, r, the idea

is to project a set of 3D features of the object model
into a virtual image of the object, taken from the vir-
tual camera position, r. This virtual image is compared
with the real one, and a vector of visual features is gen-
erated, denoted by s(r).

In our particular implementation, we make use of
the point-to-line distance feature, as in (Comport et al,
2004b), although any kind of geometric feature could be
used as long as the interaction matrix can be computed.
The edges of the object model, projected as lines in the
virtual image, are sampled at regular intervals, and a
search for a strong gradient is performed in the real im-
age, in a direction perpendicular to the projected line,
as shown in Figure 2. For each match, the point-to-line
distance is computed and stored in the feature vector.
The desired feature vector is given by s∗ = 0, which
represents the case when all the edges of the object
model are projected on strong gradients, and, ideally,
the virtual camera position corresponds to the real one.
The control law governing the virtual camera motion is
given by:

vr = −λ
(
D̂L̂s

)+
D̂(s(r)− s∗) (1)

where vr is the virtual camera velocity, λ is a control
gain, L̂s is the interaction matrix for the point-to-line
distance feature (Comport et al, 2004b), and D̂ is a
diagonal weighting matrix computed by iteratively re-
weighted least squares, which is a robust estimator for
dealing with outliers.

2.2 Virtual Visual Servoing on articulated objects

Comport et al (2004a) presented an approach for pose
estimation and tracking of articulated objects based on
the VVS method and the kinematic set concept. In
their approach, the articulated pose is estimated di-
rectly from the visual observation of the object parts,
leading to an efficient method that eliminates the prop-
agation of errors through the kinematic chain. The only
condidition is that joint parameters must be decoupled
in the minimization of the objective function. This can
be accomplished by performing the minimization in ob-
ject joint coordinates instead of in the camera space.
Let s1(r1) and s2(r2) represent the perceived visual fea-
tures on both parts of an articulated object composed
of two links and one joint, and s∗1 and s∗2 be the desired

values for those features, with L̂s1 and L̂s2 represent-
ing the corresponding interaction matrices. Then, the
articular pose can be estimated by applying the follow-
ing image-based control law:

(
v1

v2

)
= −λÂ

(
D̂Ĥ

)+
D̂

(
s1(r1)− s∗1
s2(r2)− s∗2

)
(2)
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(a) Initial estimation (b) Point-line distance minimization (c) Final estimation

Fig. 2 An outline of the VVS-based pose estimation approach based on the point-to-line distance feature. A feature vector is built
from the distances between the projected edges and high-gradient points searched along the edge normals, at the sampling interval.
The goal of the non-linear minimization is to reduce all the distances to zero.

Ĥ =

(
L̂s1 0

0 L̂s2

)
Â

Â =

(
̂CWOS ̂CWOS

⊥ 0
̂CWOS 0 ̂CWOS

⊥

)

where ̂CWO represents the twist transformation ma-
trix from the camera frame to the object joint frame,
and S⊥ is a constraint matrix which depends on the
type of joint (Comport et al, 2004a). Finally, the vir-
tual camera velocities, one for each link, are given by
v1 and v2.

2.3 Limitations

The main limiting factor affecting the convergence of
the VVS method is local minima, which depends on
the kind of features considered and its observability in
the image. In general, the interaction matrix should be
full rank in order to be able to compute a solution for
equations 1 and 2. This is the typical case for objects
that are fully observable from the camera point of view.
Figure 3 shows a simulation of a cabinet seen from a far
position. In order to study the convergence of the VVS
method in this case, significant errors have been manu-
ally introduced in the initial camera position, simulat-
ing robot localization errors. Results show how VVS is
able to improve the initial estimation, and converges to
the real pose, up to a small error. The reason is that
a rich set of visual features is available, which ensures
the full rank of matrix L̂s.

However, this is difficult to achieve in a manipula-
tion environment, where the robot is close to the target
object, and only a small part of it is visible. As an
example, Figure 4 shows the same cabinet seen from

(a) The cabinet is seen from a far position with a coarse initial
estimation that is corrected.

(b) The pose estimation converges to the real value up to a
small error that corresponds to the typical accuracy given by
vision on an object seen from a far position.

Fig. 3 VVS convergence in the case where there is enough in-
formation in the image and the interaction matrix is full rank.

a position suitable for manipulation purposes. In this
case, only the right edges of the cabinet and the door are
visible. Although the handle features could also be con-
sidered in the simulation environment, we have not used
them because of the difficulty to extract them robustly
in a real case, apart from the fact that, during manip-
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(a) The virtual edges converge to real ones.

(b) The pose estimation does not converge.

Fig. 4 VVS convergence in the case where there is not enough
information in the image and the interaction matrix is not full
rank.

ulation, the handle features are normally occluded by
the hand. In addition, the handle can be different from
one door to another, whereas the door edges are always
present. In this experiment, the interaction matrix com-
puted from the set of point-to-line features extracted
from the visible edges is not full-rank, which means that
there is some ambiguity and multiple solutions are pos-
sible. It is worth noting that this is not a limitation of
the method, but a result of the particular visual condi-
tions. In fact, without considering the handle, it would
be ambiguous also for the human eye. Figure 4 shows
how the VVS method converges to a situation where
some d.o.f’s are even worse than the initial estimation,
even though the projected edges correspond to the real
ones.

Fortunately, this problem can be detected by con-
tinuously checking the rank of the interaction matrix.
At the moment that some d.o.f’s are lost, it is possible
to fix the parent object pose and track only the articu-
lated part which normally needs only one or two d.o.f’s.
If the parent object motion is not considered, equation
2 takes the following form:

v2 = −λ ̂CWOS
⊥

(
D̂L̂s2

̂CWOS
⊥

)+
D̂(s(r2)− s∗2) (3)

(a) The pose error.

(b) Evolution of the camera pose in object coordinates.

Fig. 6 Tracking of a sliding door along one DOF.

Figures 5 and 6 show the case where there is not
enough information for estimating the full 6D pose, but
it is still possible to track the articulated part along one
translational d.o.f. Even though the articulated d.o.f.
can be successfully tracked, the initial error on the rest
of d.o.f’s cannot be corrected, because the parent object
edges are not considered in the minimization.

In summary, VVS can provide accurate 6D local-
ization in cases where a big part of the target object
is visible, so that there is enough information in the
image for ensuring a full rank interaction matrix. How-
ever, in cases where only part of the object is visible,
pose ambiguities can appear, leading to significant er-
rors in the object pose estimation. Unfortunately, this
is a common case in mobile manipulation, due to the
proximity of the robot to the object.

At the moment of manipulation, these errors are
manifested in misalignments between the hand and the
object, which can lead the task to failure. In order to
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Fig. 5 Tracking of the articulated part when the parent object is considered fixed at a position with a manually introduced error. As
the prismatic joint only involves 1 DOF, tracking can be performed even with a rank-deficient interaction matrix.

deal with those misalignments, force feedback is nor-
mally introduced. However, force sensors can only pro-
vide complete information about misalignments when
the hand motion is fully constrained by the environ-
ment, i.e. under a firm grasp. In tasks like pushing
where a firm grasp is not required, those directions that
are tangent to the pushing direction and are not con-
strained, do not generate any force information (ne-
glecting friction) that can be used for reducing the mis-
alignment. In addition, vision is not accurate enough
for detecting the lack of contact. There is a need of ad-
ditional sensor information on these directions. In or-
der to manage these situations, in the next section, we
propose to complement the control signal coming from
vision and force with that coming from tactile array
sensors.

3 Vision-Tactile-Force Control

We propose a position-vision-tactile hybrid controller
modified by a stiffness force control term, as shown in
Figure 7. In the context of this scheme, position con-
trol is understood as that motion based on environ-
ment information obtained by mobile robot localiza-
tion algorithms, either based on laser, sonar, odome-
try, intelligent environment, etc. Only one sensor be-
tween localization, vision and tactile sensors is used for
a given cartesian direction. Our approach is to use the
one which provides the most accurate and robust infor-
mation for that direction.

Thus, we establish a sensor hierarchy where tactile
information is preferred over vision feedback, which is
also preferred over localization information. The reason
is that tactile sensors provide the most robust and de-
tailed information about the object position, although
at the contact level, whereas vision provides more global,
but less accurate data, and localization is normally the
most innacurate source. The cartesian d.o.f’s assigned
to each sensor are set online by three selection matrices,
Sp, Sv and St, which must be orthogonal each other,
i.e. Sp ⊥ Sv ⊥ St ⊥ Sp. Then, if tactile information
can be used for a given d.o.f, it is indicated in the cor-

responding diagonal element of the selection matrix,
for example St = diag (0, 0, 1, 0, 0, 0) for the Z axis.
If not, vision feedback will be adopted if possible. If
neither tactile nor vision information is available, then
the controller will rely on localization information. If a
given cartesian direction must be explicitly controlled
by force, it can be set to 0 on all the selection matri-
ces, so that the force controller will fully take charge of
it. Being Hvp, Hvv and Hvt, the control velocity com-
puted respectively by the position controller, the vision
controller, and the tactile controller, all of them given
in the hand frame, H , then the result of the preliminary
sensor integration is given by:

Hvpvt = Sp ·
Hvp + Sv ·

Hvv + St ·
Hvt (4)

It is worth mentioning that, in our approach, the
selection matrices act on the control velocities, and not
on the input errors as in the original hybrid control
concept. This is because the tactile and vision errors
are not necessarily defined in the cartesian space, and
thus, the selection matrices cannot be applied directly
on them. Instead, they are applied after the correspond-
ing controllers, where all the control signals are given in
a common frame. Note that this is the common prac-
tice in hybrid vision-force control approaches (Nelson
et al, 1995). The control velocity of expression 4 is then
modified by a stiffness force controller which acts on
all the degrees of freedom, ensuring that any force gen-
erated by a misalignment of the controlled frame, H ,
with respect to the environment will be kept inside a
given range. If Hvf is the hand velocity computed by
the force controller, the final velocity signal, given in
the robot end-effector frame can be computed as:

Evpvtf = EWH ·
(
Hvpvt +

Hvf

)
(5)

where EWH is the twist transformation matrix be-
tween the hand frameH , and the end-effector frame, E.
This approach leads to a very natural behavior, where
force is the most important sensor, followed by tactile,
vision, and localization sensors. Under a blind situa-
tion, the task can still be performed by position-tactile-
force integration. If tactile feedback is not available, as
for example in the phase of reaching an object, then
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Fig. 7 Our control approach, integrating position, vision, tactile and force feedback.

position-vision-force can successfully guide the hand. In
the worst case where tactile and vision are unavailable,
position-force can still be used. In the following, the
particular position, vision, tactile and force controllers
used in our experiment are described.

3.1 Position Controller

In our approach, the localization-based position con-
troller is in charge of computing the required hand ve-
locity, based on world-to-robot and world-to-object in-
formation provided by localization algorithms. First,
the hand frame is transformed to world coordinates
as WMH = WMR · RME · EMH , where RME is the
end-effector frame pose with respect to the robot base,
which is assumed to be known from the robot kine-
matic model. The grasp frame is also transformed to
world coordinates as WMG = WMO · OMG. Then, the
hand-to-grasp relationship can be computed as:

HMG =
(
WMH

)−1
·
WMG (6)

and a proportional position-based control can be
performed with the following equation, where λp is the
control gain, and Hh∗ is a pose vector build from the ho-
mogeneous matrix HM∗

H (i.e. HM∗
H = HMG·

(
HM∗

G

)−1
):

Hvp = λp
Hh∗ (7)

This simple control law drives the hand in a straight
line in order to reach the desired relative pose between
the hand frame and the localization-based estimated
pose of the grasp frame on the target object.

3.2 Vision controller

The object pose estimation provided by the VVS pro-
cess, is used to compute a more accurate hand-to-grasp
relationship, as:

HMG =
(
CMH

)−1
·
CMO ·

OMG (8)

where CMH is assumed to be known from camera
external calibration and robot kinematics (i.e. CMH =
CMR · RME · EMH), whereas CMO is the object pose
estimation computed by the method described in the
previous section. As full 3D information is available, we
have opted for a position-based visual servoing (Mar-
tinet and Gallice, 1999) in order to obtain straight tra-
jectories in cartesian space. The HMG matrix is given
as input and used for setting the visual feature vector to
sv = (t uθ)T , where t is the translational part of the
HMG homogeneous matrix, and uθ is the axis/angle
representation of the rotational part. Similarly, the de-
sired feature vector s∗v is set from the desired hand-to-
grasp relationship HM∗

G, which can be either planned
or learnt. The hand velocity, as computed by the position-
based visual servoing control law, is given by:

Hvv = −λvL̂
+
sv (sv − s∗v) (9)

where the following interaction matrix is chosen for
the particular case of position-based visual servoing (Mar-
tinet and Gallice, 1999):

L̂sv =

(
−I3×3 03×3

03×3 −Lw

)
(10)

Lw = I3×3 −
θ
2 [u]× +

(
1− sinc(θ)

sinc2
( θ
2
)

)
[u]2×
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[u]× denotes the skew-symmetric matrix associated
to the rotation axis u. It is worth noting that the vision
controller is independent of the method used for esti-
mating the object pose. Even though the VVS method
has been adopted in this work, another different method
could be used as long as it is suitable for inclusion in a
control loop. Regarding the stability conditions of the
position-based visual servoing approach, the reader is
referred to (Martinet and Gallice, 1999).

3.3 Tactile Controller

The tactile controller designed for our experiments looks
for the alignment between the robot fingertips and a
planar surface, such as a handle. Although it has been
specifically designed for our particular system and task,
it could be easily adapted to a different case. The goal
is to provide a control velocity for the set of cartesian
directions which can be robustly and accurately con-
trolled with tactile information. Depending on the so-
phistication of the tactile sensors, the sensor distribu-
tion, the hand configuration, and the task, more or less
directions could be controlled.

We consider a Barrett Hand with one tactile array
sensor on each fingertip, providing pressure distribution
and magnitude information in a 8x15 pressure matrix,
as shown in Figure 8. First, the biggest contact blob on
sensors 1 and 2 is selected and its centroid is computed,
giving the points c1 =

(
c1x , c1y

)
and c2 =

(
c2x , c2y

)

in the sensor frame. The maximum pressure sensed on
each of the two contact blobs are denoted as p1 and
p2. The point cc =

(
ccx , ccy

)
is computed as the mid-

dle point between c1 and c2. Finally, α is computed as
the angle between the line joining c1 and c2 and the
vertical.

Three cartesian d.o.f’s at the hand frame (H in Fig-
ure 8) are controlled in order to accomplish three goals:

– First, rotation around X axis is controlled in order
to guarantee that the pressure is equally distributed
between the tactile sensors, thus ensuring that all
the tactile sensors keep the contact:
Hvrx = Kp (p2 − p1) (11)

– Second, rotation around Z axis is also controlled in
order to regulate α to zero. The goal is to be aligned
with the handle.
Hvrz = Kαα (12)

– Finally, translation along X axis is controlled in or-
der to bring the point cc towards a reference c∗c =(
c∗cx , c

∗
cy

)
, which indicates the part of the tactile

sensor where to keep the contact:
Hvtx = −Kc

(
ccx − c∗cx

)
(13)

Fig. 8 The Barrett Hand in a hook precision preshape, with the
tactile sensors installed at the fingertips. H is the hand frame, and
G denotes the grasp frame. The biggest contact blob on sensors 1
and 2 is selected, and the centroid of these contacts are computed,
together with the maximum pressure on each sensor and the angle
between the contact line and the vertical.

Kp, Kα and Kc are the control gains for each con-
trolled direction. The velocity on the rest of directions
is set to zero:

Hvt =
(
Hvtx , 0, 0,

Hvrx , 0,
Hvrz

)
(14)

The selection matrix for the tactile controller is set
to St = diag (1, 0, 0, 1, 0, 1) for our particular case. In
the cases where tactile information is not available, such
as in the phase of reaching, St can be set to zero so that
the hand is controlled by position-vision-force integra-
tion.

In conclusion, when enough tactile information is
available, tactile control can ensure that an accurate
alignment between the hand and the handle is kept,
by controlling just three cartesian d.o.f’s, although it
would be possible to control additional d.o.f’s in the
case of more advanced tactile sensors or different align-
ment tasks. It is worth mentioning that by observing
contact over time it would be possible to control addi-
tional d.o.f’s with our tactile sensors, such as rotation
in Y axis.

3.4 Force Controller

Finally, an active stiffness control (Salisbury, 1980) is
performed on top of the other controllers, where a force
reference has been included in the feedback loop with-
out affecting the control law stability, as it can be viewed
as a reference trajectory modifier (Morel and Bidaud,
1996; Lasky and Hsia, 1991):

Hvf = K−1
f (HDF ·

F f − Hf∗) (15)
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(a)

(b)

Fig. 9 The task is to push open a sliding door under manually
introduced errors in the initial estimation of the grasp link. For a
rotational positive error around Y axis of the grasp frame, G, the
hand motion has a positive component along the X axis of the
real grasp frame, which finally leads to a frontal contact if not
corrected. For a negative error, the robot pushes along a direction
which has a negative component along the X axis of the real grasp
frame.

where Kf is the stiffness matrix, F f represents the
force measured at each iteration at the force sensor
frame, F , and Hf∗ is the force reference, used for push-
ing in the task direction. HDF represents the wrench
transformation matrix between frames F and H (i.e.
HDF = HWT

F )(Khalil and Dombre, 2002). The force
reference, Hf∗, is computed from the task reference,
T f∗ (i.e. Hf∗ = HDT

T f∗), which can be set to zero on
those directions where a passive behavior is desired, but
must take a value for the task direction.

4 Experiments

In order to study the benefits that tactile feedback pro-
vides when complemented with vision and force infor-
mation, a manipulation task is performed with an ar-
ticulated object when there is not enough information

in the image features for an accurate vision-based 6D
pose estimation.

More concretely, the task is to open a cabinet door
(of sliding type) further than 25 cm. The robot was
manually moved in front of a cabinet as shown in Fig-
ures 1 and 9. The camera (with focal length (344.00, 334.23)
and image center (140.46, 126.74) at a resolution of 320×
240) was placed in order to get a view of the cabi-
net door, and a coarse estimation of the homogeneous
matrix describing the relationship between the camera
frame and the robot base frame (RMC) was calibrated
by attaching a pattern to the robot hand and comput-
ing its pose with the Dementhon algorithm (Dementhon
and Davis, 1995), as in (Prats et al, 2007a, 2008), and
then making use of the robot kinematic model. Note
that this step would not be necessary in a humanoid
system, for example, where the eye-to-hand relationship
can be approximately computed through robot kine-
matics.

The initial door pose in the camera frame, CMO,
was coarsely calibrated in our case, although it could
be also computed from robot laser and sonar-based lo-
calization algorithms. Figure 10 shows a sequence cap-
tured by the robot camera during the execution. Note
that only the left and right edges of the door are vis-
ible from the camera position, leading to a feature set
which is not rich enough for getting a full rank interac-
tion matrix. For this reason, the parent object is con-
sidered as fixed, and only the door is tracked along one
translational d.o.f, by setting S⊥ = diag(1, 0, 0, 0, 0, 0)
in equation 3. The vision selection matrix is set to
Sv = diag (0, 1, 1, 0, 1, 0), whereas Sp = 0.

For opening the door, a hook precission preshape
(Prats et al, 2007b) was adopted, as shown in Figure
8. The hand frame, H was set to the inner part of the
robot fingertips, whereas the grasp frame, G, was set
to the handle, according to our previous work on a fra-
mework for specifying physical interaction tasks (Prats
et al, 2010).

Apart from the errors generated by the poor cali-
bration of the initial camera-robot and camera-object
transformation, rotational errors of up to 5 degrees were
manually added in the initial estimation of the object
pose, on each of the three cartesian axis. Even under
these significant errors, vision-based tracking of the ar-
ticulated part along the articulated d.o.f succeeded in
all the cases, when considering the parent object as
fixed. Obviously, the errors on non-articulated d.o.f’s
were propagated as explained in section 2.3.

For each error (positive and negative), on each axis,
the task was executed, first by using only the force
sensor, then adding the vision modality, and finally
by a combination of vision, force and tactile sensors.
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Fig. 10 The vision effects of introducing an error around Y axis in the pose of the grasp frame. The pose estimation method is able
to track the articulated pose, but errors on the rest of directions cannot be corrected (note that the left edge estimation does not
correspond to the real one).

Fig. 11 Vision-force performance for an error of -5 degrees in Y axis of the handle pose. Top row: three snapshots of the interaction
task, where it is shown how contact is lost during execution. Bottom row, from left to right: pressures at fingertips (p1 and p2), X
component of the contact centroids (c1x and c2x) and forces in the hand frame (H f)

Therefore, a total of 18 trials were performed, 6 for
force-alone, 6 for vision-force and 6 for vision-force-
tactile, and a trial was considered as a failure when the
robot was unable to open the door further than 25 cm.
When only the force controller was activated, the exper-
iments succeeded in just 3 out of 6 trials. Vision-force
completed the task in 5 experiments, and vision-force-
tactile performed well in all the 6 cases. In addition, the
vision-force-tactile combination was the only one able
to avoid undesired forces in directions other than the
task direction. In all the failures, the reason was the
missing of contact between the hand and the handle,
due to rotation misalignments that generated hand mo-
tion on directions tangential to the pushing direction.

Detailed results for the interesting case of a rotation
error around Y axis are shown in Figures 11, 12 and 13,
where the control parameters were chosen experimen-

tally as follows: λp = λv = 0.3,Kp = 5·10−5, Kα = 0.1,
Kc = 0.004, c∗cx = 1.5, f∗ = (0, 0,−5N, 0, 0, 0), K−1

f =

diag
(
5 · 10−4, 5 · 10−4, 15 · 10−4, 0, 0, 0

)
.

In the case of Figures 11 and 12, the introduced
error is manifested in a misalignment that makes the
robot push along a direction which has a negative com-
ponent along the X axis of the real grasp frame, G, as
shown in Figure 9. In this configuration, position con-
straints exist only along the frontal direction (X axis
of the hand frame) and the opening direction (Z axis
of the hand frame). As the rest of directions are not
position-constrained, misalignments on these axis do
not generate external forces, and, thus, cannot be de-
tected and controlled with force feedback. Similarly, the
vision part is running with an initial estimation which
is wrong, and thus, the articulated pose estimation still
contains the initialization error. Thus, an opening strat-
egy using only vision and force sensors would easily
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Fig. 12 Vision-force-tactile performance for an error of -5 degrees in Y axis of the handle pose. Pressure is balanced and contact is
kept until the end of the task. Top row: three snapshots of the interaction task. Bottom row, from left to right: pressures at fingertips
(p1 and p2), X component of the contact centroids (c1x and c2x) and forces in the hand frame (H f)

lose contact, as shown in Figure 11. Vision-force-tactile,
however, is able to perceive contact information, and
controls the robot so that a contact is always present
at the desired location in the fingertip (Figure 12). The
force disturbances in the case of vision-force are due to
a frontal contact of the finger with the handle, which
generates a small frontal force, appearing at the mo-
ment of losing the contact.

It is also worth noting that vision-force-tactile is
able to balance the pressure between the fingertips,
whereas vision-force is not able to detect and control
this issue. This is clearly shown in Figure 13, which
shows the case of a positive rotation error around Y
axis in the localization of frame G. In this case, the
pushing direction has a small positive component in X
axis, which slowly drives the fingertip towards the door,
as shown in Figure 9. If only vision sensors were con-
sidered, frontal collision could not be detected, causing
damage to the robot and the door. Figure 13 shows the
behavior of vision-force and vision-force-tactile control
in this case. Note that, under vision-force, there is con-
tact only with one fingertip since the very beginning
(13.a-b), and vision-force is not able to correct this mis-
alignment. Consequently, the whole task force is made
by only one finger, which has to support a high pres-
sure, increasing the risk of sensor or mechanics dam-
age, and decreasing the overall reliability. Vision-force-
tactile, however, is able to balance the pressure, ensur-
ing contact with all the fingers (Figure 13.d-e). Even

if vision-force is finally able to complete the task, note
that, as a consequence of the initial introduced error,
the fingertip finally makes frontal contact with the door,
leading to a high force in the frontal direction that ex-
ists almost from the beginning of the execution (13.c).
As expected, vision-force-tactile avoids this situation,
keeping the pressure level, contact position and forces
inside a normal range.

Figure 14 shows a sequence of the vision-tactile-
force execution 1. It is shown how, starting from an
initial position with significant alignment errors, vision-
tactile-force integration is able to correct them and con-
verge to a robust and safe configuration where all the
fingertips are in contact and aligned with the handle.
The main factor affecting the success of the vision-force-
tactile strategy is the accuracy in the initial hand-object
positionning after reaching. As long as there is contact
with one of the tactile sensors, the tactile controller
is activated and, thus, the error is reduced. However,
if the initial error is so large that contact is not gen-
erated, the approach would fail. These situations can
appear, for example, when the mobile platform local-
ization is the only available information, with typical
errors of several centimeters. In these situations, state
estimation techniques could be adopted for improving
the initial positioning (Bruyninckx et al, 2003).

1 A video illustrating the different ex-
periments performed is available at
http://www.robot.uji.es/lab/plone/Members/mprats/clips
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Results for an error of +5 degrees in Y axis of the handle pose. Vision-force control is not able to completely align the hand.
Vision-force-tactile aligns the hand successfully and distributes the pressure between the fingertips. Top row: vision-force; Bottom row:
vision-tactile-force. From left to right column: pressures at fingertips (p1 and p2), X component of the contact centroids (c1x and c2x)
and forces in the hand frame (H f).

Fig. 14 A sequence showing the vision-tactile-force alignment process during task execution, starting from a coarse initial position.

5 Discussion

We have presented a new approach for integrating tac-
tile feedback with vision and force information, with
views to reliable manipulation in household environ-
ments. A position-based visual servoing approach takes
the output of a vision-based articular pose estimation
algorithm and visually guides the robot hand for the
given task. A stiffness force controller locally modifies
the hand trajectory in order to minimize external forces
due to small misalignments. Finally, a tactile controller
is in charge of continuously looking for a stable contact
configuration by controlling 3 cartesian d.o.f’s.

In our particular experiments, we give priority to
tactile sensors over vision and position information. How-
ever, it could be different in other cases, like (Petro-
vskaya and Ng, 2007), for example, where localization
algorithms provide very accurate pose information. In
order to select which sensor controls each d.o.f, the re-
spective selection matrices Sp, Sv and St can be set

accordingly. Due to the limitations of our tactile sen-
sors, and the kind of tasks considered, only 3 d.o.f’s
can be accurately controlled by our tactile controller
in a completely reactive manner, although additional
d.o.f’s could be controlled through contact monitoring
over time. The rest is controlled by vision, or by the
position controller in case vision is not available. How-
ever, the particular tactile, vision, position and force
controllers are independent of the global scheme, mean-
ing that it would be possible to design a new tactile
controller able to control 6 d.o.f’s in the case of using
tactile sensors which provide enough information

It is worth noting the possibility to modify the sen-
sor assignation at run time. If, for example, vision pro-
cessing fails at some time, it would be possible to re-
move the d.o.f’s assigned to the vision controller, and
assign them to the position controller, or tactile con-
troller in case they have enough information to control
them. However, this introduces the problem of identify-
ing the sensor suitability for a given cartesian direction.
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This could be managed automatically following, for ex-
ample, the sensor resolvability approach (Nelson and
P.K.Khosla, 1996), that allows to identify which sensor
provides the most suitable estimation for controlling a
particular cartesian direction.

Regarding the vision controller, it would be desir-
able to control all the 6 cartesian d.o.f’s, or, at least,
those which are not already controlled by the tactile
controller. We have discussed in section 2.3 the diffi-
culties to estimate a full 6D pose when the robot is
ready for manipulation and the camera is close to the
object. In these cases, the interaction matrix can take a
very low rank, and local minima can appear in the VVS
minimization process. This part could be improved by
considering a wide-angle camera, or additional visual
features, apart from the point-to-line distance. How-
ever, we cannot assume that a rich feature set is always
available. Therefore, errors in the visual estimation can
always appear, making it still necessary to use force and
tactile sensors for dealing with them.

Finally, it is worth mentioning that, in the cur-
rent implementation, the whole controller is running
at video rate, which is about 33 Hz in our experiments
(on a standard Pentium IV at 3GHz). Although this fre-
quency is sufficient for performing a safe force control,
it could be desirable to achieve a higher rate, specially
when high velocities are needed. This would also allow
to take dynamic effects into account. It is part of the fu-
ture work to adapt the current implementation in order
to run at the force sensor rate.

6 Conclusion

A vision-tactile-force integration approach has been pro-
posed and validated in a real manipulation environ-
ment. A door opening task is executed through the com-
bination of the control signals provided by a position
controller, which has an initial coarse estimation of the
object pose, a vision controller based on an articular ob-
ject pose estimator, a tactile controller, which looks for
not losing the contact during manipulation, and a stiff-
ness force controller, in charge of pushing along the task
direction at the same time that the force is regulated
on the rest of directions. Different sensor combinations,
such as force-alone, vision-force or tactile-force, are also
possible in case that one or more sensors become un-
available. In order to study the advantages of adding
tactile feedback to vision and force-based manipula-
tion, several experiments have been carried out with
the task of opening a sliding door under manually in-
troduced errors. Results show how the proposed vision-
tactile-force approach is able to correct the hand-object
misalignments generated by an innacurate vision-based

reaching, and offers a more reliable execution than that
obtained when only vision and force are used.
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