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SPREADING-CONSTRICTION DERIVATIONS

This supporting information shows the derivations needed to obtain the impedance response due to the 

spreading-constriction in prismatic layers. The two-layer structure can be seen in Figure S1, and it consists of a 

metallic strip (with area x1×y1) in contact with a ceramic (with length LC) of larger cross-sectional area (x2×y2). The 

metallic strip, which has a negligible thickness, is considered to apply a uniform heat flux φ0 into the ceramic.

Figure S1. Schematic drawing of the theoretical model used to calculate the impedance due to the spreading-constriction. Not to scale. 

The first step to calculate the spreading-constriction impedance is to obtain the temperature, T, distribution 

inside the ceramic layer. This is solved starting from the general heat equation,

∂𝑇(𝑥,𝑦,𝑧)
∂𝑡 = 𝛼𝐶∇2𝑇(𝑥,𝑦,𝑧), (S1)

where αC is the thermal diffusivity of the ceramic material, and the coordinates (x, y, z) define all points inside the 

ceramic material. This equation in the frequency domain becomes,

𝑗𝜔𝜃(𝑥,𝑦,𝑧) = 𝛼𝐶∇2𝜃(𝑥,𝑦,𝑧), (S2)

where, j=(-1)0.5 is the imaginary number, ω the angular frequency (ω=2πf, where f is the frequency), and θ is the 

temperature rise/decrease with respect to the ambient temperature in the frequency domain.

The separation of variables allow us to define the temperature as three different functions that only depend on 

one coordinate,

𝜃(𝑥,𝑦, 𝑧) = 𝑈(𝑥)𝑉(𝑦)𝑊(𝑧). (S3)

Then, we can rewrite eq. (S2) into,
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𝑗𝜔
𝛼𝐶

=
𝑈′′

𝑈 +
𝑉′′
𝑉 +

𝑊′′
𝑊 , (S4)

and define three constants (α, β, γ) so that,

𝑈′′

𝑈 = ― 𝛼2, (S5)

𝑈′′

𝑈 = ― 𝛽2, (S6)

𝑊′′
𝑊 = 𝛾2, (S7)

𝑗𝜔
𝛼𝐶

= ― 𝛼2 ― 𝛽2 + 𝛾2. (S8)

The solutions of eq. (S5), eq. (S6), and eq. (S7) can be written as,

𝑈(𝑥) = 𝐶1𝑐𝑜𝑠 (𝛼𝑥) + 𝐶2𝑠𝑖𝑛 (𝛼𝑥), (S9)

𝑉(𝑦) = 𝐶3𝑐𝑜𝑠 (𝛽𝑦) + 𝐶4𝑠𝑖𝑛 (𝛽𝑦), (S10)

𝑊(𝑧) = 𝐶5𝑐𝑜𝑠ℎ (𝛾𝑧) + 𝐶6𝑠𝑖𝑛ℎ (𝛾𝑧), (S11)

where C1, C2, C3, C4, C5, and C6 are constants.

On the other hand, the boundary conditions of our system are (see Figure S1),

(∂𝜃
∂𝑥)

𝑥 = 0
= 0, (S12)

(∂𝜃
∂𝑥)

𝑥 = 𝑥2

= 0, (S13)

(∂𝜃
∂𝑦)

𝑦 = 0
= 0, (S14)

(∂𝜃
∂𝑦)

𝑦 = 𝑦2

= 0, (S15)

(∂𝜃
∂𝑧)

𝑧 = 0
= ―

𝜑0

𝜆𝐶
,   if 0 < 𝑥 ≤ 𝑥1 and 0 < 𝑦 ≤ 𝑦1, (S16)

(∂𝜃
∂𝑧)

𝑧 = 0
= 0,   otherwise, (S17)
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(∂𝜃
∂𝑧)

𝑧 = 𝐿𝐶

= ―
ℎ3𝜃𝑧 = 𝐿𝐶

𝜆𝐶
, (S18)

where h3 is the convection coefficient at z=LC (in contacted TE devices, it can be substituted by a thermal contact 

resistivity rTC=1/h3), and λC is the thermal conductivity of the ceramic material.

From eq. (S12) and eq. (S14) it is directly obtained that C2=0 and C4=0, respectively. Then, using eq. (S13) and 

eq. (S15) we find all the values of αn=nπ/x2 and βm=mπ/y2 that are solutions to this problem (n and m can be any 

non-negative integers). In this way, to satisfy eq. (S8), we obtain,

𝛾𝑛,𝑚 = (𝑛𝜋
𝑥2 )2

+ (𝑚𝜋
𝑦2 )2

+
𝑗𝜔
𝛼𝐶

, (S19)

At this point, the temperature expression takes the form,

𝜃(𝑥,𝑦, 𝑧) =
∞

∑
𝑛,𝑚 = 0

𝐶1,𝑛𝑐𝑜𝑠 (𝛼𝑛𝑥)𝐶3,𝑚𝑐𝑜𝑠 (𝛽𝑚𝑦)[𝐶5,𝑛,𝑚𝑐𝑜𝑠ℎ (𝛾𝑛,𝑚𝑧) + 𝐶6,𝑛,𝑚𝑠𝑖𝑛ℎ (𝛾𝑛,𝑚𝑧)], (S20)

and its derivative with respect to z,

∂𝜃
∂𝑧 =

∞

∑
𝑛,𝑚 = 0

𝐶1,𝑛𝑐𝑜𝑠 (𝛼𝑛𝑥)𝐶3,𝑚𝑐𝑜𝑠 (𝛽𝑚𝑦)𝛾𝑛,𝑚[𝐶5,𝑛,𝑚𝑠𝑖𝑛ℎ (𝛾𝑛,𝑚𝑧) + 𝐶6,𝑛,𝑚𝑐𝑜𝑠ℎ (𝛾𝑛,𝑚𝑧)]. (S21)

Introducing eq. (S20) and eq. (S21) into eq. (S18) and evaluating at z=LC, the ratio between C6,n,m and C5,n,m is 

obtained,

𝑅𝑛,𝑚 = ―
𝐶6,𝑛,𝑚

𝐶5,𝑛,𝑚
= [𝛾𝑛,𝑚𝑠𝑖𝑛ℎ (𝛾𝑛,𝑚𝐿𝐶) +

ℎ3

𝜆𝐶
𝑐𝑜𝑠ℎ (𝛾𝑛,𝑚𝐿𝐶)

𝛾𝑛,𝑚𝑐𝑜𝑠ℎ (𝛾𝑛,𝑚𝐿𝐶) +
ℎ3

𝜆𝐶
𝑠𝑖𝑛ℎ (𝛾𝑛,𝑚𝐿𝐶)]. (S22)

The temperature can then be written as,

𝜃(𝑥,𝑦, 𝑧) =
∞

∑
𝑛 = 1

𝐶𝑛𝑐𝑜𝑠 (𝛼𝑛𝑥)[𝑐𝑜𝑠ℎ (𝛾𝑛𝑧) ― 𝑅𝑛𝑠𝑖𝑛ℎ (𝛾𝑛𝑧)] +
∞

∑
𝑚 = 1

𝐶𝑚𝑐𝑜𝑠 (𝛽𝑚𝑦)[𝑐𝑜𝑠ℎ (𝛾𝑚𝑧) ― 𝑅𝑚𝑠𝑖𝑛ℎ (𝛾𝑚𝑧)]

+
∞

∑
𝑛,𝑚 = 1

𝐶𝑛,𝑚𝑐𝑜𝑠 (𝛼𝑛𝑥)𝑐𝑜𝑠 (𝛽𝑚𝑦)[𝑐𝑜𝑠ℎ (𝛾𝑛,𝑚𝑧) ― 𝑅𝑛,𝑚𝑠𝑖𝑛ℎ (𝛾𝑛,𝑚𝑧)].

(S2

3)
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where it is also necessary to define,

𝛾𝑛 = (𝑛𝜋
𝑥2 )2

+
𝑗𝜔
𝛼𝐶

, (S24)

𝛾𝑚 = (𝑚𝜋
𝑦2 )2

+
𝑗𝜔
𝛼𝐶

, (S25)

𝑅𝑛 = ―
𝐶6,𝑛

𝐶5,𝑛
= [𝛾𝑛𝑠𝑖𝑛ℎ (𝛾𝑛𝐿𝐶) +

ℎ3

𝜆𝐶
𝑐𝑜𝑠ℎ (𝛾𝑛𝐿𝐶)

𝛾𝑛𝑐𝑜𝑠ℎ (𝛾𝑛𝐿𝐶) +
ℎ3

𝜆𝐶
𝑠𝑖𝑛ℎ (𝛾𝑛𝐿𝐶)], (S26)

𝑅𝑚 = ―
𝐶6,𝑚

𝐶5,𝑚
= [𝛾𝑚𝑠𝑖𝑛ℎ (𝛾𝑚𝐿𝐶) +

ℎ3

𝜆𝐶
𝑐𝑜𝑠ℎ (𝛾𝑚𝐿𝐶)

𝛾𝑚𝑐𝑜𝑠ℎ (𝛾𝑚𝐿𝐶) +
ℎ3

𝜆𝐶
𝑠𝑖𝑛ℎ (𝛾𝑚𝐿𝐶)]. (S27)

Deriving, and evaluating at z=0,

∂𝜃(𝑥,𝑦, 𝑧)
∂𝑧 |

𝑧 = 0
= ―

∞

∑
𝑛 = 1

𝐶𝑛𝑐𝑜𝑠 (𝛼𝑛𝑥)𝛾𝑛𝑅𝑛 ―
∞

∑
𝑚 = 1

𝐶𝑚𝑐𝑜𝑠 (𝛽𝑚𝑦)𝛾𝑚𝑅𝑚 ―
∞

∑
𝑛,𝑚 = 1

𝐶𝑛,𝑚𝑐𝑜𝑠 (𝛼𝑛𝑥)𝑐𝑜𝑠 (𝛽𝑚𝑦)𝛾𝑛,𝑚𝑅𝑛,𝑚.
(S2

8)

Introducing eq. (S28) into eq. (S16) and eq. (S17), multiplying by cos(nπx/x2), integrating from 0 to x2, 

multiplying again by cos(mπy/y2), and integrating from 0 to y2, after some algebraic steps we obtain,

𝐶𝑛 =
2𝜑0𝑠𝑖𝑛 (𝛼𝑛𝑥1)𝑦1

𝜆𝐶𝑛𝜋𝛾𝑛𝑅𝑛𝑦2
, (S29)

𝐶𝑚 =
2𝜑0𝑠𝑖𝑛 (𝛽𝑚𝑦1)𝑥1

𝜆𝐶𝑚𝜋𝛾𝑚𝑅𝑚𝑥2
, (S30)

𝐶𝑛,𝑚 =
4𝜑0𝑠𝑖𝑛 (𝛼𝑛𝑥1)𝑠𝑖𝑛 (𝛽𝑚𝑦1)

𝜆𝐶𝑛𝑚𝜋2𝛾𝑛,𝑚𝑅𝑛,𝑚
. (S31)

So that the temperature at z=0, and the spreading-constriction impedance are given by,

𝜃(𝑥,𝑦, 0) =
∞

∑
𝑛 = 1

𝐶𝑛𝑐𝑜𝑠 (𝛼𝑛𝑥) +
∞

∑
𝑚 = 1

𝐶𝑚𝑐𝑜𝑠 (𝛽𝑚𝑦) +
∞

∑
𝑛,𝑚 = 1

𝐶𝑛,𝑚𝑐𝑜𝑠 (𝛼𝑛𝑥)𝑐𝑜𝑠 (𝛽𝑚𝑦), (S32)

𝑧𝑠/𝑐 =
𝜃(𝑥,𝑦,0)

𝜑0
=

∫𝑦1

0 ∫𝑥1

0 𝜃(𝑥,𝑦,0) ∂𝑥∂𝑦

𝜑0𝑥1𝑦1
, (S33)
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where the constants Cn, Cm, and Cn,m are defined by eq. (S29), eq. (S30), and eq. (S31), respectively.

Hence, the spreading-constriction impedance is,

𝑧𝑠/𝑐 =
2𝑥2𝑦1

𝜆𝐶𝜋2𝑥1𝑦2

∞

∑
𝑛 = 1

𝑠𝑖𝑛2 (𝛼𝑛𝑥1)
𝑛2𝛾𝑛

[𝛾𝑛𝜆𝐶 + ℎ3𝑡𝑎𝑛ℎ (𝛾𝑛𝐿𝐶)
𝛾𝑛𝜆𝐶𝑡𝑎𝑛ℎ (𝛾𝑛𝐿𝐶) + ℎ3] +

2𝑦2𝑥1

𝜆𝐶𝜋2𝑦1𝑥2

∞

∑
𝑚 = 1

𝑠𝑖𝑛2 (𝛽𝑚𝑦1)
𝑚2𝛾𝑚

[𝛾𝑚𝜆𝐶 + ℎ3𝑡𝑎𝑛ℎ (𝛾𝑚𝐿𝐶)
𝛾𝑚𝜆𝐶𝑡𝑎𝑛ℎ (𝛾𝑚𝐿𝐶) + ℎ3]

+
4𝑥2𝑦2

𝜆𝐶𝜋4𝑥1𝑦1

∞

∑
𝑛,𝑚 = 1

𝑠𝑖𝑛2 (𝛼𝑛𝑥1)𝑠𝑖𝑛2 (𝛽𝑚𝑦1)
𝑛2𝑚2𝛾𝑛,𝑚

[𝛾𝑛,𝑚𝜆𝐶 + ℎ3𝑡𝑎𝑛ℎ (𝛾𝑛,𝑚𝐿𝐶)
𝛾𝑛,𝑚𝜆𝐶𝑡𝑎𝑛ℎ (𝛾𝑛,𝑚𝐿𝐶) + ℎ3].

(S3

4)

And in the limit where ω→0, the spreading-constriction resistance matches the expression obtained by 

Muzychka et al.,30 which adapted to our nomenclature, can be defined as,

𝑟𝑠/𝑐

=
2𝑥2

2𝑦1

𝜆𝐶𝜋3𝑥1𝑦2

∞

∑
𝑛 = 1

𝑠𝑖𝑛2 (𝛼𝑛𝑥1)
𝑛3 [𝛼𝑛𝜆𝐶 + ℎ3𝑡𝑎𝑛ℎ (𝛼𝑛𝐿𝐶)

𝛼𝑛𝜆𝐶𝑡𝑎𝑛ℎ (𝛼𝑛𝐿𝐶) + ℎ3] +
2𝑦2

2𝑥1

𝜆𝐶𝜋3𝑦1𝑥2

∞

∑
𝑚 = 1

𝑠𝑖𝑛2 (𝛽𝑚𝑦1)
𝑚3 [𝛽𝑚𝜆𝐶 + ℎ3𝑡𝑎𝑛ℎ (𝛽𝑚𝐿𝐶)

𝛽𝑚𝜆𝐶𝑡𝑎𝑛ℎ (𝛽𝑚𝐿𝐶) + ℎ3]
+

4𝑥2𝑦2

𝜆𝐶𝜋4𝑥1𝑦1

∞

∑
𝑛,𝑚 = 1

𝑠𝑖𝑛2 (𝛼𝑛𝑥1)𝑠𝑖𝑛2 (𝛽𝑚𝑦1)
𝑛2𝑚2𝛿𝑛,𝑚

[𝛿𝑛,𝑚𝜆𝐶 + ℎ3𝑡𝑎𝑛ℎ (𝛿𝑛,𝑚𝐿𝐶)
𝛿𝑛,𝑚𝜆𝐶𝑡𝑎𝑛ℎ (𝛿𝑛,𝑚𝐿𝐶) + ℎ3],

(S3

5)

where δn,m=(αn
2+βm

2)1/2.
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NUMERICAL VALIDATION

To quantify the deviations in the determination of the internal thermal contact resistances, a COMSOL 

simulation was performed, which will be considered as an experimental measurement. The FEM simulation was 

performed using the electric currents, the heat transfer and the thermoelectric packages of COMSOL. Initial steady 

conditions of temperature (300 K) and potential (0 V) were considered, and adiabatic boundary conditions in all 

surfaces were used. A sinusoidal current of 10 mA was injected at one side of the TE leg and extracted at the other, 

while the voltage at the same locations was recorded. In addition, convergence tests assured a properly meshed 

geometry and short enough time steps taken by the time-dependent solver. The simulated voltage waveforms of 

each frequency (36 logarithmically distributed points from 10 mHz to 100 kHz) were introduced in a numerical 

lock-in amplifier implemented in MATLAB to extract the amplitudes and phases.

Typical values of commercial thermoelectric devices at T=300 K were used (N=127, S=190 µVK-1, ρTE=1 

mΩcm, λTE=1.5 Wm-1K-1, αTE=0.37 mm2s-1, L=1.2 mm, λM=400 Wm-1K-1, αM=110 mm2s-1, LM=0.3 mm, λC=35 Wm-

1K-1, αC=10 mm2s-1, LC=0.75 mm, A=1.69 mm2, η=0.27, and ηM=0.68). A thermal contact resistivity between the 

TE legs and the metallic strips, rTC1=1.26×10-5 m2KW-1, and an inductance, Lp=4×10-7 H, were also added. Figure 

S2 shows the simulated impedance spectra (dots), the fitting using the cylindrical approximation (red line, Fit-C in 

the legend), and the fitting with the new spreading-constriction impedance (in blue, Fit-P in the legend).

Figure S2. FEM impedance simulations (dots) and their fittings (lines). C and P in the legend indicates cylindrical and prismatic geometries, 
respectively.

From the first fitting in Figure S2 (red line), an estimation of the error when fitting a commercial device 

(prismatic structure) with the cylindrical approximation can be calculated. Then, from the second fitting in Figure 

S2 (blue line), the improvement due to the development of the analytical expression for prismatic structures can be 

evaluated. The fitted values and their associated relative errors can be found in Table S1. Low fitting errors in all 
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cases were obtained (mostly below 1%). In addition, the deviations of the fitted parameters from the COMSOL 

simulations can be seen in Table S2. The ohmic resistance, RΩ, and the thermal conductivities (λTE, and λC), showed 

deviations lower than 0.4% with respect to the expected values (see Table S2). However, the thermal contact 

resistivity between the TE legs and the metallic strips (rTC1) was overestimated 4.2% when the cylindrical 

approximation was used. This thermal contact resistance was only overestimated by 0.3% when the new spreading-

constriction impedance (developed in this study) was used.

Table S1. Fitting parameters with their associated relative errors (in brackets). The fittings using the cylindrical model were performed with 
the MATLAB code provided in the Supplementary Information of ref..25 The fitting with the prismatic model was performed with the 
MATLAB code provided in the Supplementary Information of this article.

Model RΩ (Ω) rTC1 (m2KW-1) λTE (Wm-1K-1) λC (Wm-1K-1)

Prismatic data fitted with 
cylindrical model

1.8033
(0.00294%)

1.3128×10-5

(0.253%)
1.4994

(0.0508%)
34.997

(0.0621%)

Prismatic data fitted with 
prismatic model

1.8036
(0.0125%)

1.2637×10-5

(1.10%)
1.4976

(0.197%)
35.126

(0.238%)

Table S2. Values introduced in the COMSOL simulations (expected values), and deviations of the fitted parameters (shown in Table S1).

RΩ (Ω) rTC1 (m2KW-1) λTE (Wm-1K-1) λC (Wm-1K-1)

Expected value 1.8036 1.26×10-5 1.5 35

Prismatic data fitted with 
cylindrical model -0.02% 4.19% -0.04% -0.01%

Prismatic data fitted with 
prismatic model (new) 0.00% 0.29% -0.16% 0.36%


