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1. INTRODUCTION 

Nowadays, the use of computing for the world of chemistry is essential to do all kinds 

of calculations, from any type of analytical formula for simple calculations, to physical 

simulations for complex calculations of systems. The use of computer programs to 

solve problems allows us to apply and develop the knowledge acquired throughout the 

grade and thus address more complex problems. 

Molecular dynamics is one of the techniques that uses these programming tools. It is a 

simple way to study the behavior of thousands of atoms, allowing us to simulate 

condensed phases and observe the interactions between multiple molecules. 

In this work, we will use it to be able to calculate, through a tool called LAAMPS, the 

thermodynamic properties known as enthalpy and heat capacities, of water, Carbon 

Dioxide and Methanol, we will compare these results with the values known in the 

bibliography and we will draw conclusions about the calculations made and the validity 

of these. 

1.1 Thermodynamical variables 

 

The thermodynamical variables that we are going to study are: 

• Temperature 

Temperature is a state variable. It is also an important concept in dynamics 

simulations. This macroscopic quantity is related to the microscopic description of 

simulations through the kinetic energy, which is calculated from the atomic velocities [1] 

The temperature and the distribution of atomic velocities in a system are related 

through the Maxwell-Boltzmann probabilities: 

𝑓(𝑣)𝑑𝑣 = (
𝑚

2𝜋𝑘𝐵𝑇
)
3 2⁄

𝑒𝑥𝑝 (
−𝑚𝑣2

2𝑘𝐵𝑇
) 4𝜋𝑣2𝑑𝑣                                           (1) 

This formula expresses the probability f(v)dv that a molecule of mass m has a module 

of velocity between v and v + dv when the system is at temperature T, being 𝑘𝐵 the 

Boltzmann constant.  

The x, y, z components of the velocity vector follow Gaussian distributions: 

𝑔(𝑣𝑥)𝑑𝑣𝑥 = (
𝑚

2𝜋𝑘𝐵𝑇
)
1 2⁄

𝑒𝑥 𝑝 (
−𝑚𝑣𝑥

2

2𝑘𝐵𝑇
)𝑑𝑣𝑥                                              (2) 
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From this distribution it follows that every components is zero on average: 

⟨𝑣𝑥⟩ = ∫ 𝑣𝑥𝑔(𝑣𝑥)𝑑𝑣𝑥

∞

−∞

= 0                                                       (3) 

This is expected, as atoms move with equal probability in both directions. The average 

kinetic energy associated with the motion in one direction is: 

⟨
1

2
𝑚𝑣𝑥

2⟩ =
1

2
𝑚 ∫ 𝑣𝑥

2𝑔(𝑣𝑥)𝑑𝑣𝑥

∞

−∞

=
1

2
𝑘𝐵𝑇                                         (4) 

This is an example of the equipartition theorem, stating that each degree of freedom 

contributes 
1

2
𝑘𝐵𝑇 to the total kinetic energy. Consequently the total kinetic energy of N 

atoms is, on time average, given by: 

𝐾 = ⟨∑(
1

2
𝑚𝑣𝑥,𝑖

2 +
1

2
𝑚𝑣𝑦,𝑖

2 +
1

2
𝑚𝑣𝑧,𝑖

2)

𝑁

𝑖=1

⟩ = 𝑁𝑓
1

2
𝑘𝐵𝑇                              (5) 

Where 𝑁𝑓 is the number of degrees of freedom. If all atoms move independently 𝑁𝑓 

equals 3N because each atom has three velocity components (that is, vx, vy, and vz). 

In most simulations, however, the total linear momentum is conserved (and usually set 

to zero). Consequently the number of degrees of freedom contributing to the kinetic 

energy is 3 less, that is, 𝑁𝑓 = 3N - 3. In nonperiodic systems, in addition, the total 

angular momentum is also conserved (and again usually set to zero such that the 

system is not rotating). Hence in this case the number of degrees of freedom is less 

another 3, 𝑁𝑓 = 3N - 6. In periodic systems the angular momentum is not conserved, 

as the cells impose a torque on one another. 

The temperature is calculated utilizing this relation between the kinetic energy and the 

temperature: 

𝑇𝑖𝑛𝑠𝑡 =
2

𝑘𝐵𝑁𝑓
𝐾𝑖𝑛𝑠𝑡                                                                (6) 

Where 𝐾𝑖𝑛𝑠𝑡 is the total kinetic energy of the system at time t, that is: 

𝐾𝑖𝑛𝑠𝑡 = ∑(
1

2
𝑚𝑣𝑥,𝑖

2 +
1

2
𝑚𝑣𝑦,𝑖

2 +
1

2
𝑚𝑣𝑧,𝑖

2)

𝑁

𝑖=1

                                             (7) 

The time average of the instantaneous temperature is the thermodynamic temperature 
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Pressure 

Pressure is another basic thermodynamic variable that defines the state of a system. It 

is a familiar concept, defined as the force per unit area. Standard atmospheric pressure 

is 1.013 bar, where 1 bar=105 Pa. A single number for the pressure implies that 

pressure is a scalar quantity, but in fact, pressure is a tensor of the more general form 

[2] 

𝑃 = (

𝑃𝑥𝑥 𝑃𝑥𝑦 𝑃𝑥𝑧

𝑃𝑦𝑥 𝑃𝑦𝑦 𝑃𝑦𝑧

𝑃𝑧𝑥 𝑃𝑧𝑦 𝑃𝑧𝑧

)                                                              (8) 

Each element of the tensor is the force that acts on the surface of an infinitesimal cubic 

volume with edges parallel to the x, y, and z axes. The first subscript refers to the 

direction of the normal to the plane on which the force acts, and the second subscript 

refers to the component of the force. 

In an isotropic situation, where forces are the same in all directions and there is no 

viscous force, the off-diagonal elements are zero and the diagonal elements are equal: 

𝑃 = 𝑝 (
1 0 0
0 1 0
0 0 1

) = 𝑝𝐼                                                           (9) 

where the scalar quantity p is the equivalent hydrostatic pressure. 

Pressure is calculated through the use of the virial theorem. Like temperature, pressure 

is a thermodynamic quantity and is, strictly speaking, meaningful only at equilibrium. 

Thermodynamic pressure, thermodynamic temperature, volume, and internal virial can 

be related in the following way: 

𝑝𝑉 = 𝑁𝑘𝐵𝑇 +
2

3
〈𝑊〉                                                           (10) 

Where the virial W is defined as: 

𝑊 =
1

2
∑𝑟𝑖 · 𝑓𝑖

𝑁

𝑖=1

                                                                   (11) 

With 𝑓𝑖 being the force on atom i excersiced by all other atoms. This force does not 

include external forces due to a container wall. The pressure effectively represents 

such external forces. 

An instantaneous pressure function 𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑡 can be defined, so that thermodynamic 

pressure is the average of the instantaneous values: 
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𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑡 =
𝑁𝑘𝐵𝑇𝑖𝑛𝑠𝑡𝑎𝑛𝑡

𝑉
+

2

3
 
𝑊

𝑉
                                                  (12) 

Where 𝑇𝑖𝑛𝑠𝑡𝑎𝑛𝑡 is the instantaneous kinetic temperature, which is related to the 

instantaneous kinetic energy K of the system by equation (6). The instantaneous 

pressure function can thus be written as: 

𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑡 =
2

3𝑉
(𝐾 + 𝑊)                                                         (13) 

As mentioned above, in general pressure is a tensor. The kinetic and virial terms in 

(10) can be generalized as: 

𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑡 =
1

𝑉
[∑𝑚𝑖𝑣𝑖𝑣𝑖

𝑇 + ∑𝑟𝑖𝑓𝑖
𝑇

𝑁

𝑖=1

𝑁

𝑖=1

]                                            (14) 

In detail, the two terms on the right-hand side of the equation are: 

∑𝑚𝑖𝑣𝑖𝑣𝑖
𝑇

𝑁

𝑖=1

=

[
 
 
 
 
 ∑ 𝑚𝑖𝑣𝑖𝑥𝑣𝑖𝑥

𝑇

𝑖
∑ 𝑚𝑖𝑣𝑖𝑥𝑣𝑖𝑦

𝑇

𝑖
∑ 𝑚𝑖𝑣𝑖𝑥𝑣𝑖𝑧

𝑇

𝑖

∑ 𝑚𝑖𝑣𝑖𝑦𝑣𝑖𝑥
𝑇

𝑖
∑ 𝑚𝑖𝑣𝑖𝑦𝑣𝑖𝑦

𝑇

𝑖
∑ 𝑚𝑖𝑣𝑖𝑧𝑣𝑖𝑧

𝑇

𝑖

∑ 𝑚𝑖𝑣𝑖𝑧𝑣𝑖𝑥
𝑇

𝑖
∑ 𝑚𝑖𝑣𝑖𝑧𝑣𝑖𝑦

𝑇

𝑖
∑ 𝑚𝑖𝑣𝑖𝑧𝑣𝑖𝑧

𝑇

𝑖 ]
 
 
 
 
 

                          (15) 

∑𝑟𝑖𝑓𝑖
𝑇

𝑁

𝑖=1

=

[
 
 
 
 
 ∑ 𝑟𝑖𝑥𝑓𝑖𝑥

𝑖
∑ 𝑟𝑖𝑥𝑓𝑖𝑦

𝑖
∑ 𝑟𝑖𝑥𝑓𝑖𝑧

𝑖

∑ 𝑟𝑖𝑦𝑓𝑖𝑥
𝑖

∑ 𝑟𝑖𝑦𝑓𝑖𝑦
𝑖

∑ 𝑟𝑖𝑦𝑓𝑖𝑧
𝑖

∑ 𝑟𝑖𝑧𝑓𝑖𝑥
𝑖

∑ 𝑟𝑖𝑧𝑓𝑖𝑦
𝑖

∑ 𝑟𝑖𝑧𝑓𝑖𝑧
𝑖 ]

 
 
 
 
 

                                  (16) 

where 𝑟𝑖𝑥, 𝑣𝑖𝑥, and 𝑓𝑖𝑥 indicate the x components of the position, velocity, and force 

vectors of the 𝑖𝑡ℎ atom, respectively. 

 

• Internal and Total Energy 

Internal energy [3] (U) of a body is that associated with the molecular activity of the 

body as indicated by its temperature T [K], and can be evaluated in terms of the heat 

required to change the temperature of the body having a specific heat capacity C, in 

absence of work, as follows: 

𝛥𝑄 = 𝑚 · 𝐶 · ∆𝑇 = ∆𝑈                                                           (17) 
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• Enthalpy 

The value of enthalpy reflects the capability of a thermodynamic or steady flow system 

to release heat and perform work[3]. This involves the process of heat absorption or 

release during a reaction, which is the enthalpy change. The enthalpy change of a 

reaction highly influences the reaction types (endothermic, exothermic), phase 

transition (solid-liquid-gas), and other thermal phenomena. This also means the 

involvement of different types of enthalpy changes, such as the enthalpy of 

combustion, formation, or neutralization. 

Mathematically it can be expressed as: 

∆𝐻 = ∆𝑈 + 𝑃∆𝑉                                                        (18) 

• Heat Capacity 

Heat capacity is the amount of heat required to change the temperature of a given 

amount of matter by 1 degree[3]. 

At constant pressure, heat supplied to the system contributes to both the work done 

and the change in internal energy, according to the first law of thermodynamics. The 

heat capacity is defined as: 

𝐶𝑝 = (
𝜕𝑄

𝑑𝑇
)
𝑃=𝑐𝑡𝑒

                                                       (19) 

From the first law of thermodynamics we can express 𝜕𝑄 as a function of 𝜕𝑈: 

𝜕𝑄 = (
𝜕𝑈

𝜕𝑇
) 𝑑𝑇 + (

𝜕𝑈

𝜕𝑇
) 𝑑𝑃 + 𝑃 [(

𝜕𝑉

𝜕𝑇
) 𝑑𝑇 + (

𝜕𝑉

𝜕𝑃
)𝑑𝑃]                          (20) 

For constant pressure, 𝑑𝑃 = 0, so 

𝐶𝑝 = (
𝜕𝑄

𝑑𝑇
)
𝑃=𝑐𝑡𝑒

= (
𝜕𝑈

𝜕𝑇
)𝑑𝑇 + 𝑃 (

𝜕𝑉

𝜕𝑇
) 𝑑𝑇                                      (21) 

At constant volume,  no expansion work is done, so the heat supplied contributes only 

to the change in internal energy. The heat capacity obtained this way is denoted  

𝐶𝑣. The value of 𝐶𝑣 is always less than the value of 𝐶𝑝 

𝐶𝑣 = (
𝜕𝑄

𝑑𝑇
)
𝑉=𝑐𝑡𝑒

= (
𝜕𝑈

𝑑𝑇
)
𝑉
                                                 (22) 
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The relationship between 𝐶𝑣 and 𝐶𝑝 is then: 

𝐶𝑝 = 𝐶𝑣 + ((
𝜕𝑈

𝜕𝑉
)

𝑇
+ 𝑃)(

𝜕𝑉

𝜕𝑇
)
𝑃
                                                 (23) 

𝐶𝑝 can also be expressed in terms of enthalpy, if we take into account that with a  

constant pressure: 

𝑑𝐻𝑃 = (
𝜕𝐻

𝜕𝑇
)
𝑃
𝑑𝑇, 𝜕𝑄𝑃 = 𝑑𝐻𝑃 , 𝐶𝑝 =

𝜕𝑄𝑃

𝑑𝑇
= (

𝜕𝐻

𝜕𝑇
)
𝑃
                      (24) 

We can also calculate both 𝐶𝑝 and 𝐶𝑣 with fluctuation of its variables as follows[4]: 

𝐶𝑣 =
〈𝑈2〉 − 〈𝑈〉2

𝑁𝑓𝑘𝐵𝑇2
       𝐶𝑝 =

𝐻(𝑃, 𝑇 + 𝛿) − 𝐻(𝑃, 𝑇 − 𝛿)

2𝛿
                         (25) 

Where 𝑁𝑓 is the number of degrees of freedom, and 𝛿 is the value of the temperature 

fluctuation. 

1.2 Statistical Thermodynamics 

Macroscopic systems are an assembly of microscopic particles. Hence, it stands to 

reason that the behavior of a macroscopic system is determined by the properties of 

the microscopic particles it consists of. Statistical thermodynamics provides a 

quantitative link between the properties of the microscopic particles and the behavior of 

the bulk material. 

It is a statistical theory because it uses statistics (and probabilities) and works with 

distributions of position and momenta. There can be a lot of particles in the system, 

statistic quantities such as expectation values have very little variance. Thus, for a 

large number of particles statistical thermodynamics is an extremely precise theory[5].  

1.2.1 Quantum States 

The quantum state (eigenstate) 𝛹𝑠(𝑥𝑘) of a single particle (atom or molecule) k is given 

for a system consists of N particles which do not interact with each other, by the time 

independent Schrödinger equation[6]: 

Ꜫ𝑠𝛹𝑠(𝑥𝑘) = ℎ̂𝑘𝛹𝑠(𝑥𝑘) =
ħ2

2𝑚𝑘
𝛻𝑘

2𝛹𝑠(𝑥𝑘) + 𝑉𝑘(𝑥𝑘)𝛹𝑠(𝑥𝑘)                           (26) 

where Ꜫ𝑠 is the associated energy eigenvalue. 
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𝐸𝑗𝛹𝑗(𝑥1 …𝑥𝑁) = �̂�𝛹𝑗(𝑥1 …𝑥𝑁) = ∑ ℎ̂𝑘𝛹𝑗(𝑥1 …𝑥𝑁)

𝑁

𝑘=1

                              (27) 

The energy levels are quantized, which means that only a certain value of energy is 

permitted 

1.2.2 Molecular Partition Function 

The partition function of the system (Q) can be expressed in terms of its constituents 

(q). Thus, for an ideal gas (independent and indistinguishable particles) we obtain: 

𝑄 =
𝑞𝑁

𝑁!
, 𝐸 = 𝐸𝑡𝑟𝑎𝑠 + 𝐸𝑟𝑜𝑡 + 𝐸𝑣𝑖𝑏 + 𝐸𝑒𝑙𝑒𝑐 , 𝑞 = 𝑞𝑡𝑟𝑎𝑠 + 𝑞𝑟𝑜𝑡 + 𝑞𝑣𝑖𝑏 + 𝑞𝑒𝑙𝑒𝑐            (28) 

So we have 4 different contributions, each of them can be calculated separately[4]: 

𝐸𝑡𝑟𝑎𝑠 =
ℎ2

8𝑚

𝑛𝑥
2

𝑎2
                                                                  (29) 

𝑞𝑡𝑟𝑎𝑠 = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2 )

3
2
𝑉                                                          (30) 

𝐸𝑟𝑜𝑡 = ℎ𝐵𝐽(𝐽 + 1) 𝑤ℎ𝑒𝑟𝑒 𝐵 =
ℎ

8𝜋2𝐼
                                             (31) 

  𝑞𝑟𝑜𝑡 =
√𝜋

𝜎
 

𝑇3/2

√𝜃𝐴𝜃𝐵𝜃𝐶

   𝑤ℎ𝑒𝑟𝑒    𝜃𝑖 =
ℎ2

8𝜋2𝑘𝐵𝐼𝑖
      (𝑛𝑜𝑛 𝑙𝑖𝑛𝑒𝑎𝑟)                  (32) 

Where σ accounts of the identity plus all the symmetric rotation elements of the 

molecule. In addition, all the energy levels have been normalized with respect to the 

first one (which now is the zero of energy), thus making the partition function equal to 1 

as long as T tends to zero.  

 

𝐸𝑣𝑖𝑏 = ℎ (𝜈 +
1

2
) 𝜐𝑒                                                        (33)  

   𝑞𝑣𝑖𝑏 ≅
𝑒

−ℎ𝜐𝑒
2𝑘𝐵𝑇

1 − 𝑒
−ℎ𝜐𝑒
𝑘𝐵𝑇

=
1

2𝑠𝑖𝑛ℎ (
ℎ𝜐𝑒

2𝑘𝐵𝑇)
                                                 (34) 

 

𝑞𝑒𝑙𝑒 = 𝑔0 + ∑ 𝑔𝑠𝑒
−𝛽∆ 𝑠

𝑠=1 ≅ 𝑔0                                                  (35)       

 

Since we are talking about high energy excited states, 𝐸𝑒𝑙𝑒 = 𝑒−𝛽∆ ≈ 0 
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1.3 Classical Mechanics 

There are different ways of obtaining the PES (Potential Energy Surface), but we are 

going to focus on the one that doesn’t deal directly with electrons. The energy depends 

exclusively on the position of the nuclei, and it’s are based on parameters which are 

chosen to reproduce experimental data[7]. This method is used in systems of a great 

amount of atoms (≥ 104atoms), in order to estimate the effect of the condensed 

medium, such as the presence of enzymes, solvent molecules, etc. 

The potential energy function will be split into two terms : 

𝑉 = 𝑉𝑖𝑛𝑡𝑟𝑎𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 + 𝑉𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟                                          (36) 

1.3.1 Intramolecular terms (Bonded) 

In their most general form, they can be broken down into: Bond + Angle + Dihedral + 

Improper (out-of-plane vibration) 

• Bonds 

The most common choice is the harmonic approximation[7]: 

𝑉𝑏𝑜𝑛𝑑 =
1

2
𝐾(𝑟 − 𝑟0)

2                                                         (37) 

Where K is the bond strength constant, r is the actual distance between the two atoms  

defining the bond, and 𝑟0 is the value of the distance in the equilibrium: 

 

Image 1: Intramolecular term representation 

This quadratic expression does not take into account the anomalies of small 

displacements with respect to the equilibrium position, since it is not able to reproduce 

the dissociation effect. 
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The alternative is to incorporate a Taylor Series: 

 

𝑉(𝑟) = 𝑉(𝑟0) + (
𝛿𝑉

𝛿𝑟
)
𝑟=𝑟0

(𝑟 − 𝑟0) +
1

2
(
𝛿2𝑉

𝛿𝑟2)
𝑟=𝑟0

(𝑟 − 𝑟0)
2 +

1

3!
(
𝛿3𝑉

𝛿𝑟3)
𝑟=𝑟0

(𝑟 − 𝑟0)
3 …    (38) 

 

where 𝑉(𝑟0) = 0 by definition (we take the bottom of the well as reference), and 

(
𝛿𝑣

𝛿𝑟
)
𝑟=𝑟0

= 0  by minimum; or we can also  make use of other expressions, such as the 

Morse potential: 

 

𝑉𝑀𝑜𝑟𝑠𝑒 = 𝐷[1 − 𝑒−𝛼(𝑟−𝑟0)]
2
                                                   (39) 

 

• Angles 

It is designed to mimic the energy of an angle between two bonds as it moves away 

from its equilibrium position. The harmonic expression is the most generally used[8]: 

𝑉𝑎𝑛𝑔𝑙𝑒(𝜃) =
1

2
𝐾𝜃(𝜃 − 𝜃0)

2                                                   (40) 

The parameters are similar to those of the bonds: force constant (𝐾𝜃) associated with 

the bending motion, and the reference value of the angle (𝜃0). Some force fields 

employ more complex polynomial expansions, but this is not common. Finally, a 

fictitious bond can also be added between the ends of the angle called Urey-Bradley 

term, with a low force constant and it is meant to avoid extreme deformations. 

 

• Torsions 

Since torsions are periodic in nature, a Fourier series is commonly used to adequately 

describe the energy[8]: 

𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙(𝜑) = ∑
1

2
𝑉𝑖[1 + 𝑐𝑜𝑠(𝑛𝑖𝜑 − 𝛿𝑖)]

𝑖

                                         (41) 

Where 𝑉𝑖 is the force constant associated with the rotation and determines the 

associated energy barrier, 𝑛𝑖 provides the periodicity, while the angle 𝛿𝑖 (or phase) 

allows to shift the position of the energy minimum.  

Different cosine functions can be combined to generate more complex behaviors (ie, a 

single dihedral but defined by several 𝑉𝑖 𝑛𝑖⁄ 𝛿𝑖⁄  terms).  
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• Improper 

Improper torsion potentials are defined for groups of 4 bonded atoms where the central 

atom i is connected to the 3 peripheral atoms j,k, and l. Such group can be seen as a 

pyramid and the improper torsion potential is related to the distance of the central atom 

from the base of the pyramid. This potential is used mainly to keep molecular 

structures planar. As there is only one energy minimum the improper torsion term can 

be given by a harmonic function[8]: 

 

Image 2: Improper angles representation 

Given by a harmonic function: 

𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 = 𝑘𝜙(𝜙 − 𝜙0)
2                                                    (42) 

Where the dihedral angle 𝜙 is the angle between the planes i-j-k and i-j-l 

1.3.2 Intermolecular terms (Non-Bonded) 

 

While bonded terms are used to define the covalent energy of a molecule 

(intramolecular), non-bonding terms are used to describe the interactions of atoms 

between different entities, or intermolecular (i.e., between atoms that are not directly 

related by bonds). In most force fields, where the charges of the atoms are non-

polarizable (their charge does not vary depending on the environment) the equation of 

this term is usually split into: 

 

𝑉𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 = 𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑉𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒                                   (43) 
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(Å) 

• Electrostatics 

It corresponds to the electrostatic interaction between two charge distributions. In the 

simplest model this corresponds to the interaction between partial charges assigned to 

each atom: 

𝑉𝑒𝑙𝑒𝑐 =
1

4𝜋휀0
∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑖,𝑗

                                                            (44) 

 

Where 𝑞𝑖 and 𝑞𝑗 are the partial charges associated with atoms i, j respectively (these 

charges are constant and do not change: they are parameters of the force field), and 

𝑟𝑖𝑗 is the distance between both atoms. Generally the charges are obtained from 

quantum mechanics calculations, so that they reproduce to a large extent the 

electrostatic potential generated by the molecule (wave-function + nuclei) at chosen 

points around the molecule, and use the adequate parameters in order to reproduce 

macroscopical behaviors (for example, the TIP3P water molecule has a dipolar 

moment of 2.35D, much bigger then the experimentally observed for a water molecule 

of 1.85D). 

• Dispersive Terms: Lennard-Jones 

It simulates the effect of long-range dispersive forces and short-range repulsions[9]: 

𝑉𝑑𝑖𝑠𝑝 = ∑
𝐴𝑖𝑗

𝑟𝑖𝑗
𝑛

𝑖,𝑗

−
𝐵𝑖𝑗

𝑟𝑖𝑗
6 𝑉𝐿𝐽 = 4∑휀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑖,𝑗

𝑟0 = 𝜎21 6⁄                     (45) 

Where 휀𝑖𝑗 is the depth of the interaction well and  𝜎𝑖𝑗 represents the point at which 

𝑉𝐿𝐽 = 0 

 

Image 3: Lennard-Jones Potential 
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In the case that the atoms i and j are of a different type/kind, the following rules of 

combination (geometric and arithmetic averages) are used: 

휀𝑖𝑗 = √휀𝑖휀𝑗                                                                           (46) 

𝜎𝑖𝑗 =
1

2
(𝜎𝑖 + 𝜎𝑗)                                                                  (47) 

Dispersive forces are the result of the combination of attractive forces between the 

dipoles of the molecules (𝐵𝑖𝑗, n=6), and the repulsive forces arising from the repulsions 

(𝐴𝑖𝑗, n=9,..,12) between the electron shells, nucleus-nucleus… 

 

A note of caution about intermolecular terms: any atoms related through a bond (1-2), 

as well as those involved in an angle (1-3) are not considered along the non-bonding 

𝑉𝑖𝑛𝑡𝑒𝑟 calculation. Those atoms within a 1-4 relationship (dihedral and improper 

torsions) are included (usually scaled by a factor) to enrich the conformational equilibria 

(thus providing more realistic profiles than pure periodic terms): 

 

Image 4:Relations dihedrals and improper torsions involved 

 

Finally, there are force fields which introduce more terms in the intermolecular potential 

(such as specific treatment for hydrogen bonds), but the standard is to rely on the two 

already discussed. 

 

1.3.3 Periodic Boundaries 

 

The aim of any simulation is to use models as much realistic as possible. This, in 

practice, summarizes to: 

• number of molecules forming the system (limited by the computational power) 

• number of microstates to be explored to render the averaged magnitudes (time of 

CPU) 

• energy potential governing the model 
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There are techniques which allow to address the first problem, and simulate a “bulk”. 

For demonstrative purposes, a model consisting on 104 water molecules reduces to a 

spherical droplet of ~41.5 Å radius. Also, the outer molecules of the surface sill 

experience an imbalance of forces leading to undesired effects such as Surface 

tension, evaporation, etc. The solution passes by applying Periodic Boundary 

Conditions (PBC), by surrounding the simulation cell with identical replicas. Although 

the total number of molecules does not increase, the molecules in the surface establish 

interactions in all directions: 

 

Image 5: PBC example 

 

Cubic or Orthorhombic lattices are the most commonly used, but it is possible to use 

other geometries such as octahedrons, hexagonal prisms, etc. 

 

Even so, there are still some problems: 

• it is not possible to observe fluctuations with a wavelength longer than the size of the 

box. 

• their use implies an artificial periodicity that may favor the appearance of "crystalline" 

structures. 

Part of these problems can be avoided by using a large cell size, the others can be 

avoided by using minimum images and cutoffs 

 

• Minimum Images and Cutoffs 

The intermolecular terms calculations is done from the distance between pairs of 

atoms, and in general, this implies evaluate about . 
𝑁 ( 𝑁 – 1 )

2
  pairs (being N the number 

of atoms). For big systems or by using PBC we end up calculating interactions between 
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distant pairs, which are usually irrelevant (for example, the Lennard-Jones potential 

decays to less than the 1% at distances larger than 2.5 σ). 

One way to decrease the computational time is by means of the minimum image 

convention: only those interactions between a molecule and the closest replicas of the 

remaining original molecules are evaluated. 

 

Image 6: Minimum Image for A 

 

It can also be applied a truncation scheme: ie, a cutoff radius for pairwise interactions. 

It consists of canceling the interaction energy between particles that are at a larger 

distance than a certain value defined by the user (rcut). 

For this purpose, we need to introduce the lists of neighbors: 

 

 

Image 7: List of Neighbors 
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(Å) 

These lists tell us which molecule/particle is close to the selected one. We need two 

different radii for efficiency: r list is larger than r cut so that molecules are allowed to 

move in and out of the cutoff radius and the calculation of pairs becomes efficient. 

It is usually best to use a cutoff based on groups/fragments and not on atoms, to avoid 

abrupt variations due to the motion of the molecules around the cutoff (we make the 

whole group interact in the case that one of the atoms is inside the cutoff). 

The main problem with truncated interactions is the discontinuities in the energy 

potential (and hence in the gradient) once the cutoff is exceeded: 

 

Image 8: Cutoff representation 

 

Jumps in the potential (with discontinuities) are observed when the molecules move 

away from or towards each other during the simulation. 

One way to avoid or smooth the effect of truncation is to use smoothing functions 

ranging from 0 to 1 as a function of distance. Shift-type functions apply to all 

interactions, while switch-type functions introduce an additional radius (𝑟𝑜𝑛) from which 

the smoothing is applied, so that the potential is multiplied by this value, obtaining a 

smoothing in the cutoff zone. 

 

𝛾(𝑟) = ⟨
(𝑟𝑜𝑓𝑓

2 − 𝑟2)
2
(𝑟𝑜𝑓𝑓

2 + 2𝑟2 − 3𝑟𝑜𝑛
2 )

𝑟𝑜𝑓𝑓
2 − 𝑟𝑜𝑛

2         𝑤ℎ𝑒𝑟𝑒 {

𝑟 ≤ 𝑟𝑜𝑛

𝑟𝑜𝑛 < 𝑟 ≤ 𝑟𝑜𝑓𝑓     
𝑟 > 𝑟𝑜𝑓𝑓

            (48) 

Finally, there are other more sophisticated methods to evaluate electrostatic 

interactions such as Ewald Sums (in its most accepted variant: Particle Mesh Ewald, 

PME [10]), which takes advantage of the periodicity of the system to calculate the 
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interactions with the replicas (part directly, part in the reciprocal space). In these cases 

the unit cell to be replicated must be neutral to avoid convergence problems.  

 

1.4 Molecular Dynamics 

 

Molecular dynamics (MD) is a computer simulation method for analyzing the physical 

movements of atoms and molecules[11]. The atoms and molecules are allowed to 

interact for a fixed period of time, giving a view of the dynamic "evolution" of the 

system. In the most common version, the trajectories of atoms and molecules are 

determined by numerically solving Newton's equations of motion for a system of 

interacting particles, where forces between the particles and their  potential 

energies are often calculated using interatomic potentials or molecular 

mechanical force fields. 

There are two main families of MD methods, which can be distinguished according to 

the model (and the resulting mathematical formalism) chosen to represent a physical 

system. In the ‘classical’ mechanics approach to MD simulations molecules are treated 

as classical objects, resembling very much the ‘ball and stick’ model. Atoms 

correspond to soft balls and elastic sticks correspond to bonds. The laws of classical 

mechanics define the dynamics of the system[12].  

The ‘quantum’ or ‘first-principles’ MD simulations, which started in the 1980s with the 

seminal work of Car and Parinello, take explicitly into account the quantum nature of 

the chemical bond. The electron density function for the valence electrons that 

determine bonding in the system is computed using quantum equations, whereas the 

dynamics of ions (nuclei with their inner electrons) is followed classically  

Both position and velocity can be expressed as a Taylor series: 

 

𝑟(𝑡 + 𝛿) = 𝑟(𝑡) + 𝛿
𝑑𝑟(𝑡)

𝑑𝑡
+

𝛿2

2

𝑑2𝑟(𝑡)

𝑑𝑡2
+ ⋯                                     (49) 

 

Where the first derivative corresponds to the velocities, 𝑣(𝑡), and the second to the 

accelerations, 𝑎(𝑡). Alternatively, the same result can be reached by integrating the 

equations of motion: 

 

https://en.wikipedia.org/wiki/Trajectory
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Newton's_laws_of_motion
https://en.wikipedia.org/wiki/Force_(physics)
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Interatomic_potential
https://en.wikipedia.org/wiki/Force_field_(chemistry)
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𝑎 =
𝑑𝑣

𝑑𝑡
∫ 𝑑𝑣

𝑣

𝑣0

= ∫ 𝑎𝑑𝑡
𝑡

𝑡=0

𝑣(𝑡 + 𝛿) = 𝑣(𝑡) + 𝛿𝑎(𝑡)                                (50) 

𝑣 =
𝑑𝑟

𝑑𝑡
∫ 𝑑𝑟

𝑟

𝑟0

= ∫ (𝑣 + 𝑎𝑡)𝑑𝑡
𝑡

𝑡=0

𝑟(𝑡 + 𝛿) = 𝑟(𝑡) + 𝛿𝑣(𝑡) +
𝛿2

2
𝑎(𝑡)                 (51) 

 

The initial velocities are obtained from a probability distribution function based on 

Maxwell-Boltzmann probability: 

𝑔(𝑣𝑖) = (
𝑚𝑖

2𝜋𝑘𝐵𝑇0
)

1
2
𝑒

−𝑚𝑖𝑣𝑖
2

2𝑘𝐵𝑇0           
𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛
𝑟𝑎𝑛𝑑𝑜𝑚
𝑛𝑢𝑚𝑏𝑒𝑟

           𝜇 = 0, 𝜎 = √
𝑘𝐵𝑇0

𝑚𝑖
                     (52) 

 

 

and are updated through instantaneous accelerations: 

 

𝑣(𝑡 + 𝛿) = 𝑣(𝑡) + 𝛿𝑎(𝑡)                                                       (53) 

 

Finally, these can be obtained from Newton's second law of dynamics: 

 

𝑓𝑖 = 𝑚𝑖𝑎𝑖 = −𝑔𝑖 =
−𝜕𝑈

𝜕𝑟𝑖
                                                        (54) 

 

These integrated equations of motion are used in different ways, giving rise to different 

algorithms. 

Once the method of integration of the equations of motion has been selected, the next 

step is to determine the thermodynamic variables which will be controlled, thus defining 

the working ensemble (NVE, NVT, …)[13]. 

We usually work under canonical collective conditions, in which number of particles 

(N), volume (V) and temperature (T) remain constant, which allows us to calculate the 

Helmholtz free energy. From a practical point of view, keeping N constant is implicit 

during the simulations (since no particle disintegrates). As far as the volume is 

concerned, it is also simple (or natural) if periodic boundary conditions are applied, or 

the external part of the model is kept "frozen" (immobile during the simulations). To 

keep the temperature constant we can resort to different approximations. In fact, the 

temperature can be related to the kinetic energy (K) of a system from the root mean 

square velocity expression: 

 

𝑣𝑟𝑚𝑠 = 〈𝑣2〉 = (
3𝑘𝐵𝑇

𝑚
)
1 2⁄

     𝑇 =
2

𝑁𝑓𝑘𝐵
𝐾                                       (55) 
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Where 𝑁𝑓 is the number of degrees of freedom of the system (in Cartesians: 3N). Once 

the instantaneous temperature is known, the solution is to scale the velocities 

appropriately during the dynamics in order to keep the average temperature constant. 

 

Finally, whatever the equations selected, during the dynamics could be necessary to 

eliminate the rotation and translation modes of the system (represented as a rigid 

solid). For this purpose, Eckart's conditions are applied to the gradient vector, in which 

both linear (translation) and angular (rotation) momentum cancel out: 

 

∑𝑚𝑖(𝑟𝑖 − 𝑟𝑖
𝑚𝑐) = 0                ∑𝑚𝑖(𝑟𝑖˄𝑟𝑖

𝑚𝑐) = 0 → 𝑔′ = 𝑔 − ∑(
𝛬𝑖

𝑇𝑔

𝛬𝑖
𝑇𝛬𝑖

)𝛬𝑖

6

𝑖=1

                 (56) 

{
𝑇𝑥 ∝ √𝑚(1,0,0)

𝑅𝑥 ∝ √𝑚(0,−𝑧, 𝑦)
 

 

 

Where 𝑟𝑖
𝑚𝑐 is referred to the corresponding mass center of the system, and 𝛬𝑖 are the 

resulting orthonormal set derived from the translations (𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧)  and rotations 

(𝑅𝑥, 𝑅𝑦 , 𝑅𝑧). 

 

1.4.1 Integration: Velocity-Verlet 

 

The integration method that we are going to use to solve the equations of motion is the 

Velocity-Verlet method, which uses the velocities in each step, and these are updated 

using accelerations, but for this we need to use information from two different times to 

introduce stability and reducing the numerical error[14]: 

 

𝑟(𝑡 + 𝛿) = 𝑟(𝑡) + 𝛿𝑣(𝑡) +
𝛿2

2
𝑎(𝑡)          𝑣(𝑡 + 𝛿) = 𝑣(𝑡) +

𝛿

2
(𝑎(𝑡) + 𝑎(𝑡 + 𝛿))      (57) 

 

1.5 LAMMPS 

 

LAMMPS is an open source classical molecular dynamics code that models ensembles 

of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, 

biological, solid-state (metals, ceramics, oxides), granular, coarse-grained, or 

macroscopic systems using a variety of interatomic potentials (force fields) and 
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boundary conditions. It can model 2D or 3D systems with sizes ranging from only a few 

particles up to billions[15]. 

LAMMPS can be built and run on single laptop or desktop machines. It will run in serial 

and on any parallel machine that supports the MPI message-passing library. This 

includes shared-memory multicore, multi-CPU servers and distributed-memory clusters 

and supercomputers. Parts of LAMMPS also support OpenMP multi-threading, 

vectorization, and GPU acceleration. 

In the most general sense, LAMMPS integrates Newton’s equations of motion for a 

collection of interacting particles. A single particle can be an atom or molecule or 

electron, a coarse-grained cluster of atoms, or a mesoscopic or macroscopic clump of 

material. The interaction models that LAMMPS includes are mostly short-ranged in 

nature; some long-range models are included as well. 

LAMMPS uses neighbor lists to keep track of nearby particles. The lists are optimized 

for systems with particles that are repulsive at short distances, so that the local density 

of particles never becomes too large. 

 

2. OBJECTIVES  

The purpose of this paper, as stated before, is to calculate the thermodynamical 

variables aforementioned (U, Cp, Cv, H) utilizing LAMMPS, and compare them to the 

ones on the bibliography (Cp, Cv and density extracted from the National Institute of 

Standards and Technology chemistry webbook Library). 

We will be studying 𝐶𝑂2, 𝑀𝑒𝑂𝐻 and 𝐻2𝑂; particularly for 𝐻2𝑂, we’ll look at 4 different 

sets of parameters due to its importance in biological systems. With this, we’ll see if the 

type of conformation taken into account by the LAMMPS software has an influence on 

the outcome. 

This study will be done under a fixed pressure with changing temperatures, specifically 

1 atm for the pressure and a temperature varying from 290 to 310 in increments of 5 K 

and a rigid model will also be taken into account when doing the calculations. 

As for the water models, we will be studying 4 different types of approach to the way 

that we treat the initial data: 

Model 1) PIP3P water model 

Model 2) PIP3P water model with Ewald summation [16] 
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Model 3) PIP3P water model with a CHARMM force field [17] 

Model 4) SPC/E [18] 

3. METHODOLOGY 
 

The first thing we have to do is define a box forming our model. For this we will need 

the values of a bunch of variables, such as atomic number, bond length, dihedral 

angles, etc. We will be using the following parameters: 

For each model, we will need specific parameters, for this we will use our 𝐶𝑂2 input as 

an example: 

C 6 0.055855 2.757 

O 8 0.159860 3.033 

 

C      -0.00790      0.02878      0.01780    0.6512 

O      -0.71622      0.69226     -0.64615   -0.3256 

O       0.70035     -0.63498      0.68153   -0.3256 

 

 

C O   1282.462 1.149 

 

O C O   147.5997 180 

 

0.040824 

 

3259 

 

(1) LJ parameters for the atoms involved (Z, Ꜫ (kcal/mol),σ (Å)) 

(2) Example of a geometry of a molecule (x, y, z coordinates) 

(3) Partial charges of the atoms 

(4) Bonded parameters  (K (kcal/mol Å2), 𝑟0) 

(5) Angle parameters (𝐾𝜃 (kcal/mol rad2), θ (degree)) 

(6) In order, molar density of the molecule and number of atoms for the cubic system 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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In this case, there are two bonds but they are equivalent so we only have to define one 

of them. The dimensions of the initial boxes that we are going to use will be  

(28x63x63) for CO2, (47x47x47) for H2O and (60x60x60) for MeOH. 

After this, we prepared a code to introduce our simulation into LAMMPS to calculate 

the variables utilizing NVT and NPT processes. We will be using 4 inputs: 

1) Setup/ NPT balance  

2) NPT production 

3) NVT balancing 

4) NPT production  

1) The setup/balancing for NPT input that we ended up using is this: 

units           real                   this part defines the type of system, using real units and a  

boundary        p p p            periodic boundary 

atom_style      full 

                                                             This indicates the type of interaction pairwise,  

pair_style      lj/cut/coul/long 12        specifying that we have Lennard-Jones with 

kspace_style    pppm 1.0e-4              long range coulomb interaction 

 

 

pair_modify     mix arithmetic     This   specifies    the   combination   rules   to  follow  

bond_style      harmonic              ( arithmetic ).  We  then  define  the  style/equations 

angle_style     harmonic               of  bonds,  angles  and   dihedrals  present  on  the  

dihedral_style  fourier                  molecules. 

special_bonds   charm 

 

 

 

variable        temp equal 300          We specify the value of all needed variables, such 

variable        pres equal 1               as temperature, pressure, number of steps and the 

variable        nstp equal 1000000   rate at which the output gives us information 

variable        fout equal 10 

 

read_data       ../00.data                   We read the initial data 
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thermo          1                                               We minimize the energy of the system by 

thermo_style    multi                                   adjusting atom coordinates, stopping when 

minimize        1.0e-4 1.0e-6 1000 10000      we reach the local energy minimum 

 

neigh_modify    every 1 delay 0 check yes               update the interaction tables   

 

 

velocity        all create ${temp} 31416            generates an ensemble of random  

reset_timestep  0                                             velocities at a specified temperature  

 

thermo      ${fout}                                                             This prints the thermodynamic 

thermo_style custom step temp enthalpy density vol   info that we specify, setting a     

fix      1 all langevin ${temp} ${temp} 100 31416             fix  to  take  into  account the  

fix      2 all nph iso ${pres} ${pres} 1000                         Langevin   temp   control and  

run             ${nstp}                                                             constant pressure conditions 

 

write_data      01.data                                                            Write all the  data and  

write_dump      all xyz 01.xyz modify sort id element X    the coordinates of X atoms 

2)The NPT production input would be: 

units           real 

boundary        p p p 

atom_style      full 

 

pair_style      lj/cut/coul/long 12 

kspace_style    pppm 1.0e-4 

 

pair_modify     mix arithmetic 

bond_style      harmonic 

angle_style     harmonic 

dihedral_style  harmonic 

special_bonds   charmm 

 

variable        temp equal 300 



26 
 

variable        pres equal 1 

variable        nstp equal 1000000 

variable        fout equal 10 

 

 

read_data       @@@@ 

 

neigh_modify    every 1 delay 0 check yes 

 

velocity        all create ${temp} 31416 

 

variable        avrH2 equal enthalpy^2                                 We define all of the,                                                                                                                                                                                       

variable        avrH  equal enthalpy                                      variables that we are 

variable        avrT  equal temp                                             going to calculate  

variable        avrD  equal density 

variable        avrV  equal vol 

fix             nptH2 all ave/time 1 ${nstp} ${nstp} v_avrH2   

fix             nptH  all ave/time 1 ${nstp} ${nstp} v_avrH    Update the variables as the 

fix             nptT  all ave/time 1 ${nstp} ${nstp} v_avrT      code processes the data 

fix             nptD  all ave/time 1 ${nstp} ${nstp} v_avrD 

fix             nptV  all ave/time 1 ${nstp} ${nstp} v_avrV 

 

thermo          ${fout} 

thermo_style    custom step temp enthalpy v_avrH2 density vol 

fix             1 all npt temp ${temp} ${temp} 100 iso ${pres} ${pres} 1000 

run             ${nstp} 

 

print           "=======================================================" 

print           "<H2>: $(f_nptH2) _(kcal/mol)^2"            

print           "<H> : $(f_nptH) _kcal/mol"                    We print all of the information 

print           "<T> : $(f_nptT) _K"                                 calculated by the program 

print           "<D> : $(f_nptD) _g/cm^3"                         

print           "<V> : $(f_nptV) _ang^3" 

print           "=======================================================" 
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write_data      lammps.data 

write_dump      all xyz lammps.xyz modify sort id element X 

 

3)The NVT setup would be: 

 

 

units           real 

boundary        p p p 

atom_style      full 

 

pair_style      lj/cut/coul/long 12 

kspace_style    pppm 1.0e-4 

 

pair_modify     mix arithmetic 

bond_style      harmonic 

angle_style     harmonic 

dihedral_style  harmonic 

special_bonds   charmm 

 

variable        temp equal 300 

variable        nstp equal 1000000 

variable        fout equal 10 

 

read_data       @@@@ 

 

neigh_modify    every 1 delay 0 check yes 

 

velocity        all create ${temp} 31416 

 

reset_timestep  0 
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thermo          ${fout}                                                    Similar to the  1)  setup,   we  

thermo_style    custom step temp etotal                  take into account a  constant 

fix             1 all nvt temp ${temp} ${temp} 100.0       volume  and  print  all  of  the  

run             ${nstp}                                                       variables 

 

write_data      lammps.data 

write_dump      all xyz lammps.xyz modify sort id element X 

 

4)The NVT production input would be: 

 

units           real 

boundary        p p p 

atom_style      full 

pair_style      lj/cut/coul/long 12 

kspace_style    pppm 1.0e-4 

 

pair_modify     mix arithmetic 

bond_style      harmonic 

angle_style     harmonic 

dihedral_style  harmonic 

special_bonds   charmm 

 

variable        temp equal 300 

variable        nstp equal 1000000 

variable        fout equal 10 

 

read_data       @@@@ 

 

neigh_modify    every 1 delay 0 check yes 

 

velocity        all create ${temp} 31416 

 

reset_timestep  0 
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variable        avrE  equal etotal                                           

variable        avrE2 equal etotal^2                                     We define the energy,  

variable        avrT  equal temp                                            average energy and  

fix             nvtE  all ave/time 1 ${nstp} ${nstp} v_avrE     average temperature. 

fix             nvtE2 all ave/time 1 ${nstp} ${nstp} v_avrE2 

fix             nvtT  all ave/time 1 ${nstp} ${nstp} v_avrT 

 

thermo          ${fout} 

thermo_style    custom step temp etotal v_avrE2 

fix             1 all nvt temp ${temp} ${temp} 100.0 

run             ${nstp} 

 

 

print           "=======================================================" 

print           "<E2>: $(f_nvtE2) _(kcal/mol)^2"         We print the values of the square 

print           "<E> : $(f_nvtE) _kcal/mol"                   of the energy, the energy and the 

print           "<T> : $(f_nvtT) _K"                               temperature 

print           "=======================================================" 

 

write_data      lammps.data 

write_dump      all xyz lammps.xyz modify sort id element X 

 

 

 

 

 

 

4. RESULTS AND OBSERVATIONS 

In the following graphs we will see in orange a running average of the thermodynamical 

variable shown in the header, this is done for both NPT and NVT conditions. We will 

only be showing the graphs for 300 K for conciseness sake and the corresponding 

model for all of them, all of the other temperatures will be represented in the annex.  
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CO2 

 

Image 9: CO2 model (63x28x28) 

 

 

 

Image 10:NPT temperature at 300K for 𝐶𝑂2 
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Image 11:NVT temperature at 300K for 𝐶𝑂2 

 

 

Image 12:NPT density at 300K for 𝐶𝑂2 
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Image 13:NPT volume at 300K for 𝐶𝑂2 

 

Image 14:Cp at 300K for 𝐶𝑂2 
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Image 15:Cv at 300K for 𝐶𝑂2 

 

MeOH 

Parameters 

C  6  0.0780     3.6527 

O  8  0.1921     3.1449 

Hx 1  0.0460     0.4000 

H  1  0.0240     2.3876 

 

O       0.70790      0.00000      0.00000  -0.65 

C      -0.70790      0.00000      0.00000  -0.04 

H      -1.07320     -0.76900      0.68520   0.09 

H      -1.07310     -0.19471     -1.01130   0.09 

H      -1.06320      0.97861      0.33120   0.09 

Hx      0.99360     -0.88040     -0.29800   0.42 

 

C H   322.00     1.1110 

C O   428.00     1.4200 
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O Hx  545.00     0.9600 

 

O  C  H   45.90    108.89 

C  O  Hx  57.50    106.00 

H  C  H   35.50    108.40 

 

H  C  O  Hx  1  0.1800  3 0.00 

 

 

24.486 

 

3185 

 

 

 

Image 16:MeOH model (60x60x60) 
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Image 17:NPT temperature at 300K for 𝑀𝑒𝑂𝐻 

 

Image 18:NPT density at 300K for 𝑀𝑒𝑂𝐻 
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Image 19:NPT Volume at 300K for 𝑀𝑒𝑂𝐻 

 

Image 20:Cp at 300K for 𝑀𝑒𝑂𝐻 
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Image 21:Cv at 300K for 𝑀𝑒𝑂𝐻 

Now, we will be showing the results for MeOH utilizing a rigid model:: 

 

Image 22:NPT temperature at 300K for rigid 𝑀𝑒𝑂𝐻 
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Image 23:NPT density at 300K for rigid 𝑀𝑒𝑂𝐻 

 

 

Image 24:NPT volume at 300K for rigid 𝑀𝑒𝑂𝐻 

 



39 
 

 

Image 25:Cp at 300K for rigid 𝑀𝑒𝑂𝐻 

 

Image 26:Cv at 300K for rigid 𝑀𝑒𝑂𝐻 
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H2O 

For the H2O, we will only show the first model, all of the other ones will be discussed in 

the annex. With that said, the results are: 

Parameters 

O  8  0.102  3.188 

H  1  0.000  0.000 

 

O    0.000000    0.000000    0.000000  -0.834 

H    0.900000    0.000000    0.000000    0.417 

H   -0.225340    0.871330    0.000000    0.417 

 

H    O    450.0       0.9572 

 

H   O   H     55.0      104.52 

 

55.31734 

 

Image 27: Water model (47x47x47) 
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Image 28:NPT temperature at 300K for 𝐻2𝑂 model 1 

 

Image 29:NPT density at 300K for 𝐻2𝑂 model 1 
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Image 30:NPT volume at 300K for 𝐻2𝑂 model 1 

 

Image 31:Cp at 300K for 𝐻2𝑂 model 1 
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Image 32:Cv at 300K for 𝐻2𝑂 model 1 

 

 

As for the water with the rigid model: 
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Image 33:NPT temperature at 300K for rigid 𝐻2𝑂 model 1 

 

Image 34:NPT density at 300K for rigid 𝐻2𝑂 model 1 

 

Image 35:NPT volume at 300K for rigid 𝐻2𝑂 model 1 
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Image 36:Cp at 300K for rigid 𝐻2𝑂 model 1 

 

Image 37:Cv at 300K for rigid 𝐻2𝑂 model 1 
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Now, we represent the derived magnitudes obtained from each dynamic system: 

 

Table 1: Results of Cp and Cv for 𝐶𝑂2 in cal/g K 

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

290 21.469 - 0.201 0.267 - 0.155 

295 90.003 0.3304 0.203 0.257 0.279 0.156 

300 32.651 0.3538 0.204 0.266 0.326 0.158 

305 1.444 0.3267 0.205 0.270 0.284 0.159 

310 43.642 - 0.206 0.262 - 0.160 

* calculated for ΔT=10 

 

 

 

 

Table 2: Results of Cp and Cv for 𝑀𝑒𝑂𝐻 in cal/g·K 

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

290 72.216 - 0.594 1.231 - 0.493 

295 71.251 1.394 0.601 1.254 1.277 0.499 

300 69.689 1.413 0.608 1.276 1.547 0.506 

305 68.376 1.432 0.616 1.235 1.562 0.513 

310 65.788 - 0.624 1.238 - 0.520 

* calculated for ΔT=10 
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Table 3: Results of Cp and Cv for 𝐻2𝑂 in cal/g·K (model 1) 

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

290 57.469 - 1.001 1.565 - 0.996 

295 53.925 1.575 0.999 1.533 1.521 0.992 

300 55.182 1.587 0.999 1.565 1.605 0.987 

305 53.472 1.568 0.999 1.491 1.581 0.982 

310 53.375 - 0.999 1.492 - 0.977 

* calculated for ΔT=10 

 

 

 

Table 4: Results of Cp and Cv for 𝐻2𝑂 in cal/g·K (model 2) 

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

290 54.377 - 1.001 1.410 - 0.996 

295 54.222 1.442 0.999 1.401 1.457 0.992 

300 54.088 1.452 0.999 1.371 1.613 0.987 

305 52.622 1.449 0.999 1.382 1.471 0.982 

310 52.59 - 0.999 1.380 - 0.977 

* calculated for ΔT=10 
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Table 5: Results of Cp and Cv for 𝐻2𝑂 in cal/g·K (model 3) 

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

290 56.395 - 1.001 1.365 - 0.996 

295 56.244 1.408 0.999 1.372 1.406 0.992 

300 53.318 1.399 0.999 1.345 1.387 0.987 

305 49.305 1.395 0.999 1.333 1.339 0.982 

310 48.439 - 0.999 1.309 - 0.977 

* calculated for ΔT=10 

 

 

 

 

Table 6: Results of Cp and Cv for 𝐻2𝑂 in cal/g·K (model 4) 

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

290 55.919 - 1.001 1.539 - 0.996 

295 57.561 1.559 0.999 1.537 1.563 0.992 

300 54.752 1.545 0.999 1.546 1.549 0.987 

305 53.493 1.547 0.999 1.446 1.533 0.982 

310 51.977 - 0.999 1.529 - 0.977 

* calculated for ΔT=10 
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Table 8: Results of Cp and Cv for 𝑀𝑒𝑂𝐻 in cal/g·K (rigid model)  

T (K) 
Cp 

(fluctuation) 

Cp* 

(ΔT) 

Cp 

(experimental) 

Cv 

(fluctuation) 

Cv* 

(ΔT) 

Cv 

(experimental) 

295 8.524 - 0.601 0.481 - 0.499 

300 8.159 0.659 0.608 0.473 0.797 0.506 

305 8.255 - 0.616 0.469 - 0.513 

* calculated for ΔT=10 

 

 

 

 

Table 9: Results of Cp and Cv for 𝐻2𝑂 in cal/g·K (rigid model) at 300 K 

Model 
Cp 

(NPT) 
Cp* (ΔT) 

Cp 

(experimental) 

Cv 

(NVT) 

Cv 

(experimental) 

1 10.133 1.152 1.001 1.089 0.996 

2 9.722 1.058 0.999 0.933 0.992 

3 10.704 1.026 0.999 0.922 0.987 

4 11.675 1.122 0.999 1.070 0.982 

* calculated for ΔT=10 
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Table 10: Results of density for 𝐶𝑂2 in 𝑔/𝑐𝑚3  

T (K) 
Density 

(NPT) 

Density 

(experimental) 

290 0.00193 0.00186 

295 0.00188 0.00183 

300 0.00185 0.00180 

305 0.00184 0.00177 

310 0.00180 0.00173 

 

 

 

 

 

Table 11: Results of density for 𝑀𝑒𝑂𝐻 in 𝑔/𝑐𝑚3  

T (K) 
Density 

(NPT) 

Density 

(experimental) 

290 0.7862 0.7939 

295 0.7813 0.7892 

300 0.7764 0.7845 

305 0.7708 0.7798 

310 0.7653 0.7751 



51 
 

 

 

 

 

Table 12: Results of density for 𝐻2𝑂 in 𝑔/𝑐𝑚3  

T (K) 

Density 

model 1 

(NPT) 

Density 

model 2 

(NPT) 

Density 

model 3 

(NPT) 

Density 

model 4 

(NPT) 

Density 

(experimental) 

290 1.051 1.022 1.043 0.993 0.998 

295 1.048 1.018 1.039 0.991 0.997 

300 1.044 1.014 1.036 0.990 0.996 

305 1.041 1.011 1.032 0.988 0.994 

310 1.037 1.006 1.025 0.987 0.993 

 

 

5. CONCLUSIONS 

We are trying to use LAMMPS to calculate the variables known as Cp, Cv and density 

of the systems described above, and compare them to their experimental value.  

As we can see on the graphs of Temperature, volume and density, with the running 

average represented with an orange line, the variation is very low at the end, that’s why 

we can see almost a flat line, which means we have successfully obtained an 

equilibrated system and can evaluate the data. 

As for the results, the model falls apart on the attempts of calculating the Cp and Cv 

using the fluctuation method. As we can see on tables 1-8, none of the models can 

successfully, predict either the Cp and Cv of the system. However, on table 9, we can 

see that for the rigid model of water we obtain a value pretty close to the experimental 

one, meaning that, with this method, we can approximately know the Cv of a rigid 

system of water, being model 3 the one with less error. 
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 If we calculate it taking into account two sets of data (utilizing eq. 25), the results 

improve for all models, giving us some better results for both variables (Cp and Cv), but 

still we cannot accurately say that we predict the real value. 

As for the rigid models, we can see a great improvement on the Cp values, giving us 

values close to the experimental ones (Table 9) in the water models case and an 

improvement on the MeOH (Table 8). The water model that has a closer value is, 

again, model 3. 

As for the densities, as we can see on tables 10-12, we can accurately predict the 

density of all systems, this time model 4 being the one closer to the experimental value 

As we depicted before, we have shown that Molecular Dynamics is able to calculate, 

with some amount of precision, the values of both density and Cv of a system, but for 

some reason we are not able to accurately estimate the value of Cp. Whilst we don’t 

know why it happens, we can appreciate an improvement when we use rigid models, 

this can mean that we are not taking into account enough parameters to make our 

initial model, and thus, giving us an error in the Cp. 
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7. ANNEX 

 

1.- CO2  

 

 

Image A.1:NPT temperature at 290 K for CO2 
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Image A.2 :Cp at 290 K for CO2 

 

Image A.3:NPT Density at 290K for CO2 
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Image A.4:NPT Volume at 290K for CO2 

 

Image A.5:Cv at 290K for CO2 
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Image A.6:NPT temperature at 295K for CO2 

 

Image A.7: Cp at 295K for CO2 
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Image A.8:NPT density at 295K for CO2 

 

Image A.9:NPT Volume at 300K for CO2 
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Image A.10:Cv at 295K for CO2 

 

Image A.11:NPT temperature at 305K for CO2 
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Image A.12:Cp at 305K for CO2 

 

Image A.13:NPT Density at 300K for CO2 
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Image A.14:NPT Volume at 305K for CO2 

 

Image A.15:Cv at 305K for CO2 
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Image A.16:NPT temperature at 310K for CO2 

 

Image A.17: Cp at 310K for CO2 
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Image A.18:NPT Density at 310K for CO2 

 

Image A.19:NPT Volume at 310K for CO2 
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Image A.20:Cv at 310K for CO2 

2.- MeOH 

 

Image A.21:NPT temperature at 290K for MeOH 
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Image A.22:Cp at 290K for MeOH 

 

Image A.23:NPT Density  at 290K for MeOH 
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Image A.24:NPT Volume  at 290K for MeOH 

 

Image A.25:Cv  at 290K for MeOH 
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Image A.26:NPT temperature at 295K for MeOH 

 

Image A.27:Cp  at 295K for MeOH 
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Image A.28:NPT Density  at 295K for MeOH 

 

Image A.29:NPT Volume  at 295K for MeOH 
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Image A.30:Cv  at 295K for MeOH 

 

Image A.31:NPT temperature at 305K for MeOH 
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Image A.32:Cp at 305K for MeOH 

 

Image A.33:NPT Density  at 305K for MeOH 
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Image A.34:NPT Volume at 305K for MeOH 

 

Image A.35:Cv  at 305K for MeOH 
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Image A.36:NPT temperature at 310K for MeOH 

 

Image A.37:Cp at 310K for MeOH 
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Image A.38:NPT Density  at 310K for MeOH 

 

Image A.39:NPT Volume  at 310K for MeOH 
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Image A.40:Cv at 310K for MeOH 

3.-H2O (model 1): 

 

Image A.41:NPT temperature at 290K for H2O model1 
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Image A.42:Cp at 290K for H2O model1 

 

 

Image A.43:NPT Density  at 290K for H2O model1 
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Image A.44:NPT Volume  at 290K for H2O model1 

 

Image A.45:Cv  at 290K for H2O model1 
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Image A.46:NPT temperature at 295K for H2O model1 

 

Image A.47:Cp at 295K for H2O model1 
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Image A.48:NPT Density  at 295K for H2O model1 

 

Image A.49:NPT Volume  at 295K for H2O model1 
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Image A.50:Cv  at 295K for H2O model1 

 

Image A.51:NPT temperature at 305K for H2O model1 
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Image A.52: Cp at 305K for H2O model1 

 

Image A.53:NPT Density  at 305K for H2O model1 
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Image A.54:NPT Volume  at 305K for H2O model1 

 

Image A.55:Cv  at 305K for H2O model1 
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Image A.56:NPT temperature at 310K for H2O model1 

 

Image A.57:Cp  at 310K for H2O model1 
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Image A.58:NPT Density  at 310K for H2O model1 

 

Image A.59:NPT Volume at 310K for H2O model1 
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Image A.60:Cv at 310K for H2O model1 

 

Image A.61:NPT temperature at 300K for H2O rigid  model1 
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Image A.62:Cp at 300K for H2O rigid  model1 

 

Image A.63:NPT Density at 300K for H2O rigid  model1 
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Image A.64:NPT Volume  at 300K for H2O rigid  model1 

 

Image A.65:Cv at 300K for H2O rigid model1 
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3.-H2O (model 2): 

Parameters 

O  8  0.1521  3.1507 

H  1  0.000  0.000 

 

O    0.000000    0.000000    0.000000  -0.834 

H    0.900000    0.000000    0.000000    0.417 

H   -0.225340    0.871330    0.000000    0.417 

 

H    O    450.0       0.9572 

 

H   O   H     55.0      104.52 

 

Image A.66:NPT temperature at 290K for H2O model2 
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Image A.67:Cp at 290K for H2O model2 

 

Image A.68:NPT Density  at 290K for H2O model2 
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Image A.69:NPT Volume  at 290K for H2O model2 

 

Image A.70:Cv at 290K for H2O model2 
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Image A.71:NPT temperature at 295K for H2O model2 

 

Image A.72:Cp at 295K for H2O model2 
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Image A.73:NPT Density  at 295K for H2O model2 

 

Image A.74:NPT Volume  at 295K for H2O model2 
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Image A.75:Cv  at 295K for H2O model2 

 

Image A.76:NPT temperature at 305K for H2O model2 
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Image A.77:Cp at 305K for H2O model2 

 

Image A.78:NPT Density  at 305K for H2O model2 
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Image A.79:NPT Volume  at 305K for H2O model2 

 

Image A.80Cv at 305K for H2O model2 
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Image A.81:NPT temperature at 310K for H2O model2 

 

Image A.82:Cp at 310K for H2O model2 
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Image A.83:NPT Density  at 310K for H2O model2 

 

Image A.84:NPT Volume  at 310K for H2O model2 



98 
 

 

Image A.85:Cv at 310K for H2O model2 

 

Image A.86:NPT temperature at 300K for H2O rigid  model2 
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Image A.87:Cp  at 300K for H2O rigid  model2 

 

Image A.88:NPT Density  at 300K for H2O rigid  model2 
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Image A.89:NPT Volume at 300K for H2O rigid  model2 

 

Image A.90:Cv at 300K for H2O rigid  model2 
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5.- H2O graphs (model 3) 

Parameters 

O  8  0.1521  3.1507 

H  1  0.0460  0.4000 

 

O    0.000000    0.000000    0.000000  -0.834 

H    0.900000    0.000000    0.000000    0.417 

H   -0.225340    0.871330    0.000000    0.417 

 

H    O    450.0       0.9572 

 

H   O   H     55.0      104.52 

 

Image A.91:NPT temperature at 290K for H2O model3 
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Image A.92:Cp at 290K for H2O model3 

 

Image A.93:NPT Density  at 290K for H2O model3 
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Image A.94:NPT Volume  at 290K for H2O model3 

 

Image A.95:Cv at 290K for H2O model3 
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Image A.96:NPT temperature at 295K for H2O model3 

 

Image A.97: Cp at 295K for H2O model3 
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Image A.98:NPT Density  at 295K for H2O model3 

 

Image A.99:NPT Volume  at 295K for H2O model3 
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Image A.100:Cv at 295K for H2O model3 

 

Image A.101:NPT temperature at 305K for H2O model3 
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Image A.102:Cp at 305K for H2O model3 

 

Image A.103:NPT Density  at 305K for H2O model3 
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Image A.104:NPT Volume at 305K for H2O model3 

 

Image A.105:Cv at 305K for H2O model3 



109 
 

 

Image A.106:NPT temperature at 310K for H2O model3 

 

Image A.107:Cp at 310K for H2O model3 
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Image A.108:NPT Density at 310K for H2O model3 

 

Image A.109:NPT Volume at 310K for H2O model3 
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Image A.110:Cv at 310K for H2O model3 

 

Image A.111:NPT temperature at 300K for H2O rigid  model3 



112 
 

 

Image A.112:Cp at 300K for H2O rigid  model3 

 

Image A.113:NPT Density  at 300K for H2O rigid  model3 
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Image A.114:NPT Volume  at 300K for H2O rigid  model3 

 

Image A.115:Cv  at 300K for H2O rigid model3 
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6.- H2O graphs (model 4) 

Parameters 

O  8  0.18937  3.1776 

H  1  0.0000   0.0000 

 

O    0.000000    0.000000    0.000000   -0.8450 

H    0.900000    0.000000    0.000000    0.4225 

H   -0.225340    0.871330    0.000000    0.4225 

 

H    O    358.51  1.027 

 

H   O   H     45.77  114.70 

 

Image A.116:NPT Temperature  at 290K for H2O model4 
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Image A.117:Cp at 290K for H2O model4 

 

Image A.118:NPT Density  at 290K for H2O model4 
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Image A.119:NPT Volume  at 290K for H2O model4 

 

Image A.120:Cv at 290K for H2O model4 
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Image A.121:NPT Temperature  at 295K for H2O model4 

 

Image A.122:Cp  at 295K for H2O model4 
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Image A.123:NPT Density  at 295K for H2O model4 

 

Image A.124:NPT Volume  at 295K for H2O model4 
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Image A.125:Cv at 295K for H2O model4 

 

Image A.126:NPT Temperature  at 305K for H2O model4 
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Image A.127:Cp at 305K for H2O model4 

 

Image A.128:NPT Density  at 305K for H2O model4 
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Image A.129:NPT Volume  at 305K for H2O model4 

 

Image A.130:Cv at 305K for H2O model4 
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Image A.131:NPT Temperature  at 310K for H2O model4 

 

Image A.132:Cp at 310K for H2O model4 
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Image A.133:NPT Density  at 310K for H2O model4 

 

Image A.134:NPT Volume  at 310K for H2O model4 
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Image A.135:Cv at 310K for H2O model4 

 

Image A.136:NPT Temperature  at 300K for H2O model4 
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Image A.137:Cp at 300K for H2O model4 

 

Image A.138:NPT Density  at 300K for H2O model4 
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Image A.139:NPT Volume  at 300K for H2O model4 

 

Image A.140:Cv at 300K for H2O model4 


