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Abstract—Earth data collection from satellites and aircraft
has exponentially grown, but a substantial portion of it remains
unlabeled. This has prompted the remote sensing community to
explore effective methods for leveraging unlabeled data. In our
prior investigation [1], we evaluated various deep semi-supervised
learning algorithms on two very high-resolution (VHR) optical
datasets (UCM [2] and AID [3]). Notably, the CoMatch [4]
algorithm demonstrated the highest accuracy, motivating further
exploration. This letter extends our earlier work by integrat-
ing the established Class-Aware Contrastive Semi-Supervised
Learning framework (Comatch+CCSSL) [5] into CoMatch and
introducing a new triplet metric learning loss (CoMatch+Triplet).
CoMatch+Triplet excelled with 93.2% accuracy on UCM, while
CoMatch led with 92.19% on AID. The addition of the triplet loss
can produce a clearer separation of the samples from different
classes in the embedding space at very early learning stages,
being able to learn faster and getting maximum performance
with few iterations. The exploration of diverse semi and self-
supervised training methodologies presented in this work sheds
light on the strengths and limitations of these approaches,
enhancing our understanding of their applicability in remote
sensing applications.

Index Terms—Semi-Supervised, Self-Supervised, Remote Sens-
ing

I. INTRODUCTION

THE vast volume of available remote sensing data, cou-
pled with the cost and time constraints associated with

obtaining labeled data in this domain, has sparked a growing
interest in leveraging unlabeled data. Unlike traditional super-
vised approaches that demand a substantial amount of labeled
data, unsupervised learning operates without any labeled data,
semi-supervised learning effectively utilizes both labeled and
unlabeled data and self-supervised learning generates labeled
data on its own [6]. These frameworks demonstrate the efficacy
of incorporating unlabeled data in image classification tasks,
employing diverse learning strategies, data augmentation tech-
niques, and adequate loss functions. Notably, these loss func-
tions are integral to metric learning, enabling the acquisition of
meaningful visual representations through approaches like pair
and triplet losses [7]. This letter focuses on exploring the use
of unlabeled data in domains such as semi-supervised learning
and self-supervised learning. We implement the CoMatch [4]
method, which concurrently learns two representations of the
training data, i.e., their class probabilities and low-dimensional
embeddings. Additionally, we add to CoMatch the Class-
Aware Contrastive Semi-Supervised Learning framework (CC-
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SSL) for separating in and out of distribution data. Finally, we
also introduce a triplet loss, a concept of recurring interest in
the remote sensing community for these learning frameworks
[8].

Therefore, the main contributions of this work can be
summarised as follows:

1) Apply CoMatch, a state-of-the-art algorithm and the
CCSSL framework in remote sensing applications.

2) Experiment with metric learning and adding a triplet loss
to contrastive learning approches.

3) Establish experimental protocols using very high-
resolution (VHR) datasets UCM and AID to evaluate
semi- and self-supervised learning algorithms in RS.

II. RELATED WORK

In this section, we investigate the intersection of semi- and
self-supervised learning. Then, we explore pair and triplet
metric learning in the context of remote sensing applications.

A. Deep Semi-supervised and Self-supervised Learning
Semi-supervised learning algorithms are designed to lever-

age both labeled and unlabeled samples. This typically in-
volves employing a standard labeled dataset, retaining only
a fraction of the labels (e.g., 10%), and using the remaining
data as unlabeled [9]. Within this framework, FixMatch [10]
is a notable algorithm that combines consistency regulariza-
tion and pseudo-labeling. It generates artificial labels from
weakly augmented images and enforces loss against strongly
augmented versions. However, a drawback of FixMatch is its
sole reliance on the model output for predictions, potentially
leading to confirmation bias.

In contrast, self-supervised learning techniques utilize unla-
beled data for representation learning. These methods train
neural networks by performing pretext tasks, such as con-
trastive learning [11]. Notable examples include MoCo [12]
using InfoNCE [13] and SimCLR using NT-Xent [14]. Follow-
ing this initial phase, the pre-trained network is fine-tuned for
downstream tasks, including image classification on labeled
data [6].

Looking ahead, the domains of semi- and self-supervised
learning complement each other. To overcome the limitations
of semi-supervised learning, CoMatch [4] builds upon the
FixMatch framework, incorporating innovative ideas from
contrastive and graph-based learning. It employs a co-training
framework where class probabilities and low-dimensional em-
beddings interact and co-evolve. Self-supervised visual repre-
sentation is inherently class-agnostic, hence integrating a small
number of labeled examples can improve its effectiveness.
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B. Deep Metric Learning and Remote Sensing
Metric learning aims to place similar points close together

and dissimilar points apart in a feature space. This is achieved
through specific loss functions, like pair and triplet losses,
which encourage the creation of well-clustered spaces [7].
The classic contrastive loss [11], attempts to minimize the
distance between positive pairs, and maximize the distance
between negative pairs by a threshold [7]. The triplet loss [15]
comprises a positive and a negative image sample relative to
a reference called an anchor. The goal of the triplet loss is
to minimize the distances between the anchor and positive
samples compared to the distances between the anchor and
negative sample by a margin [7].

The utilization of pair and triplet losses has proven success-
ful in the context of remote sensing data. The Tile2Vec [8]
algorithm incorporates the triplet loss, based on spatial neigh-
borhood principles, where close geographic neighbors (anchor
and positive) are expected to share similar representations than
distant ones (anchor and negative). However, challenges arise
in the triplet selection process as illustrated in figure 1, adapted
from [16], where A is the anchor image, (P1, P2) are positive
images, and (N1, N2) are negative images. Randomly selected
triplets (A,P1, N1) may already satisfy the margins, resulting
in no model updates. On the other hand, triplets that incur
in high loss value are called hard triplets (A,P1, N2) and
prompt significant model parameter updates in the embedding
space. Opting for informative triplets contributes to faster
convergence, accelerated learning, and reduced computational
complexity during training [16].

Fig. 1. Triplet Selection and Embedding Space Update (adapted from [16]).
Here, positive images (P) are depicted moving closer to the anchor (A), as
indicated by the blue arrow. In contrast, negative images (N) are pushed apart,
as shown by the red arrow. A ”trivial triplet” (A, P1, N1) already satisfies the
margins, whereas a ”hard triplet” (A, P2, N2) incurs significant updates.

To address triplet selection challenges, some remote sensing
studies are exploring contrastive learning. [17] uses NT-Xent
[14] with anchor and multiple neighbors, and [18] introduces
Spatially Augmented Momentum Contrast (SauMoCo), utiliz-
ing Info-NCE [12].

III. METHODOLOGY

In this section, we extend the findings of [1] and explore
three variations of the Comatch learning framework: CoMatch,
CoMatch+CCSSL, and CoMatch+Triplet.

A. Dataset modifications and augmentation strategies
Our initial experiments were conducted on the UCM dataset

[2], comprising 21 classes, each with 100 images of 256×256

pixels. Additionally, the AID dataset [3] was employed, featur-
ing 30 classes with around 200 to 400 samples per class, and
each sample measured 600×600 pixels. Some classes achieved
significantly high accuracy, influencing the overall accuracy.
Therefore, we conducted assessments under a constrained
scenario, where both datasets were reduced to 10 classes
(figure 2). To challenge the model, we selected classes with
higher confusion rates based on the initial confusion matrix
obtained from CoMatch with a ResNet18 backbone.

Fig. 2. Reduced datasets: (a) AID and (b) UCM with 10 classes with the
highest overlap/confusion. R is Residential and D for Diamond.

In terms of data augmentation strategies, we refer to Aug(·)
as a random transformation that maintains the image label. The
CoMatch algorithm requires the use of one weak Augw(·)
involving a random horizontal flip and two strong augmen-
tations where Augs1(.) employs RandAugment and Augs2(·)
implements color jittering and grayscaling [4]. Departing from
the previous approach [1], we modified the input images
by resizing them to 64x64 and center cropping to 60. This
adjustment allows for an increased batch size, from 8 to 32
considering our computational resources available. The aim is
to efficiently load more images into memory simultaneously
by reducing their size. Ensuring a sufficiently large batch
size is crucial for having multiple samples in a minibatch,
enhancing model robustness and generalization ability. In this
work, we used 4 labeled samples per class, differing from
prior trials (4, 25, 40), to provide insights into the model’s
performance with a more limited labeled dataset.

B. Learning framework and set up

We utilized the PyTorch implementation of Class Aware
Contrastive Semi-Supervised Learning (CCSSL) [5]. The
repository contains both CoMatch and CoMatch+CCSSL algo-
rithms. Then, we extended CoMatch by incorporating a triplet
loss via the PyTorch Metric Learning open-source library [19],
denoted as CoMatch+Triplet.

In CoMatch [4], the deep encoder network f(·) produces
a high-dimensional feature f(x) from an input image x. The
classification head h(·) outputs class probabilities, p(y|x) =
h(f(x)), and the non-linear projection head g(·) transforms
features into normalized low-dimensional embeddings z(x) =
g(f(x)) (Fig. 3). CoMatch operates on both labeled X and
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unlabeled U data batches, optimizing three losses: supervised
classification loss Lx, unsupervised classification loss Lucls,
and graph-based contrastive loss Lctr

u .

Fig. 3. Diagram of CoMatch (adapted from [4]).

For labeled data, Lx uses cross-entropy between true labels
and predictions with weak augmentations. The unsupervised
classification loss Lucls considers pseudo-labels and model
predictions, employing strong augmentations. Pseudo-labels
are retained based on a threshold τ without converting them
to hard labels, differentiating from FixMatch. Entropy min-
imization is achieved through the contrastive loss Lctr

u that
uses cross-entropy between the pseudo-label graph W q and
the embedding graph W z . The overall training objective is
given by equation 1 where the hyperparameters λcls and λctr

control the weights.

L = Lx + λclsLcls
u + λctrLctr

u (1)

For CoMatch+CCSSL [5], the Class-Aware Contrastive
Semi-Supervised Learning (CCSSL) framework is added to
CoMatch to enhance its capability to handle in-distribution
and out-of-distribution data. CCSSL introduces class-aware
contrastive learning, leveraging embeddings z from the same
category as positive pairs using pseudo-labels q. For in-
distribution data (max(p) > Tpush), class-aware clustering is
applied, while for out-of-distribution data (max(p) < Tpush),
a contrastive learning mechanism is employed. The overall
training objective of CCSSL is a weighted sum of supervised
loss Lx, semi-supervised loss Lu, and class-aware contrastive
loss Lc, with λu and λc as the weights.

Based on the ablation studies we configured Co-
Match+CCSSL [5] for two scenarios (Table I). In out-
distribution scenarios, the confidence threshold τ is lowered to
0.6 to allow more unlabeled samples to receive pseudo-labels.
To address potential trade-offs, λc is increased from 1 to 2,
augmenting the weight of the unsupervised contrastive loss.
We activate the CCSSL module for high-noise datasets where
the optimal Tpush = 0.9. The labeled-to-unlabeled data ratio
(µ) in a batch impacts CCSSL performance; we use a small
ratio (µ = 5) when only using class-aware clustering without
contrastive regularization (Tpush = 0), and a larger ratio (µ =
7) when contrastive learning is increased.

In the CoMatch+Triplet variant, we emphasize enhancing
the CoMatch framework by incorporating a triplet loss for im-
proved embedding learning. Theoretically, by pulling similar
samples together and dissimilar samples apart the model would

TABLE I
CONFIGURATION OF CCSSL PARAMETERS BASED ON NOISE LEVELS.

Scenario Threshold (τ ) Weight (λc) Tpush Ratio (µ)

In-distribution 0.95 1 0 5
Out-distribution 0.6 2 0.9 7

reach a faster convergence. For the implementation, we used
the open-source library of PyTorch Metric Learning [19]. In
this approach, we treat the embeddings (z) derived from the
initial set of strongly augmented unlabeled samples AugS1(u)
as our samples. The corresponding labels are the one-hot-
encoded pseudo-labels obtained through the semi-supervised
module max(q(AugS1(u))).

The pseudocode in III-B outlines the implementation of
the TripletMarginLoss. Access the PyTorch implementation
at https://github.com/itzahs/SSL-for-RS. In this setup, anchor-
positive pairs consist of embeddings with the same label, while
anchor-negative pairs consist of embeddings with different
labels. We employ a TripletMarginMiner to dynamically select
triplets in a semi-hard online mining approach. We used a
cosine similarity instead of an Euclidean distance to prevent
the loss of significance due to the curse of dimensionality
[4]. The final loss is computed by adding the deep metric
learning triplet loss to the CoMatch losses. The weighting
factors, denoted as λ terms, are uniformly set to 1.

Pseudocode 1 CoMatch+Triplet loss
# This pseudocode is an extension of CoMatch.
Input: unlabeled samples (u), encoder f , classifier
h, projection head g, strongly-augmented embeddings
z = g ◦ f(AugS1(u)) and pseudo-labels max(q(AugS1(u))).
Output: Combined loss
# Set margin, distance, triplet selection method.
margin← 0.2
distance← CosineSimilarity()
triplets← semihard
# Define deep metric learning loss.
loss func← TripletMarginLoss(margin, distance)
# Set up loss in conjunction with a miner.
miner ← TripletMarginMiner(margin, distance,

triplets)
miner output← miner(embeddings, labels)
lossdml ← loss_func(embeddings, labels,miner output)
# Combine CoMatch loss with Triplet loss.
loss← Lx+ λclsLucls + λctrLuctr + λdmlLdml

u

To ensure a fair comparison, we adhere to a set of con-
stant parameters, including the choice of image augmentation
strategies, network architecture, and optimizers [7]. We chose
the ResNet18 as the backbone for experiments after compar-
ing it with ResNet50 and WideResNet-28-2. All the model
hyperparameters include an initial learning rate η of 0.03,
SGD momentum β of 0.9, and weight decay set at 0.0005.
Regarding the confidence threshold for pseudolabeling, most
models employed τ = 0.95 and a labeled to unlabeled data
ratio (µ) of 7. All the experiments were conducted using a
single NVIDIA A5000 with 24GB of VRAM.
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TABLE II
PERFORMANCE FOR DIFFERENT BACKBONES ON UCM AND AID

Model Dataset Top1 Best-Top1 GPU Training Time
(GB) (hours)

RN18 UCM 92.48 94.38 3.5 82:30
RN50 UCM 93.43 94.38 7 127:31
WRN UCM 93.62 95.14 12 132:35

RN18 AID 91.04 91.32 3.5 261:09
RN50 AID 90.9 91.66 7 263:18
WRN AID 93.08 94.66 12 266:19

Note: ”Best-Top 1” is the highest model performance during test set training
and ”Top 1” is the accuracy after the model fully converges at epoch 512.

IV. RESULTS AND DISCUSSION

We first test the performance of CoMatch with different
architectures on the original datasets and then evaluate Co-
Match+CCSSL and CoMatch+Triplet on reduced datasets.

A. Backbone comparison for CoMatch algorithm.

In our comparative analysis, we evaluated three models
—ResNet18 (RN18), ResNet50 (RN50), and WideResNet-28-
2 (WRN)— utilizing the CoMatch algorithm on the original
datasets. On the UCM dataset, RN18 and RN50 achieved a
best-top 1 accuracy of 94.38%, while WRN outperformed
with 95.14%. Shifting to the AID dataset, a minor accuracy
decrease is observed, attributed to the dataset increased class
complexity. Nevertheless, substantial accuracies persist, with
RN18 at 91.32% and RN50 slightly higher at 91.66%. Notably,
WRN achieved an outstanding 94.66% best-top1 (Table II).

RN18 demonstrated efficient GPU memory consumption,
using only 3.5 GB and achieving the shortest training times.
In contrast, RN50 consumed 7 GB with moderate training
durations. WRN, known for high performance, utilized the
highest GPU memory at 12 GB, requiring the longest training
times. WideResNet-28-2 excelled in classification accuracy,
but ResNet18 was accurate and resource-efficient, making it
the suitable choice for further comparisons.

B. Performance of trainers on a reduced dataset.

We evaluated the performance of CoMatch,
CoMatch+CCSSL, and CoMatch+Triplet in a constrained
scenario using ResNet18 for 512 epochs. The results in
Table III highlight the impact of different training methods
on accuracy and training times. Notably, CoMatch+Triplet
achieved the best-top 1 with 93.2% on UCM, while CoMatch
and CoMatch+CCSSL showed slight reductions in accuracy.
On the AID dataset, accuracy remained consistently high,
staying close to 90%, across all trainers. These high accuracies
indicate that these benchmark datasets represent a somewhat
affordable challenge for all trainers, with limited room for
substantial improvement. In terms of training computational
time, most trainers demonstrated comparable extended
durations, averaging around 200 hours for UCM and 250
hours for AID. Notably, the reduction in the parameter µ
for CoMatch+CCSSL In-Distribution resulted in a significant
decrease in training duration, ranging from 75 to 95 hours.

TABLE III
PERFORMANCE FOR DIFFERENT TRAINERS ON UCM AND AID

Trainer Dataset µ Top1 Best-Top1 Training Time

CoMatch UCM 7 90.4 92.8 205:59
CCSSLID UCM 5 90.4 92 112:38
CCSSLOD UCM 7 89.4 92 205:39
Triplet UCM 7 92.6 93.2 206:41

CoMatch AID 7 91.49 92.19 247:58
CCSSLID AID 5 90.73 91.05 173:17
CCSSLOD AID 7 89.46 90.22 248:33
Triplet AID 7 86.16 90.92 248:35

Note: ID and OD correspond to In and Out of Distribution, respectively.

Fig. 4. Classification Accuracy per epoch on UCM and AID.

C. Confusion matrix and embeddings visualization for AID.

We aimed to evaluate the model’s classification accuracy
for each class. The original AID dataset with 30 classes
showed 8-15 instances of confusion among them. By retaining
the 10 classes with more mistakes, we pushed the model’s
classification limits. In Figure 5, we present the confusion
matrix for AID, selected because it contains more samples
per class. Notably, Airport-RailwayStation exhibits the highest
confusion when using CM+Triplet. Interestingly, CM+Triplet
managed to reduce confusion between Playground-Stadium, a
challenging-to-distinguish class.

Fig. 5. Confusion matrices on the AID test dataset with 10 classes.

To visualize the embedding space, we applied t-Stochastic
Neighborhood Embedding (t-SNE) to the 64-dimensional em-
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beddings from the test dataset. We maintained this dimension-
ality across all models, as increasing it can potentially improve
accuracy [7]. Notably, by the 10th epoch, all classes were
already well-clustered, indicating limited improvement beyond
this point as shown in figure 6. Note how the CoMatch-Triplet
produces a clearer separation of the different class samples in
the embedding space at very early stages, being able to learn
faster and get maximum performance with few iterations, as
it can be seen in figure 4.

Fig. 6. tSNE plots (perplexity 30 and 300 iterations) for AID embeddings at
epochs 1, 5, 10, and 512 of CoMatch and CoMatch+Triplet..

V. CONCLUSION

This study explores leveraging unlabeled data in remote
sensing through advanced semi-supervised and self-supervised
learning. We expanded the CoMatch algorithm by incorpo-
rating the existing Class-Aware Contrastive Semi-Supervised
Learning (CCSSL) framework and introducing a deep metric
learning triplet loss. In experiments conducted on reduced
datasets with high-confusion classes, our findings highlight
CoMatch’s robustness and notable accuracies. CCSSL focuses
on exploring dataset separation, both in and out of distribution,
while the triplet loss’s inclusion aims at embedding space
separation and facilitating faster model convergence. This re-
search contributes to remote sensing applications, emphasizing
the effectiveness of advanced learning strategies in utilizing
unlabeled data for image classification tasks.
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