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We provide a new algorithm for generating the Baker–Campbell–Hausdorff �BCH�
series Z=log�eXeY� in an arbitrary generalized Hall basis of the free Lie algebra
L�X ,Y� generated by X and Y. It is based on the close relationship of L�X ,Y� with
a Lie algebraic structure of labeled rooted trees. With this algorithm, the computa-
tion of the BCH series up to degree of 20 �111 013 independent elements in
L�X ,Y�� takes less than 15 min on a personal computer and requires 1.5 Gbytes of
memory. We also address the issue of the convergence of the series, providing an
optimal convergence domain when X and Y are real or complex matrices. © 2009
American Institute of Physics. �DOI: 10.1063/1.3078418�

I. INTRODUCTION

The Baker–Campbell–Hausdorff �BCH� formula deals with the expansion of Z in eXeY =eZ in
terms of nested commutators of X and Y when they are assumed to be noncommuting operators.
If we introduce the formal series for the exponential function

eXeY = �
p,q=0

�
1

p!q!
XpYq �1.1�

and substitute this series in the formal series defining the logarithm function

log Z = �
k=1

�
�− 1�k−1

k
�Z − 1�k,

one obtains

log�eXeY� = �
k=1

�
�− 1�k−1

k � Xp1Yq1
¯ XpkYqk

p1!q1! ¯ pk!qk!
,

where the inner summation extends over all non-negative integers p1, q1 , . . ., pk, qk for which pi

+qi�0 �i=1,2 , . . . ,k�. Gathering together the terms for which p1+q1+ p2+q2+ ¯ + pk+qk=m, we
can write
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Z = log�eXeY� = �
m=1

�

Pm�X,Y� , �1.2�

where Pm�X ,Y� is a homogeneous polynomial of degree m in the noncommuting variables X and
Y. Campbell,8 Baker,2 and Hausdorff17 addressed the question whether Z can be represented as a
series of nested commutators of X and Y, without producing a general formula. We recall here that
the commutator �X ,Y� is defined as XY −YX. It was Dynkin12 who finally derived an explicit
formula for Z as

Z = �
k=1

�

�
pi,qi

�− 1�k−1

k

�Xp1Yq1
¯ XpkYqk�

��i=1
k �pi + qi��p1!q1! ¯ pk!qk!

. �1.3�

Here the inner summation is taken over all non-negative integers p1 ,q1 , . . . , pk, qk such that p1

+q1�0, . . . , pk+qk�0 and �Xp1Yq1
¯XpkYqk� denotes the right nested commutator based on the

word Xp1Yq1
¯XpkYqk. Expression �1.3� is known, for obvious reasons, as the BCH series in the

Dynkin form. By rearranging terms, it is clear that Z can be written as

Z = log�eXeY� = X + Y + �
m=2

�

Zm, �1.4�

with Zm�X ,Y� a homogeneous Lie polynomial in X and Y of degree m, i.e., it is a Q-linear
combination of commutators of the form �V1 , �V2 , . . . , �Vm−1 ,Vm�¯ �� with Vi� �X ,Y� for 1� i
�m. The first terms read explicitly

Z2 = 1
2 �X,Y� ,

Z3 = 1
12�X,�X,Y�� − 1

12�Y,�X,Y�� ,

Z4 = 1
24�X,�Y,�Y,X��� .

The expression eXeY =eZ is then called the BCH formula, although other different labels �e.g.,
Campbell–Baker–Hausdorff, Baker–Hausdorff, Campbell–Hausdorff� are commonly attached to it
in the literature. The formula �1.3� is certainly awkward to use due to the complexity of the sums
involved. Notice, in particular, that different choices of pi, qi, k in �1.3� may lead to terms in the
same commutator. Thus, for instance, �X3Y1�= �X1Y0X2Y1�= �X , �X , �X ,Y���. An additional diffi-
culty arises from the fact that not all the commutators are independent due to the Jacobi identity,47

�X1,�X2,X3�� + �X2,�X3,X1�� + �X3,�X1,X2�� = 0.

The BCH formula plays a fundamental role in many fields of mathematics �theory of linear
differential equations,26 Lie groups,14 numerical analysis16�, theoretical physics �perturbation
theory,10 quantum mechanics,49 statistical mechanics,24,50 quantum computing40�, and control
theory �analysis and design of nonlinear control laws, nonlinear filters, stabilization of rigid
bodies46�. In particular, in the theory of Lie groups, with this formula one can explicitly write the
operation of multiplication in a Lie group in canonical coordinates in terms of the Lie bracket
operation in its tangent algebra and also prove the existence of a local Lie group with a given Lie
algebra.14

Also in the numerical treatment of differential equations on manifolds,19,16 the BCH formula
is quite useful. If M is a smooth manifold and X�M� denotes the linear space of smooth vector
fields on M, then a Lie algebra structure is established in X�M� by using the Lie bracket �X ,Y�
of fields X and Y �X�M�.47 The flow of a vector field X�X�M� is a mapping exp�X� defined
through the solution of the differential equation
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du

dt
= X�u�, u�0� = q � M �1.5�

as exp�tX��q�=u�t�. Many numerical methods used to approximately solve Eq. �1.5� are based on
compositions of maps that are flows of vector fields.16 To be more specific, suppose the vector
field X can be split as X=A+B and that the flows corresponding to A�u� and B�u� can be explicitly
obtained. Then one may consider an approximation of the form �h

�exp�ha1A�exp�hb1B�¯exp�hakA�exp�hbkB� for the exact flow exp�h�A+B�� of �1.5� after a
time step h. The idea now is to obtain the conditions to be satisfied by the coefficients ai, bi so that
�h�q�=u�h�+O�hp+1� as h→0, and this can be done by applying the BCH formula in sequence to
the expression of � up to the degree required by the order of approximation p.27 This task can be
carried out quite easily provided one has explicit expressions of Zm implemented in a symbolic
algebra package.23,46

In addition to the Dynkin form �1.3�, there are other standard procedures to construct explic-
itly the BCH series. Recall that the free Lie algebra L�X ,Y� generated by the symbols X and Y can
be considered as a subspace �the subspace of Lie polynomials� of the vector space spanned by the
words w in the symbols X and Y, i.e., w=a1a2¯am, each ai being X or Y. Thus, the BCH series
admits the explicit associative presentation

Z = X + Y + �
m=2

�

�
w,	w	=m

gww , �1.6�

in which gw is a rational coefficient and the inner sum is taken over all words w with length 	w	
=m. Here the length of w is the number of letters it contains. The coefficients can be computed
with a procedure based on a family of recursively computable polynomials.13

Although the terms in Eq. �1.6� are expressed as linear combinations of individual words
�which are not Lie polynomials�, by virtue of the Dynkin–Specht–Wever theorem,21 Z can be
written as

Z = X + Y + �
m=2

�
1

m �
w,	w	=m

gw�w� , �1.7�

that is, the individual terms are the same as in the associative series �1.6� except that the word
w=a1a2¯am is replaced with the right nested commutator �w�= �a1 , �a2 , . . . , �am−1 ,am�¯ �� and
the coefficient gw is divided by the word length m.42 This gives explicit expressions of the terms
Zm in the BCH series �1.4� as a linear combination of nested commutators of homogeneous degree,
that is, as a linear combination of elements of the homogeneous subspace L�X ,Y�m of degre m of
the free Lie algebra L�X ,Y�. However, it should be stressed that the set of nested commutators �w�
for words w of length m is not a basis of the homogeneous subspace L�X ,Y�m.

By introducing a parameter � and differentiating with respect to � the power series
�m�1�mZm=log�exp��X�exp��Y��, the following recursion formula is derived in Ref. 47:

Z1 = X + Y ,

�1.8�

mZm =
1

2
�X − Y,Zm−1� + �

p=1

��m−1�/2�
B2p

�2p�!
�adZ

2p�X + Y��m, m � 1.

Here Z=�m�1Zm, adZ
k�X+Y�= �Z , adZ

k−1�X+Y��, the Bj stand for the Bernoulli numbers,1 and
�adZ

2p�X+Y��m denotes the projection of adZ
2p�X+Y� onto the homogeneous subspace L�X ,Y�m,

which can be written in terms of Z1 ,Z2 ,Z3 , . . . as
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�adZ
2p�X + Y��m = �

k1+¯+k2p=m−1

k1�1,. . .,k2p�1

�Zk1
,�¯�Zk2p

,X + Y� ¯ �� .

Explicit formulas �1.3� and �1.7�, as well as recursion �1.8� can be used in principle to
construct the BCH series up to arbitrary degree in terms of commutators. As a matter of fact,
several systematic computations of the series have been carried out along the years, starting with
the work of Richtmyer and Greenspan in 1965,37 where results up to degree of 8 are reported.
Later on, Newman and Thompson obtained the coefficients gw in �1.7� up to words of length of
20,32 Bose6 constructed an algorithm to compute directly the coefficient of a given commutator in
the Dynkin presentation �1.3� and Oteo33 and Kolsrud22 presented a simplified expression of �1.3�
in terms of right nested commutators up to degrees of 8 and 9, respectively. More recently,
Reinsch35 proposed a matrix operation procedure for calculating the polynomials Pm�X ,Y� in �1.2�
which can be easily implemented in any symbolic algebra package. Again, the Dynkin–Specht–
Wever has to be used to write the resulting expressions in terms of commutators.

As mentioned before, all of these procedures exhibit a key limitation, however: the iterated
commutators are not all linearly independent due to the Jacobi identity �and other identities
involving nested commutators of higher degree which are originated by it33�. In other words, they
do not provide expressions directly in terms of a basis of the free Lie algebra L�X ,Y�. This is
required, for instance, in applications of the BCH formula in the numerical integration of ordinary
differential equations or when one wants to study specific features of the series, such as the
distribution of the coefficients and other combinatorial properties.32

Of course, it is always possible to express the resulting formulas in terms of a basis of L�X ,Y�
but this rewriting process is very time consuming and requires a good deal of memory resources.
In practice, going beyond degree m=11 constitutes a difficult task indeed,28,23,46 since the number
of terms involved in the series grows, in general, as the dimension cm of the homogeneous
subspace L�X ,Y�m. As is well known, cm is given by the Witt formula,7 so that cm=O�2m /m�.

Our goal is then to express the BCH series as

Z = log�exp�X�exp�Y�� = �
i�1

ziEi, �1.9�

where zi�Q �i�1� and �Ei : i=1,2 ,3 , . . . � is a basis of L�X ,Y� whose elements are of the form

E1 = X, E2 = Y, and Ei = �Ei�,Ei��, i � 3, �1.10�

for appropriate values of the integers i� , i�� i �for i=3,4 , . . .�. Clearly, each Ei in �1.10� is a
homogeneous Lie polynomial of degree 	i	, where

	1	 = 	2	 = 1 and 	i	 = 	i�	 + 	i�	 for i � 3. �1.11�

We will focus on a general class of bases of the free Lie algebra L�X ,Y�, referred to in the current
literature as generalized Hall bases and also as Hall–Viennot bases.36,48 These include the Lyndon
basis25,48 and different variants of the classical Hall basis �see Ref. 36, for references�. Specifically,
in this paper we present a new procedure to write the BCH series �1.9� for an arbitrary Hall–
Viennot basis. Such an algorithm is based on results obtained in Ref. 30, in particular, those
relating a certain Lie algebra structure g on rooted trees with the description of a free Lie algebra
in terms of a Hall basis. This Lie algebra g on rooted trees was first considered in Ref. 11, whereas
a closely related Lie algebra on labeled rooted trees was treated in Ref. 15 �see Ref. 18 for the
relation of these two Lie algebras and for further references about related algebraic structures on
rooted trees�.

We have implemented the algorithm in MATHEMATICA �it can also be programmed in FORTRAN

or C for more efficiency�. The resulting procedure gives the BCH series up to a prescribed degree
directly in terms of a Hall–Viennot basis of L�X ,Y�. As an illustration, obtaining the series �in the
classical basis of P. Hall� up to degree m=20 with a personal computer �2.4 GHz Intel Core 2 Duo
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processor with 2 Gbytes of random access memory� requires less than 15 min of CPU time and
1.5 Gbytes of memory. The resulting expression has 109 697 nonvanishing coefficients out of
111 013 elements Ei of degree 	i	�20 in the Hall basis. As far as we know, there are no results up
to such a high degree reported in the literature. For comparison with other procedures, the authors
of Ref. 46 reported 25 h of CPU time and 17.5 Mbytes with a Pentium III personal computer to
achieve degree of 10. By contrast, our algorithm is able to achieve m=10 in 0.058 s and only
needs 5.4 Mbytes of computer memory.

In Table III in the Appendix, we give the values of i� and i� for the elements Ei of degree
	i	�9 in the Hall basis and their coefficients zi in the BCH formula �1.9�. The elements of the basis
are ordered in such a way that i� j if 	i	� 	j	, and the horizontal lines in the table separate elements
of different homogeneous degree. Extension of Table III up to terms of degree of 20 is available
at the website www.gicas.uji.es/research/bch.html for both the basis of P. Hall and the Lyndon
basis. As an example, the last element of degree of 20 in the Hall basis is

E111013 = �����Y,X�,Y�,�Y,X��,���Y,X�,X�,�Y,X���,����Y,X�,Y�,�Y,X��,����Y,X�,Y�,Y�,Y��� ,

and the corresponding coefficient in �1.9� reads

z111 013 = −
19 234 697

140 792 940 288
.

Another central issue addressed in this paper concerns the convergence properties of the BCH
series. Suppose we introduce a submultiplicative norm 
·
 such that


�X,Y�
 � �
X

Y
 �1.12�

for some ��0. Then it is not difficult to show that the series �1.3� is absolutely convergent as long
as 
X
+ 
Y
� �log 2� /�.7,41 As a matter of fact, several improved bounds have been obtained for
the different presentations. Thus, in particular, the Lie presentation �1.7� converges absolutely if

X
�1 /� and 
Y
�1 /� in a normed Lie algebra g with a norm satisfying �1.12�,31,45 whereas in
Ref. 3 it has been shown that the series Z=�m�1Zm is absolutely convergent for all X, Y such that

�
X
 � �
�
Y


2	 1

2 +
t

2
�1 − cot�1

2
t

dt �1.13�

and the corresponding expression obtained by interchanging in �1.13� X by Y. Moreover, the series
diverges, in general, if 
X
+ 
Y
�	 when �=2.28 Here we provide a generalization of this feature
based on the well known Magnus expansion for linear differential equations26 and also we give a
more precise characterization of the convergence domain of the series when X and Y are �real or
complex� matrices.

II. AN ALGORITHM FOR COMPUTING THE BCH SERIES BASED ON ROOTED TREES

A. Summary of the procedure

Our starting point is the vector space g of maps 
 :T→R, where T denotes the set of rooted
trees with black and white vertices,

In the combinatorial literature, T is typically referred to as the set of labeled rooted trees with two
labels, “black” and “white.” Hereafter, we refer to the elements of T as bicoloured rooted trees.

The vector space g is endowed with a Lie algebra structure by defining the Lie bracket
�
 ,���g of two arbitrary maps 
 ,��g as follows. For each u�T,
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�
,���u� = �
j=1

	u	=1

�
�u�j����u�j�� − 
�u�j����u�j��� , �2.1�

where 	u	 denotes the number vertices of u, and each of the pairs of trees �u�j� ,u
�j���T�T, j

=1, . . . , 	u	−1, is obtained from u by removing one of the 	u	−1 edges of the rooted tree u, the root
of u�j� being the original root of u. For instance,

�2.2�

An important feature of the Lie algebra g is that the Lie subalgebra of g generated by the maps X,
Y �g defined as

X�u� = �1 if u = �
0 if u � T \ ��� �, Y�u� = �1 if u = �

0 if u � T \ ��� � . �2.3�

is a free Lie algebra over the set �X ,Y�.30 In what follows, we denote as L�X ,Y� the Lie subalgebra
of g generated by the maps X and Y.

It has also been shown in Ref. 30 that for each particular Hall–Viennot basis �Ei : i
=1,2 ,3 , . . . �, �whose elements are given by �1.10� for appropriate values of i� , i�� i , i=3,4 , . . .,
and X and Y given by �2.3�� one can associate a bicoloured rooted tree ui with each element Ei

such that, for any map 
�L�X ,Y�,


 = �
i�1


�ui�

�ui�

Ei, �2.4�

where for each i, 
�ui� is certain positive integer associated with the bicolored rooted tree ui �the
number of symmetries of ui, that we call symmetry number of ui�. For instance, the bicolored
rooted trees ui and their symmetry numbers 
�ui� associated with the elements Ei �of degree 	i	
�5� of the Hall basis used in this work are displayed in Table I.

As in Sec. I, we denote by L�X ,Y�n �n�1� the homogeneous subspace of L�X ,Y� of degree
n �whence admiting �Ei : 	i	=n� as a basis�. It can be seen30 that if 
�L�X ,Y�, then its projection

n to the homogeneous subspace L�X ,Y�n is given by


n�u� = �
�u� if 	u	 = n

0 otherwise
� �2.5�

for each u�T.
We also use the notation L�X ,Y� for the Lie algebra of Lie series, that is, series of the form


 = 
1 + 
2 + 
3 + ¯ , where 
n � L�X,Y�n.

Notice that in this setting, a Lie series 
�L�X ,Y� is a map 
 :T→R satisfying that, for each n
�1, the map 
n given by �2.5� belongs to L�X ,Y�n. A map 
�g is then a Lie series if and only
if �2.4� holds �see Ref. 30 for an alternative characterization of maps 
 :T→R that actually belong
to L�X ,Y��.

In particular, the BCH series Z=Z1+Z2+Z3+¯ given by �1.8� �for X and Y defined as in
�2.3�� is a Lie series. From �1.8�, it follows that Z���=Z���=1, and for n=2,3 ,4 , . . .
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nZ�u� =
1

2
�X − Y,Z��u� + �

p=1

��n−1�/2�
B2p

�2p�!
�adZ

2p�X + Y���u� �2.6�

for each u�T with n= 	u	. Recall that, for arbitrary 
 ,��g and u�T, the value �
 ,���u� is
defined in terms of bicolored rooted trees u�j� ,u

�j� with less vertices than u, so that �2.6� effectively
allows us to compute the values Z�u� for all bicolored rooted trees with arbitrarily high number 	u	
of vertices. In this way, the characterization �2.4� of maps 
�g that are Lie series directly gives
a way to write Z�L�x ,Y� in the form �1.9� with

zi =
Z�ui�

�ui�

for i � 1. �2.7�

For instance, we have according to Table I that in the Hall basis,

where the first five coefficients Z�ui� can be obtained by applying �2.6� with �2.2�,

TABLE I. First elements Ei of the basis of P. Hall, their corresponding bicolored rooted trees ui, the values 	i	,
i�, i�, 
�ui�, and the coefficients zi=Z�ui� /
�ui� in the BCH series �1.9�.
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�2.8�

In summary, the idea of the formalism is to construct algorithmically a sequence of labeled rooted
trees in a one-to-one correspondence with a Hall basis, verifying in addition �2.4�. In this way it
is quite straightforward to build and characterize Lie series, and, in particular, the BCH series.

B. Detailed treatment

In this subsection we provide a detailed treatment of the main steps involved in the procedure
previously sketched, first by analyzing the representation �2.4� of Lie series for the classical Hall
basis and then by considering Hall–Viennot bases.

We start by providing an algorithm that constructs the table of values �i� , i�� �for i�3� in
�1.10� �together with 	i	 for i�1� that determines a classical Hall basis. The algorithm starts by
setting

1� = 1, 1� = 0, 2� = 2, 2� = 0, 	1	 = 1, 	2	 = 1,

and initializing the counter i as i=3. Then, the values i� , i� , 	i	 for subsequent values of i are set as
follows �i++ indicates that the value of the counter i is incremented by 1�,

Algorithm 1:
for n=2,3 , . . .

j=1, . . . , i−1
k= j+1, . . . , i−1

If 	j	+ 	k	=n and j�k� then
i�= j, i�=k, 	i	=n,
i++.

The values of i�, i�, 	i	 thus determined satisfy that i�� i�� �i��� for i�3. In addition, j� i if 	j	
� 	i	, which implies that i� , i�� i for all i�3. The values for 	i	, i�, and i� and the element Ei of the
basis for the values of the index i of degree 	i	�5 are displayed in Table I.

On the other hand, it is possible to design a simple recursive procedure to define the bicolored
rooted trees ui appearing in �2.4� in terms of the values of i� and i� by using the following binary
operation. Given u ,v�T, the new rooted tree u �v�T is a rooted tree with 	u	+ 	v	 vertices
obtained by grafting the rooted tree v to the root of u �that is to say, u �v is a new bicolored rooted
tree with the colored vertices of u and v, one edge that makes the root of v a child of the root of
u added to the edges of u and v�. For instance,

We now define
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u1 = � , u2 = � , and ui = ui� � ui� for i � 3. �2.9�

Finally, the symmetry numbers 
i=
�ui� can also be determined recursively,


1 = 
2 = 1 and 
i = �i
i�
i� for i � 3, �2.10�

where �i=1 if �i���� i� and �i=�i�+1 if �i���= i�.
The bicolored rooted trees ui, their symmetry numbers 
�ui�, and the coefficients zi

=Z�ui� /
�ui� in the BCH series �1.9� are displayed in Table I for the first values of the index i,
whereas in Table III given in Appendix, the terms of the BCH series �1.9� up to terms of degree
of 9 are given in compact form for the classical Hall basis by displaying the values of i�, i�, and
zi=Z�ui� /
�ui� for each index i.

This procedure can be extended indeed to Hall–Viennot bases. A set �Ei : i
=1,2 ,3 , . . . ��L�X ,Y� recursively defined as �1.10� with some positive integers i�, i�� i �i
=3,4 , . . . � is a Hall–Viennot basis if there exists a total order relation � in the set of indices
�1,2,3,…� such that i� i� for all i�3, and the map

d:�3,4, . . . � → ��j,k� � Z+ � Z+:j � k � j�� , �2.11�

d�i� = �i�,i�� �2.12�

�with the convention 1�=2�=0� is bijective.
In Refs. 48 and 36, Hall–Viennot bases are indexed by a subset of words �a Hall set of words�

on the alphabet �x ,y�. Such Hall set of words �wi : i�1� can be obtained by defining recursively wi

as the concatenation wi�wi� of the words wi� and wi�, with w1=x and w2=y. For instance, the Hall
set of words wi associated with the indices i=1,2 , . . . ,14 in Table I are x, y, yx, yxx, yxy, yxxx,
yxxy, yxyy, yxxxx, yxxxy, yxxyy, yxyyy, yxxyx, and yxyyx.

For the classical Hall basis we have considered before, the map �2.11� has been constructed in
such a way that the total order relation � is the natural order relation in Z+, i.e., � �notice that in
Ref. 7 the total order is chosen as ��.

This is not possible, however, for the Lyndon basis. The Lyndon basis can be constructed as
a Hall–Viennot basis by considering the order relation � as follows: i� j if, in lexicographical
order �i.e., the order used when ordering words in the dictionary�, the Hall word wi associated with
i comes before than the Hall word wj associated with j. The Hall set of words �wi : i�1� corre-
sponding to the Lyndon basis is the set of Lyndon words, which can be defined as the set of words
w on the alphabet �x ,y� satisfying that, for arbitrary decompositions of w as the concatenation
w=uv of two nonempty words u and v, the word w is smaller than v in lexicographical order.48,25

Now, the representation �2.4� of a map 
�L�X ,Y� �and, in particular, the BCH series �1.9�
with �2.7�� for any Hall–Viennot basis can be stated as follows.

Theorem 2.1: Given a total order relation � in Z+ and a bijection (2.11) satisfying that i
� i� for all i�3, then any map 
�L�X ,Y� admits the representation (2.4) for the Hall basis
(1.10) and the bicolored rooted trees ui and their symmetry numbers 
i=
�ui� recursively defined
as (2.9) and (2.10).

Theorem 2.1 can be proven as a corollary of Theorem 3 and Remark 17 in Ref. 30. Actually,

in Ref. 30 it is shown that �2.4� holds for a different set T̂= �u1 ,u2 ,u3 , . . . � of bicolored rooted trees
associated with a Hall basis, for which 
�ui�=1 for all i. However, the set of Hall rooted trees we

consider here �which is the set T̂* considered in Remark 17 in Ref. 30� has some advantages from
the computational point of view.

In Table II, we display the elements Ei of the Lyndon basis with degree 	i	�5, the correspond-
ing Lyndon words wi, the bicolored rooted trees ui, the values 	i	, i�, i�, 
�ui�, and the coefficients
zi=Z�ui� /
�ui� in the BCH series �1.9�.

033513-9 Efficient computation of the BCH series J. Math. Phys. 50, 033513 �2009�

Downloaded 17 Jun 2011 to 150.128.148.40. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



C. Practical aspects in the implementation

An important ingredient in the whole procedure is the practical implementation of the Lie
bracket �
 ,�� of two Lie series 
 ,��L�X ,Y��g, which we address next. Let us consider for
each u�T the sequence

S�u� = ��u�1�,u
�1��, . . . ,�u�	u	−1�,u

�	u	−1��� �2.13�

of pairs of bicolored rooted trees used to define the Lie bracket �
 ,�� in �2.1�. For instance,

It can be seen that the sequences S�u� satisfy the following recursion. If u=v �w, where v ,w�T,
then, let p= 	v	−1, q= 	w	−1, and

S�v� = ��v�1�,v
�1��, . . . ,�v�p�,v

�p���, S�w� = ��w�1�,w
�1��, . . . ,�w�q�,w

�q��� ,

then

S�u� = ��w,v�,�v�1�,v
�1� � w�, . . . ,�v�p�,v

�p� � w�,�w�1�,v � w�1��, . . . ,�w�q�,v � w�q��� . �2.14�

TABLE II. First elements Ei of the Lyndon basis, their corresponding Lyndon words wi and bicolored rooted
trees ui, the values 	i	, i�, i�, 
�ui�, and the coefficients zi=Z�ui� /
�ui� in the BCH series �1.9�.
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The minimal set T̃n of bicolored rooted trees u for which Z�u� needs to be computed in order
to get the values of Z�ui� for Hall rooted trees with 	i	�n by using recursion �2.6� can be
determined by requiring that

�ui:	i	 � n� � T̃n � T and S�T̃n� � T̃n � T̃n.

It can be seen that the subset T̃n of bicolored rooted trees can be alternatively defined as follows:
We say that a bicolored rooted tree v�T is covered by u�T if either v can be obtained from u by
removing some of its vertices and edges or u=v. For instance, the bicolored rooted trees covered
by the tree u11 in Table II are

Then, it can be seen that T̃n is the set of bicolored rooted trees covered by some of the trees in
�ui : 	i	�n�.

As a summary of this treatment, we next describe the main steps of the algorithm that we use
to compute the BCH series up to terms of a given degree N for an arbitrary Hall–Viennot basis.
Let mN be sum of the dimensions of the homogeneous subspaces L�X ,Y�n for 1�n�N and let m̃N

be the number of bicolored rooted trees in T̃N �so that mN� m̃N�. We proceed as follows for a given
N:

�1� Determine the values i� , i� for each i=1, . . . ,mN such that the Ei given by �1.10� are the
elements of degree 	i	�N of the required Hall–Viennot basis. Algorithm 1 can be used in the
case of the basis of P. Hall. We use a similar �although slightly more complex� algorithm for
the general case.

�2� Determine the bicolored rooted trees u� T̃N together with the 	u	−1 pairs of bicolored rooted
trees in S�u� recursively obtained by �2.14�. Actually, we associate each bicolored rooted tree

in T̃N with a positive integer, such that T̃N= �ui : i=1,2 , . . . , m̃N� �and �ui : i=1,2 , . . . ,mN� is
the set of Hall trees of degree 	i	�N�. Each S�ui� is then represented as a list of 	i	−1 pairs
of positive integers.

�3� Represent the truncated versions of Lie series 
 �truncated up to terms of degree N� as a list
of m̃N real values �
1 , . . . ,
m̃N

� corresponding to �
�u1� , . . . ,
�um̃N
��. The Lie bracket �

= �
 ,�� of two Lie series can be implemented as a way to obtain the list ��1 , . . . ,�m̃N
� from

the lists �
1 , . . . ,
m̃N
� and ��1 , . . . ,�m̃N

� in terms of the pairs of integers representing S�ui�
for each i=1, . . . , m̃N.

�4� Represent the truncated versions of BCH series Z �truncated up to terms of degree N� as a list
of m̃N rational values �Z1 , . . . ,Zm̃N

� corresponding to �Z�u1� , . . . ,Z�um̃N
��, which can be ob-

tained by initializing that list as �1,1,0,…,0� and applying �2.6� repeatedly for n=2, . . . ,N.

It is worth noticing that the number of trees in T̃n is different for different Hall–Viennot bases.

For instance, for the basis of P. Hall, T̃20 has 724 018 bicolored rooted trees, while for the Lyndon

basis the set T̃20 has 1 952 325 bicolored rooted trees. Due to this fact, the amount of memory and
CPU time required to compute with our algorithm the BCH formula up to a given degree for the
Lyndon basis is considerably larger than for the basis of P. Hall. Moreover, the number of nonzero
coefficients zi in the BCH formula differs considerably in both bases. For instance, there are
109 697 nonvanishing coefficients zi �out of 111 013 elements Ei of degree 	i	�20� in the BCH
formula for the basis of P. Hall, while for the Lyndon basis the number of nonvanishing coeffi-
cients zi is 76 760.
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III. OPTIMAL CONVERGENCE DOMAIN OF THE BCH SERIES

A. The BCH formula and the Magnus expansion

One particularly simple way of obtaining a sharp bound on the convergence domain for the
BCH series consists in relating it with the Magnus expansion for linear differential equations. For
the sake of completeness, we summarize here the main features of this procedure.

Suppose we have the nonautonomous linear differential equation

dU

dt
= A�t�U, U�0� = I , �3.1�

where U�t� and A�t� are operators acting on some Hilbert space H �in particular, n�n real or
complex matrices�. Then the idea is to express the solution U�t� as the exponential of a certain
operator ��t�,

U�t� = exp ��t� . �3.2�

By substituting �3.2� into �3.1�, one can derive the differential equation satisfied by the exponent
�,

�� = �
k=0

�
Bk

k!
ad�

k �A�t��, ��0� = O . �3.3�

By applying Picard’s iteration on �3.3�, one gets an infinite series for ��t�,

��t� = �
m=1

�

�m�t� , �3.4�

whose terms can be obtained recursively from

�1�t� = �
0

t

A�t1�dt1,

�m�t� = �
j=1

m−1
Bj

j!
�

0

t

�ad��s�A�s��mds, m � 2. �3.5�

Equations �3.2� and �3.4� constitute the so-called Magnus expansion for the solution of �3.1�,
whereas the infinite series �3.4� with �3.5� is known as the Magnus series.

Since the 1960s,49 the Magnus expansion has been successfully applied as a perturbative tool
in numerous areas of physics and chemistry, from atomic and molecular physics to nuclear mag-
netic resonance and quantum electrodynamics �see Refs. 4 and 5 for a review and a list of
references�. Also, since the work by Iserles and Nørsett,20 it has been used as a tool to construct
practical algorithms for the numerical integration of Eq. �3.1�, while preserving the main qualita-
tive properties of the exact solution.

In general, the Magnus series does not converge unless A is small in a suitable sense, and
several bounds to the actual radius of convergence have been obtained along the years. Recently,
the following theorem has been proven.9

Theorem 3.1: Let us consider the differential equation U�=A�t�U defined in a Hilbert space
H, dim H��, with U�0�= I, and let A�t� be a bounded linear operator on H. Then, the Magnus
series ��t�=�k=1

� �k�t�, with �k given by (3.5) converges in the interval t� �0,T� such that

�
0

T


A�s�
ds � 	
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and the sum ��t� satisfies exp ��t�=U�t�. The statement also holds when H is infinite dimensional
if U is a normal operator (in particular, if U is unitary). Here 
·
 stands for the norm defined by
the inner product on H.

Moreover, it has been shown that the convergence domain of the Magnus series provided by
this theorem is the best result one can get for a generic bounded operator A�t� in a Hilbert space,
in the sense that it is possible to find specific A�t� where the series diverges for any time t such that
�0

t 
A�s�
ds�	.29,9

Now, given two operators X and Y, let us consider Eq. �3.1� with

A�t� = �Y , 0 � t � 1

X , 1 � t � 2.
� �3.6�

Clearly, the exact solution at t=2 is given by U�2�=eXeY. On the other hand, if we apply recur-
rence �3.5� to compute U�2� with the Magnus expansion, U�2�=e��2�, we get �1�2�=X+Y and
more generally �n�2�=Zn in �1.4�. In other words, the BCH series can be considered as the
Magnus expansion corresponding to the differential equation �3.1� with A�t� given by �3.6� at t
=2.

Since �0
t=2
A�s�
ds= 
X
+ 
Y
, Theorem 3.1 leads to the following bound on the convergence

of the BCH series.
Theorem 3.2: Let X and Y be two bounded elements in a Hilbert space H with dim H�2.

Then the BCH formula in the form (1.4), i.e., expressed as a series of homogeneous Lie polyno-
mials in X and Y, converges when 
X
+ 
Y
�	.

Of course, this result can be generalized to any set X1 ,X2 , . . . ,Xk of bounded operators: the
corresponding BCH series is convergent if 
X1
+ ¯ + 
Xk
�	 in the 2-norm.

Let us illustrate the result provided by Theorem 3.2 with a simple example involving 2�2
matrices.

Example 1: Given

X = �
 0

0 − 


, Y = �0 �

0 0

 , �3.7�

with 
 ,��C, a simple calculation shows that

log�eXeY� = X +
2


1 − e−2
Y ,

which is an analytic function for 	
	�	 with first singularities at 
= � i	. Therefore, the BCH
formula cannot converge if 	
	�	, independently of ��0. By taking the spectral norm, it is clear
that 
X
= 	
	, 
Y
= 	�	, so that the convergence domain given by Theorem 3.2 is 	
	+ 	�	�	.
Notice that in the limit 	�	→0 this domain is optimal. �

Generally speaking, however, the bound given by Theorem 3.2 is conservative, i.e., the BCH
series converges for larger values of 
X
 and 
Y
. Thus, in the previous example, for any 
 and �
with 	
	�	 and 	
	+ 	�	�	, the BCH series also converges. One would like therefore to have a
more realistic characterization of this feature. It turns out that this is indeed feasible for complex
n�n matrices.

B. Convergence for matrices

1. Convergence determined by the eigenvalues

For complex n�n matrices it is possible to use the theory of analytic matrix functions and
more specifically, the logarithm of an analytic matrix function, in a similar way as in the Magnus
expansion,9 to characterize more precisely the convergence of the BCH series.

To begin with, let us introduce a parameter ��C and consider the substitution
�X ,Y�� ��X ,�Y� into Eq. �1.1�. It is clear that
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U��� � e�Xe�Y

is an analytic function of �, det U����0 and the matrix function Z���=log U��� is also analytic at
�=0. Equivalently, the series Z��� is convergent for sufficiently small �. It turns out that the actual
radius of convergence of this series is related with the existence of multiple eigenvalues of U���.
Let us denote by �1��� , . . . ,�n��� the eigenvalues of the matrix U���. Observe that U�0�= I, so that
�1�0�= ¯ =�n�0�=1, and we can take the principal values of the logarithm, log �1�0�= ¯

=log �n�0�=0. In essence, if the analytic matrix function U��� has an eigenvalue �0��0� of mul-
tiplicity l�1 for a certain �0 such that �a� there is a curve in the �-plane joining �=0 with �
=�0, and �b� the number of equal terms in log �1��0�, log �2��0� , . . . , log �l��0� such that �k��0�
=�0, k=1, . . . , l is less than the maximum dimension of the elementary Jordan block correspond-
ing to �0, then the radius of convergence of the series Z���=�k�1�kZk verifying exp Z���=U��� is
precisely r= 	�0	.9

More specifically, we find first the values of the parameter � for which the characteristic
polynomial det�U���−�I� has multiple roots and write them in order of nondecreasing absolute
value,

�0
�1�,�0

�2�,�0
�3�, . . . . �3.8�

Next, we consider the circle 	�	= 	�0
�1�	 in the complex �-plane and denote by �0

�1� an eigenvalue of
U��0

�1�� with multiplicity l1�1. Let � move along some fixed curve L from �=0 to �=�0
�1� in the

circle 	�	� 	�0
�1�	. Then it is clear that l1 eigenvalues � j��� will tend to �0

�1� at �=�0
�1�. If these points

lie at �=�0
�1� on the same sheet of the Riemann surface of the function log z, and this is true for all

�possible� multiple eigenvalues of U��� at �=�0
�1�, then �0

�1� is called a extraneous root. Otherwise,
�0

�1� is called a nonextraneous root.
By the analysis carried out in Ref. 51, when 	�	� 	�0

�1�	 the numbers log � j��� are uniquely
determined as eigenvalues of the matrix Z��� and this series is convergent. This is also true at
	�	= 	�0

�1�	 if �0
�1� is an extraneous root, since then the eigenvalues of Z��� retain their identity

throughout the collision process, so that we proceed to the next value in the sequence �3.8� until
a nonextraneous root is obtained.

Assume, for simplicity, that �0
�2� is the first nonextraneous root, for which there exists an

eigenvalue �0 of U��� with multiplicity l�1. Associated with this multiple eigenvalue �0 there is
a pair of integers �p ,q� defined as follows.

The integer p is the greatest number of equal terms in the set of numbers log �1��0�,
log �2��0� , . . . , log �l��0� such that �k��0�=�0, k=1, . . . , l.

The integer q is the maximum degree of the elementary divisors ��−�0�k of U��0�, i.e., the
maximum dimension of the elementary Jordan block corresponding to �0.

Under these conditions, it has been proven that if p�q for the eigenvalue �0, then the radius
of convergence of the series Z���=�k�1�kZk is precisely r= 	�0	.51

Although in some cases with p�q the series Z��� may converge at 	�	= 	�0	 and the radius of
convergence r is greater than 	�0	 �for instance, when X and Y are diagonal�, this situation is
exceptional in a topological sense, as explained in Ref. 51, pp. 65 and 66.

2. Examples

In order to illustrate this result we next consider a pair of examples involving also 2�2
matrices.

Example 1: The first example involves again the matrices X and Y given by �3.7�. In this case

U��� = e�Xe�Y = �e�
 ��e�


0 e−�
 
 .

The first values of � for which there are multiple eigenvalues of U��� are
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� = 0, � = � i
	



.

The first value, �=0, is clearly an extraneous root, whereas the eigenvalues of the matrix U���
move along the unit circle, one clockwise and the other counterclockwise from

�1,2�0� = 1 to �1,2�i	/
� = − 1

when � varies along the imaginary axis from �=0 to �= i	 /
 �the same considerations apply to
the case �=−i	 /
�. Then, obviously, p=1 and q=2, so that the radius of convergence of the series
Z��� is

	�	 =
	

	
	
.

By fixing �=1, we get the actual domain of convergence of the BCH series as 	
	=	, i.e., the
same result as in Sec. III A �

Example 2: Consider now the matrices

A = �0 0

1 0

, B = �0 1

0 0

 ,

and X=
A, Y =
B, with 
�0. Then

U��� = � 1 
�


� 1 + 
2�2 
 �3.9�

has multiple eigenvalues when �0
�1�=0, �0

�2�= � i2 /
. As � varies along the imaginary axis from
�=0 to �=�0

�2�, the eigenvalues of the matrix U���,

�1,2��� = 1 +

2

2
�2 ���1 +


2

2
�2
2

− 1,

move along the unit circle, one clockwise and the other counterclockwise from

�1,2�0� = 1 to �1,2��0
�2�� = − 1.

Thus, �1��0
�2�� and �2��0

�2�� lie on different sheets of the Riemann surface of the function log z and
therefore �0

�2� is a nonextraneous root, with p=1. Since U��0
�2���−I, we have q=2, so that the

radius of convergence of the series Z��� is precisely

r = 	�0
�2�	 =

2



. �3.10�

This result should be compared with the bound provided by the Magnus expansion. Since 
A

= 
B
=1, Theorem 3.2 guarantees the convergence of the BCH series in this case whenever
2
	�	�	 or 	�	�	 /2
, which, in view of �3.10�, is clearly a conservative estimate.

We can also check numerically the rate of convergence of the BCH series in this example as
a function of the parameter �. Let us denote by Z�N� the sum of the first N terms of the series, i.e.,

Z�N���� = �
n=1

N

Zn���

and compute, for 
=2 and different values of �, the matrix
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Er��� = U���e−Z�N���� − I ,

where U��� is given by �3.9�. If � belongs to the convergence domain of the BCH series for the
matrices X and Y �i.e., 	�	�1�, then Er���→0 as N→�.

First we take �= 1
4 . With N=10, the elements of Er are of order of 10−7, whereas adding five

additional terms in the series, N=15, the elements of Er are approximately 10−10.
Next we choose �=0.9, i.e., a value near the boundary of the convergence domain. In this case

with N=15 the convergence of the series does not manifest at all. In fact, a much larger number
of terms is required to achieve significant results. Thus, for the elements of Er to be of order of
10−8 we need to compute N=150 terms of the BCH series, whereas with N=200 the elements of
Er are of order of 10−10. The computations have been carried out with the recurrence �1.8�. �

As this example clearly shows, it is not always possible to determine accurately the conver-
gence domain of the BCH series by computing successive approximations, since the rate of
convergence can be slow indeed near the boundary. For this reason it could be of interest to design
a procedure to apply in practice the characterization of the convergence in terms of the eigenval-
ues of the matrix U��� analyzed in Sec. III B 1 for matrices.

This procedure could be as follows. Given two matrices X, Y, take the product of exponentials

U��� = e�Xe�Y

with �=rei�. Next, define a grid in the �-plane, for instance, in polar coordinates �r ,��, by �r
=rf / �n+1�, ��=2	 / �m+1� for two integers n, m�1 and a sufficiently large value rf �1. Then,
for each point in the grid �rk=k�r, �l= l���, k=1, . . . ,n+1, l=0,1 , . . . ,m, compute the corre-
sponding matrix U��� and its eigenstructure, locating where there are multiple eigenvalues �within
a prescribed tolerance�. If some of these multiple eigenvalues have a negative real part, there
exists a point in the neighborhood where the conditions enumerated in Sec. III B 1 are satisfied,
and therefore we have approximately located the value of � where the BCH series fails to con-
verge. This approximation can be made more accurate by applying, for instance, Newton’s
method. The actual radius of convergence will be given by the smallest number r found in this
way. Finally, if r�1, then obviously the BCH series corresponding to X and Y converges.

IV. SOME APPLICATIONS

As an illustration of the usefulness of the previous results, in this section we present two not
so trivial applications of the formalism developed in Sec. II for constructing explicitly the BCH
series up to arbitrarily high order.

A. The symmetric BCH formula

Sometimes it is necessary to compute the Lie series W defined by

exp� 1
2X�exp�Y�exp� 1

2X� = exp�W� . �4.1�

This occurs, for instance, if one is interested in obtaining the order conditions satisfied by time-
symmetric composition methods for the numerical integration of differential equations.52,39 Two
applications of the usual BCH formula give then the expression of W in the Hall basis of L�X ,Y�.

A more efficient procedure is obtained, however, by introducing a parameter � in �4.1� such
that

W��� = log�e�X/2eYe�X/2� �4.2�

and deriving the differential equation satisfied by W���. From the derivative of the exponential
map, one gets
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dW

d�
= X + �

n=2

�
Bn

n!
adW

n X, W�0� = Y , �4.3�

whence it is possible to construct explicitly W as the series W���=�k=0
� Wk���, with

W1��� = X� + Y ,

W2��� = 0,

Wl��� = �
j=2

l−1
Bj

j!
�

0

�

�adW
j X�lds, l � 3, �4.4�

where, in general, W2m=0 for m�1. By following a similar approach as with Eq. �1.8� in the usual
BCH series in Sec. II, the recursion �4.4� allows one to express W in �4.1� as

W = �
i�1

wiEi. �4.5�

The coefficients wi of this series up to degree of 9 in the classical Hall basis are collected in Table
IV in Appendix. As with the usual BCH series, the coefficients up to degree of 19 in both Hall and
Lyndon bases can be found at www.gicas.uji.es/research/bch.html.

With respect to the convergence of the series, theorem �3.2� guarantees that W is convergent
at least when 
X
+ 
Y
�	.

B. The BCH formula and a problem of Thompson

In a series of papers,43,32,44,45 Thompson considered the problem of constructing a represen-
tation of the BCH formula as

eXeY = eZ, with Z = SXS−1 + TYT−1, �4.6�

for certain functions S=S�X ,Y� and T=T�X ,Y� depending on X and Y. By using analytic tech-
niques related with the Kashiwara–Vergne method, Rouvière38 proved that a Lie series ��X ,Y�
exists such that

S = e��X,Y�, T = e��−Y,−X� �4.7�

and converges when X, Y are replaced by normed elements near 0, whereas the representation
�4.6� is global when both X and Y are skew-Hermitian matrices.43

Thompson himself developed a computational technique for constructing explicitly the series
��X ,Y� up to terms of degree of 10. Although his results were not published, he pointed out that
they furnished strong evidence of the convergence of the series ��X ,Y� on the closed unit sphere
in any norm for which 
�X ,Y�
� 
X

Y
.45

With the aim of clarifying this issue and illustrating the techniques developed in Sec. II, we
proceed next to compute ��X ,Y�. Since ��X ,Y��L�X ,Y�, i.e., is a Lie series, it can be written as

��X,Y� = �
i�1

�iEi,

where the elements Ei have been introduced in �1.9�, and the goal is to determine the coefficients
�i. This can be accomplished as follows. From the well known formula eUVe−U=eadUV, it is clear
that
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Z = ead��X,Y�X + ead��−Y,−X�Y . �4.8�

Next we expand ead��X,Y�X and ead��−Y,−X�Y into infinite series as a linear combination of the Hall
basis in L�X ,Y� and match the resulting terms with the corresponding to the BCH series for Z.
Then a recursive system of equations is obtained for the coefficients �i.

It is, in fact, possible to get a closed expression for ��X ,Y� up to terms Y2 by taking into
account the corresponding formula of Z.34 Specifically, from

Z = X +
adX

1 − e−adX
Y mod Y2, �4.9�

a simple calculation leads to

��X,Y� = f�adX�Y mod Y2,

with the function f�z� given by

f�z� =
ez

1 − ez +
1

z
ez/4 = −

1

4
−

5

96
z +

1

384
z2 +

143

92 160
z3 +

1

122 880
z4 + ¯ . �4.10�

Working in the classical Hall basis, the complete expression up to degree of 4 reads

f�z� = − 1
4Y + 5

96�Y,X� + 1
384��Y,X�,X� + 11

768��Y,X�,Y� − 143
92 160���Y,X�,X�,X� − 283

92 160���Y,X�,X�,Y�

+ 11
23 040���Y,X�,Y�,Y� ,

i.e., the corresponding equations have a unique solution. This is not the case, however, at degree
of 5, where a free parameter appears, which can be chosen to be �10. Then

�12 =
− 137 − 184 320�10

184 320
, �13 =

− 511 − 737 280�10

737 280
.

As a matter of fact, if higher degrees are considered, more and more free parameters appear in the
corresponding solution. Thus, at degree of 7 there are two additional parameters �for instance, �26

and �30�, whereas at degree of 8 �50 and �52 can be chosen as free parameters. We conclude,
therefore, that there are infinite solutions to the problem posed by Thompson depending on an
increasing number of free parameters. An interesting issue would be to determine the value of
these parameters in order to render the whole series convergent on a domain as large as possible.

C. Distribution of coefficients in the Lyndon basis

As we previously mentioned, there are noteworthy differences in the results obtained when the
algorithm of Sec. II is applied to the BCH series in the classical Hall basis and the Lyndon basis,
particularly with respect to the number of vanishing coefficients. In the basis of P. Hall there are
1316 zero coefficients out of 111 013 up to degree m=20, whereas in the Lyndon basis the number
of vanishing terms rises to 34 253 �more than 30% of the total number of coefficients�.

More remarkably, one notices that the distribution of these vanishing coefficients in the Lyn-
don basis follows a very specific pattern. Before entering into the details, let us denote for
simplicity Lm�L�X ,Y�m. We first remark that, for each m�2, the Lyndon basis Bm of Lm is a
disjoint union Bm=Bm,1�Bm,2 with Bm,2= �X ,Bm−1�. Thus, Lm=Lm,1 � Lm,2, where Lm,2

= �X ,Lm−1�, and Bm,k �k=1,2� is a basis of Lm,k. In particular, adX
m−1 Y �Bm. In this sense, from

our computations we make two observations. First, the coefficient in the BCH formula of the
element adX

m−1 Y in the basis Bm is 0 for even m. Second, the coefficients for the terms in Bm,1 are
also zero for even m. This gives a total number of
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nc�2p� = dim�L2p� − dim�L2p−1� + 1, p � 2,

vanishing coefficients of terms of degree m=2p in the BCH formula written in the Lyndon basis.
Thus, for instance, when p=10, the number of total number of vanishing coefficients is nc�20�
=dim�L20�−dim�L19�+1=52 377−27 594+1=24 784.

TABLE III. Table of values of i� and i� for i�3 in �1.10� for the classical Hall basis and the values zi�Q in the BCH
formula �1.9�.

i i� i� zi i i� i� zi i i� i� zi

1 1 0 1 44 25 2 1 /10 080 87 31 3 −11 /30 240

2 2 0 1 45 26 2 23 /120 960 88 32 3 −19 /100 800

3 2 1 −1 /2 46 27 2 1 /10 080 89 33 3 −1 /43 200

4 3 1 1 /12 47 28 2 1 /60 480 90 34 3 −1 /10 080

5 3 2 −1 /12 48 29 2 0 91 35 3 −1 /50 400

6 4 1 0 49 15 3 0 92 15 4 −1 /33 600

7 4 2 1 /24 50 16 3 1 /40 032 93 16 4 −13 /120 960

8 5 2 0 51 17 3 23 /30 240 94 17 4 −1 /10 080

9 6 1 −1 /720 52 18 3 1 /2 240 95 18 4 −11 /201 600

10 6 2 −1 /180 53 19 3 1 /15 120 96 19 4 −1 /43 200

11 7 2 1 /180 54 20 3 0 97 20 4 −1 /7 560

12 8 2 1 /720 55 21 3 1 /2 250 98 21 4 −1 /10 080

13 4 3 −1 /120 56 22 3 1 /10 080 99 22 4 1 /50 400

14 5 3 −1 /360 57 9 4 0 100 23 4 1 /20 160

15 9 1 0 58 10 4 1 /10 080 101 15 5 −23 /302 400

16 9 2 −1 /1 440 59 11 4 −1 /20 160 102 16 5 −1 /5 760

17 10 2 −1 /360 60 12 4 −1 /20 160 103 17 5 13 /151 200

18 11 2 −1 /1 440 61 13 4 0 104 18 5 19 /120 960

19 12 2 0 62 14 4 −1 /2 520 105 19 5 1 /33 600

20 6 3 0 63 9 5 1 /4 032 106 20 5 −13 /30 240

21 7 3 −1 /240 64 10 5 1 /840 107 21 5 −23 /100 800

22 8 3 −1 /720 65 11 5 1 /1 440 108 22 5 −1 /100 800

23 5 4 1 /240 66 12 5 1 /12 096 109 23 5 −1 /33 600

24 15 1 1 /30 240 67 13 5 1 /1 260 110 9 6 −1 /60 480

25 15 2 1 /5 040 68 14 5 1 /10 080 111 10 6 −1 /90 720

26 16 2 1 /3 780 69 7 6 −1 /10 080 112 11 6 1 /30 240

27 17 2 −1 /3 780 70 8 6 −13 /30 240 113 12 6 −11 /302 400

28 18 2 −1 /5 040 71 8 7 −1 /3 360 114 13 6 1 /15 120

29 19 2 −1 /30 240 72 42 1 −1 /1 209 600 115 14 6 1 /3 780

30 9 3 1 /2 016 73 42 2 −1 /151 200 116 9 7 −11 /120 960

31 10 3 23 /15 120 74 43 2 −1 /56 700 117 10 7 −1 /6 720

32 11 3 1 /5 040 75 44 2 −1 /75 600 118 11 7 −1 /14 400

33 12 3 −1 /10 080 76 45 2 1 /75 600 119 12 7 −11 /120 960

34 13 3 1 /1 260 77 46 2 1 /56 700 120 13 7 −1 /20 160

35 14 3 1 /5 040 78 47 2 1 /151 200 121 14 7 17 /100 800

36 6 4 1 /5 040 79 48 2 1 /1 209 600 122 9 8 −1 /20 160

37 7 4 −1 /10 080 80 24 3 −1 /43 200 123 10 8 17 /151 200

38 8 4 1 /1 680 81 25 3 −37 /302 400 124 11 8 1 /6 048

39 6 5 13 /15 120 82 26 3 −11 /60 480 125 12 8 1 /60 480

40 7 5 −1 /1 120 83 27 3 −11 /302 400 126 13 8 −1 /100 800

41 8 5 −1 /5 040 84 28 3 11 /302 400 127 14 8 1 /37 800

42 24 1 0 85 29 3 1 /100 800

43 24 2 1 /60 480 86 30 3 −1 /7 560
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With these considerations in mind, we can proceed next to explain the observed phenomena.
First, notice that expression �4.9� gives explicitly the last term of the BCH series in the Lyndon
basis at each degree. By formally expanding in power series of adX we get

TABLE IV. Table of values of i� and i� for i�3 in �1.10� for the classical Hall basis and the values wi�Q in the symmetric
BCH formula �4.1�

i i� i� wi i i� i� wi i i� i� wi

1 1 0 1 44 25 2 0 87 31 3 1 /4 608

2 2 0 1 45 26 2 0 88 32 3 23 /134 400

3 2 1 0 46 27 2 0 89 33 3 1 /37 800

4 3 1 −1 /24 47 28 2 0 90 34 3 1 /23 040

5 3 2 −1 /12 48 29 2 0 91 35 3 1 /201 600

6 4 1 0 49 15 3 0 92 15 4 193 /6 451 200

7 4 2 0 50 16 3 0 93 16 4 53 /483 840

8 5 2 0 51 17 3 0 94 17 4 25 /193 536

9 6 1 7 /5 760 52 18 3 0 95 18 4 1 /22 400

10 6 2 7 /1 440 53 19 3 0 96 19 4 −13 /1 209 600

11 7 2 1 /180 54 20 3 0 97 20 4 53 /483 840

12 8 2 1 /720 55 21 3 0 98 21 4 17 /161 280

13 4 3 1 /480 56 22 3 0 99 22 4 −3 /44 800

14 5 3 −1 /360 57 9 4 0 100 23 4 −19 /322 560

15 9 1 0 58 10 4 0 101 15 5 367 /4 838 400

16 9 2 0 59 11 4 0 102 16 5 193 /645 120

17 10 2 0 60 12 4 0 103 17 5 247 /604 800

18 11 2 0 61 13 4 0 104 18 5 53 /241 920

19 12 2 0 62 14 4 0 105 19 5 1 /33 600

20 6 3 0 63 9 5 0 106 20 5 53 /161 280

21 7 3 0 64 10 5 0 107 21 5 193 /403 200

22 8 3 0 65 11 5 0 108 22 5 13 /201 600

23 5 4 0 66 12 5 0 109 23 5 −1 /5 600

24 15 1 −31 /967 680 67 13 5 0 110 9 6 11 /774 114

25 15 2 −31 /161 280 68 14 5 0 111 10 6 1 /290 304

26 16 2 −13 /30 240 69 7 6 0 112 11 6 −1 /15 360

27 17 2 −53 /120 960 70 8 6 0 113 12 6 −89 /1 209 600

28 18 2 −1 /5 040 71 8 7 0 114 13 6 −11 /241 920

29 19 2 −1 /30 240 72 42 1 127 /154 828 800 115 14 6 −13 /80 640

30 9 3 −53 /161 280 73 42 2 127 /19 353 600 116 9 7 1 /12 096

31 10 3 −11 /12 096 74 43 2 157 /7 257 600 117 10 7 11 /64 512

32 11 3 −3 /4 480 75 44 2 367 /9 676 800 118 11 7 1 /33 600

33 12 3 −1 /10 080 76 45 2 23 /604 800 119 12 7 −11 /120 960

34 13 3 −1 /4 032 77 46 2 79 /3 628 800 120 13 7 1 /35 840

35 14 3 −1 /6 720 78 47 2 1 /151 200 121 14 7 −29 /134 400

36 6 4 −19 /80 640 79 48 2 1 /1 209 600 122 9 8 211 /1 935 360

37 7 4 −1 /10 080 80 24 3 367 /19 353 600 123 10 8 173 /604 800

38 8 4 17 /40 320 81 25 3 473 /4 838 400 124 11 8 5 /24 192

39 6 5 −53 /60 480 82 26 3 41 /215 040 125 12 8 1 /60 480

40 7 5 −19 /13 440 83 27 3 211 /1 209 600 126 13 8 61 /403 200

41 8 5 −1 /5 040 84 28 3 89 /1 209 600 127 14 8 −1 /151 200

42 24 1 0 85 29 3 1 /100 800

43 24 2 0 86 30 3 79 /967 680
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Z = X + Y +
1

2
adX Y + �

k=2

�

�− 1�kBk

k!
adX

k Y mod Y2.

Since B2n+1=0 for all n�1, the coefficient of adX
k Y is nonvanishing only for even values of k, or

equivalently, for odd values of the degree m.
As for the remaining zero coefficients, let us consider at this point the symmetric BCH

formula �4.1� again. Clearly the series �4.5� only contains terms of odd degree, i.e., W
=�i�0W2i+1, where Wi�Li. By denoting P=X /2 and forming the composition
exp�P�exp�W�exp�−P� one gets trivially

ePeWe−P = eXeY = eZ,

i.e., the standard BCH formula. In the terminology of dynamical systems, exp�W� and exp�Z� are
said to be conjugated. Alternatively, we can write exp�Z�=exp�adP�exp�W�, so that Z
=exp�adP�W. It is worth to write explicitly this relation for each term Zm�Lm of the series Z
=�m�0Zm by separating the odd and even degree cases. Specifically,

Z2p+1 = W2p+1 + �
j=1

p
1

��2j�!�22j adX
2j W2p−2j+1,

Z2p = �
j=1

p
1

��2j − 1�!�22j−1adX
2j−1 W2p−2j+1.

From these expressions, it is clear that Z2p+1 contains terms in the whole subspace L2p+1,1

� L2p+1,2 �due to the presence of W2p+1�, whereas Z2p belongs to the subspace L2p,2, whose
dimension is equal to dim�L2p−1�. In other words, the remaining dim�L2p�−dim�L2p−1� must
necessarily vanish. In this sense, the Lyndon basis seems the natural choice to get systematically
the BCH series with the minimum number of terms. Nevertheless, compared to the basis of P.
Hall, more CPU time and memory are required to compute the BCH with our algorithm in the
Lyndon basis. In particular, 1.5 Gbytes are required to compute the BCH formula up to degree of
20 in the Hall basis, whereas 3.6 Gbytes of memory are needed in the Lyndon basis.

V. CONCLUDING REMARKS

The effective computation of the BCH series has a long history and is closely related with the
more general problem of carrying out symbolic computations in free Lie algebras. In this work we
have presented a new algorithm which allows us to get a closed expression of the series Z
=log�eXeY� up to degree of 20 in terms of an arbitrary Hall–Viennot basis of the free Lie algebra
generated by X and Y, L�X ,Y�, requiring reasonable computational resources. As far as we know,
no other results are available up to this degree in terms of a basis of L�X ,Y�. The algorithm is
based on some more general results presented in Ref. 30 on the connection of labeled rooted trees
with an arbitrary Hall–Viennot basis of the free Lie algebra.

We have carried out explicitly the computations to get the coefficients of the BCH series in
terms of both the classical Hall basis and the Lyndon basis, with some noteworthy differences in
the corresponding results, as analyzed in Sec. IV C.

We have also addressed the problem of the convergence of the series when X and Y are
replaced by normed elements. In the particular case of X and Y being matrices, we have provided
a characterization of the convergence in terms of the eigenvalues of eZ.

Although here we have considered only the BCH series, it is clear that other more involved
calculations can be done, as is illustrated, for instance, by the problem of Thompson studied in
Sec. IV B. As a matter of fact, we intend to develop a general purpose package to carry out
symbolic computations in a free Lie algebra generated by more than two operators.
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APPENDIX: COEFFICIENTS OF THE BCH FORMULA

In Table III we collect the indices i� and i� for i�3 in �1.10� for the classical Hall basis and
the values of the coefficients zi in the BCH formula �1.9� up to degree of 9, whereas in Table IV
we gather the corresponding coefficients for the symmetric BCH formula �4.1�.
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