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1 Aim

The aim of this project is the theoretical study, using Crystal software, of the effect of the

pressure on the structure and properties of GeSe

2 Introduction

GeSe is strongly anisotropic semiconducting van der Waals crystal isoelectronic to black

phosphorus, with superior stability in air conditions. High optical absorption, good con-

ductivity, and band gap ranging around 1,1 eV make this material suitable for various

optoelectronic applications[1]

Figure 1: GeSe crystal

Germanium Selenide is a chemical compound of the group IV chalcogenides, these

elements are an important class of functional compounds because they have a number of

physical properties. Among these compounds, the simple 1:1 binary germanium selenide

has very interesting attention. From GeSe it can be syntesized nanostructures, which

make technological applications such as nanoscale photodetectors. GeSe is a prototypical

IV-VI semiconductor.

To study the effect of pressure on the structure and properties of GeSe it is going to

be used the programme Crystal in the UJI calculation center, and making use of density

functional theory and Hartree-Fock method combinated with two different types of hybrids

functionals to make the calculations, B3LYP and HSE06. It will be used hybrid functional

that makes lower error in front of the experimental values.

2



GeSe exhibits interesting optical properties. It absorbs in the infrared region, specifi-

cally in the mid-infrared range. This property makes it suitable for use in optoelectronic

devices, such as photodetectors and infrared sensors. GeSe can be deposited as thin films

using various techniques, including thermal evaporation, sputtering, and chemical vapor

deposition. These thin films find applications in electronic and optoelectronic devices due

to their unique properties and compatibility with thin-film manufacturing processes.

• Uses of GeSe [2]:

1. Optoelectronics:

GeSe finds application in optoelectronic devices, as IR sensors, photodetec-

tors, and other devices used in IR imaging and sensing applications.

2. Phase Change Memory (PCM):

GeSe is an essential material in PCM technology. It serves as the active material

that undergoes reversible phase transitions, enabling the storage and retrieval

of data in non-volatile memory devices.

3. Thermoelectric Devices and Energy Harvesting:

GeSe’s favorable thermoelectric properties make it useful for thermoelectric

generators, solid-state cooling systems and energy harvesting.

It can efficiently convert waste heat into electricity or provide cooling in appli-

cations where traditional cooling methods may not be feasible or efficient. GeSe

can be used to convert waste heat from industrial processes or other sources

into electrical energy, contributing to energy efficiency and sustainability.
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4. Thin-Film Electronics:

GeSe can be deposited as thin films using various techniques such as thermal

evaporation and chemical vapor deposition. These thin films can be integrated

into thin-film electronic devices like thin-film transistors, solar cells, and other

electronic components.

Overall, GeSe’s unique characteristics make it valuable for optoelectronic devices,

phase change memory, thermoelectric applications, thin-film electronics, and energy

harvesting systems.

3 Calculation Methods

• Hartree-Fock Method

First, it is interesting to explain that method required that the final computed field

from the charge distribution to be ”self-consistent” with the assumed initial field.

Therefore the self-consistency was a requirement of the solution and hence the name.

That said, the Hartree-Fock (HF) method used in Chemistry is an approximation

method to determine or solve the wave function and the energy of many bodies

interacting in the stationary phase (complying with Eq. 1) that is time independent.

|Ψ(r, t)|2 = Ψ∗(r, t)Ψ(r, t) = Ψ∗(r)iEt/hΨ(r)eiEt/h = Ψ∗(r)Ψ(r) = |Ψ(r)|2 (1)

This method was developed by D.R. Hartree in 1927, a bit after the discovery of

Schrödinger’s equation. It is based on semi-empiric methods established by Bohr,

such as the calculation of the energy of one state - for the Hydrogen atom - that is

related with the main quantum number in the following way:

E = −1/n2 (2)

Starting from this equation, the energy levels of multi-electronic atoms may be de-

fined when taking into account that the shielding of inner electrons is not total and,

then, there is a quantum defect (d). Doing this, the formula for the energy levels is

approximated with the following one:

E = −1/(n+ d)2 (3)
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Once the equation is developed, it is considered that the whole nucleus is fixed with

the exception of the electrons (Eq. 4) and a potential V is generated by the Born-

Oppenheimer approximation that is considered as reference. Thus, this method uses

a self-consistent potential (each electron moves in a potential created by the rest of

the electrons) to convert a multi-electronic problem into multiple mono-electronic

problems. In this way the Schrödinger’s equation of one atom electronic state for N

electrons per atom is got.

Ψtotal = Ψelectronic⊗Ψnuclear (4)

The analytic solution for this equation has not been found because the term depends

as much from the electron i as from the electron j. Another consideration performed

when applying this method is that each solution is a linear combination of a finite

number of base functions and, moreover, that each self-function is described by

Slater’s determinant, which for a system of N electrons is defined as:

Ψ(x1, x2, ..., xN ) =
1√
N !


x1(x1) x2(x1) ... xn(x1)

x1(x2) x2(x2) ... xn(x2)

.. ... ... ...

x1(xn) x2(xn) ... xn(xn)

 (5)

Thanks to this determinant, the following considerations are met:

– The result will be an anti-symmetric function and, therefore, the symmetric

ones will be disregarded.

– Pauli’s exclusion laws compliance is assured.

In theory to use Slater’s determinant as the approximation of the electronic wave

function is correct, but the exact wave functions cannot be expressed by means of

this determinant, since the Coulombic correlation is not taken into account.

Therefore a different result to the exact solution of the Schrödinger’s equation with

the Born-Oppenheimer’s approximation will be obtained and the difference between

both will be the correlation energy.

Finally, to indicate that this method is solved by convergence with an iterative

methodology that is the following one:
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Figure 2: Simplified algorithmic flowchart illustrating the Hartree–Fock method

• Density Functional Theory (DFT) [3]

It is a variational quantum-mechanical computational model, used to study the elec-

tronic structure, principally the basic state, of many-body systems (in this Project

a multi-electronic compound is addressed). This model was started to be developed

by L. Thomas and E. Fermi but the calculations were not established finally until

40 years afterwards, with P. Hohonberg, W. Kohn y L. Sham. It is presented as

an alternative to the Schrödinger’s equation solution and solved by means of the

electronic energy minimisation versus the electronic density. The use of the elec-

tronic density versus the wave function makes it simpler and thus accessible to solve

more complex systems since, instead of having 3N variables (in the case of the wave
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function), only 3 variables are present. What is got with this method is, starting

from a dependent on many-body problem, to get a non-dependent on single-body

problem. In order to do it, the key variable is the electron density (p), which for a

normalised is:

n(r⃗) = N

∫
d3r2...

∫
d3rNψ

∗(r⃗, r⃗2, ..., r⃗n)ψ(r⃗, r⃗2, ..., r⃗N ) (6)

This relationship can be reverted, which implies that for a given basic state density

n0(r) there is a basic state wave function.

n0 = (r⃗1, ..., r⃗n) (7)

So 0 is an only functional of n0. And consequently the value expected of the basic

state of an observable Rr is also a functional of n0. In particular, the energy of the

ground state is a functional of n0.

E0 = E[n0] = <[n0]> (8)

Where the contribution of the external potential 〈n0〉 can be written in terms of the

density of the basic state n0

V [n0] =

∫
V (r⃗)n0(r⃗)d

3r (9)

The functional Tn and Rrn are the called functional universal whereas Vn is the

called no universal functional, since it depends of the system studied. As soon as

system specified, have to minimise the functional.

E[n] = T [n] +Rr[n] +

∫
V (r⃗)n(r⃗)d3r (10)

Assuming we have expressions of T[n] and Rr[n], the minimisation of n0 can be car-

ried out. The problems that may appear when minimising can be solved if Lagrange’s

method is applied (non-determined multipliers), where it is considered that there is

no interaction electron-electron and therefore that term is eliminated remaining

With all the previous calculations and assumptions, the Kohn-Sham’s equations

are solved for non-interactive systems. In the same way as for the Hartree-Fock’s

method, to solve the Khon-Sham’s equation a nr is assumed. This will be the first

term in the iterative method, where firstly Vs is calculated and then a new density

is obtained fromVs. The process is repeated till the results converge.
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• Hybrid functionals

The hybrid functionals are approximations that include the theories DFT and Hartree-

Fock include in a way that an increased accuracy is got in the results for atomic

energies, elastic constants or vibration frequencies. It is started to be used by 1993

introduced by A. Becke. Most of the hybrid functionals are formed by the linear

combination of the exact exchange functional of Hartree-Fock :

EHF
x = 1

1

2

∑
ij

∫ ∫
ψ∗
i (r1)ψ

∗
j (r2)

1

r12
ψj(r1)ψi(r2)dr1dr2 (11)

And a number of exchange and correlation explicit density functionals. The pa-

rameters that determine the weight of each individual functional are adjusted by

predictions of thermodynamic data either experimental or approximated.

There are several kinds of hybrid functionals, though in this project only B3LYP

y HSE06 are going to be used due to, according to the bibliography, they provide

better results for the calculations that will be carried out.

– B3LYP [4] [5]

The exchange-correlation functional B3LYP or Becke-3 parameters-Lee-Yang-

Parr is applied using the following exchange-correlation functional:

EB3LY P
xc = ELDA

x +α0(E
HF
x −ELDA

x )+αx(E
CGA
x −ELDA

x )+ELDA
c +αc(E

CGA
c −ELDA

c )

(12)

The parameters used are: , and . Additionally and are approximations of gen-

eralised gradients (Becke 88 exchange functional and Lee-Yang-Parr correlation

functional):

ECGA
XC [n↑, n↓] =

∫
εXC(n↑, n↓,∇↑,∇↓)n(r⃗)d

3r (13)

Lastly, the parameter is referred to the Volsko-Wilk-Nusair’s local-density ap-

proximation for the correlation functional:

EXC
LDA[n] =

∫
εxc(n)n(r⃗)d

3r (14)

There are three parameters that are obtained from the precursor of this method,

the B3PW91: Ionisation potentials, protonic affinity and total atomic energy.

– HSE06 [6]

The exchange-correlation functional HSE (Heyd-Scuseria-Ernzerhof) uses the

Gauss’ error function applied to a shielded coulombic potential to calculate the

energy exchange for improving the efficiency in the calculations:
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EwPBEh
xc = αEHFSR

x (ω) + (1− α)EPBESR
x (ω)+

+ ELDA
c + EPBELR

X (ω) + EPBE
c

The parameters are: a (a parameter used to adjust the methods forming the

HSE) with a standard value of 0.25 and w (variable parameter that indicates the

short-range interactions) with a standard value of 0.2. ExPBE,SR, ExPBE,LR

y EcPBE are parameters used in the functional Perdew, Burke, and Ernzerho

(PBE) (different from the worked ones) and that indicate the components at

different ranges and the correlation functional respectively. Finally ExHF,SR

indicates the Hartree-Fock exact exchange functional of short-range.

• Grimme’s approximation

The hybrid functionals provide very accurate results in the majority of the cases

and due to that reason they are the most used currently. However, there are situa-

tions where they do not fit real values, as when by the method it is obtained that the

structure “a” is more stable than the structure “b”, but experimentally it has been

demonstrated that the situation is just the contrary. To avoid this error Grimme

proposed some empiric correction values for DFT method where dispersion of energy

is considered.

An example where this approximation is needed to match the experimental and the-

oretical value is the Pnma, Cmcm and Fm-3m structures, which are different forms

of the GeSe . In order to take into account van der Waals interactions, which can

in fact play a significant role in this type of systems, the semiempirical Grimme ex-

tension of the standard DFT method (DFT+D) is an effective way of incorporating

dispersion interactions, and it has proven its ability to provide reliable modeling

of geometries and a better description of this type of interaction in metal oxides.

Therefore, the empirical correction scheme to energy that considers the long-range

dispersion contributions proposed by Grimme [7] and implemented by Bucko [8] for

periodic systems was used. The basic strategy in the development is to restrict the

density functional description to shorter electron correlation lengths scales and to

describe situations with medium to large interatomic distances by damped terms,

where denotes the dispersion coefficient for atom pair ij, and is the corresponding

interatomic distance.[7]
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• Real and reciprocal spaces

The concept of real space is intuitive since it is the one used daily. It is the place

where objects are located and the events that happen have relative position and

direction. In this real space it is possible to work with classic mechanics, which

makes it ideal in the calculation for bodies of finite and measurable magnitudes. In

contrast there are the infinite bodies, whose properties imply a big amount of calcu-

lations, many times not possible to be performed. For studying these bodies it was

developed an idea that allowed the representation of them with finite magnitudes,

the reciprocal space. The case dealt with in this project is based on a solid that

is considered a periodic system of infinite atoms. For the calculation of some of its

properties a series of mathematical operations is used, to get a group of imaginary

points belonging to the reciprocal space, for crystals in 1,2 and 3D the Equation 15

(is the general condition for crystals in 1, 2 and 3 dimensions) is applied and The

equation 16 is the reciprocal space for a crystal in 3D:

aibj = 2πδij (15)

k⃗ = (
2πm

a1
,
2πn

a2
,
2πq

a3
) (16)

Where “a” represents the vectors generators of the direct net:

R⃗ = m1a⃗1 +m2a⃗2 +m3a⃗3 (17)

And “b” the ones generating the reciprocal one:

k⃗ = v1b⃗1 + v2b⃗2 + v3b⃗3 (18)

Once the set of points of the reciprocal space is got, calculations are easier. There are

14 Bravais lattices and 230 space groups, each one has one different first Brillouin

zone, this is the primitive reciprocal lattice. In this study there are going to be

studied the Pnma (space group (spg) 62), Cmcm (spg 63) and Fm-3m (spg 225).
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• Equations of State EOS

The thermodynamic equations of state are mathematical expressions that relate

state variables which define the physic conditions of a compound as pressure, tem-

perature, volume or the internal energy.

There are a lot of equations of state, each one allows to define one or more vari-

ables and furthermore they change with each different system. The equations that

are going to be use in this project are Murnaghan equation and Birch-Murnaghan

equation. These two equations show the relation between the volume of a system

and the applied pressure. It bases on Boyle law but adds two variable parameters:

the inverse of compressibility module or Bulk modulus.

– Murnaghan equation [9]:

P =
K0

K
′
0

((
V0
V

)K
′
0 − 1) (19)

– 3rd order Birch-Murnaghan equation [9]:

P =
3

2
K0(r

7/3 − r5/3)[1 +
3

4
(K

′
0 − 4)(r2/3 − 1)] (20)

In equation 19:

r = V/V0;
1

β
= K = −V (

dP

dv
)T ;K

′ =
dK

dP
(21)

• Grüneisen Parameter

This parameter presents, for a crystal net, the effect in vibration frequencies (w)

with a volume variation due to a decrease of pressure. In this study althought there

are two diferent equations which describes this parameter, it is going to be used the

microscopic equation.

γ =
1

w0

dw

dP
(22)

When the parameter is negative, it indicates that the structure becomes unstable

dynamically. Using this parameter it can be studied the dynamic stability.
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• Band structure

To introduce the concept of band structure, firstly the presentation of the theory of

bands is needed. By this theory, the electronic structure of a compound is described,

an GeSe crystal in this project , as a structure of energy bands. This is possible

since the orbitals of the atoms when joining to make a molecule overlap, producing

a discreet number of molecular orbitals, each one with its own energy. When the

crystal has a big number of atoms, the number of orbitals of valence is also big and,

as the energy difference is so low, the energy levels nearly overlap forming continuous

bands. Among bands, empty breaches are created, due to the absence of orbitals

in such energies (these breaches will be formed whatever the number of atoms may

be).

The band occupied by the most external electrons of the atom (the ones in the last

Figure 3: Direct and Indirect bandgap [10]

layer) will be the valence band. These electrons are used to make bonds but they

cannot be used for electrical conduction. The conduction band is the first one that

presents free electrons and the band that produces electrical conduction, since these

electrons are not linked to the atoms anymore and, therefore, they can move along

the crystal.

Another concept that must be considered is the one called in this work, the maxi-

mum of the valence band, the Fermi’s energy or level. There is another definition of
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this concept widely used in solid-state physics, defined as the average between the

two bands, with the conduction band that is located in the upper part of the Fermi’s

energy and the valence band located in the lower part.

Figure 4: Two definitions of Fermi’s Energy

The minimum separation between the conduction band and the valence band is called

band gap and there is no energy levels in this zone. Its value is measured taking the

lowest energy in the conduction band and deducting the value of the highest energy

in the valence band. These values are obtained from some of the k points in the first

zone of Brillouin, in such a way that if the vector representing the maximum of the

valence band and the vector representing the minimum of the conduction band are

the same one, a direct gap will be given, meanwhile if different k points represent

the maximum and the minimum, the gap will be indirect. See figure 3.

Besides, is useful to say that when the compound is a metal, there is not any sep-

aration between the valence and conduction bands, these are overlapping. In the

semiconductors the gap is above 0 and 3 eV.
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4 Computational Details

This project was doing using UJI computing center with Crystal [11] program. This pro-

gram helps us to make calculations related with the solid state chemistry in 0 (molecules),

1 (linear polymers), 2 (crystal surfaces or films) and 3 dimensions (crystals). It uses as a

base the calculation methods, crystallographic bases and hybrid functionals that has been

introduced before. Crystal17 takes the crystal systems as periodic, this consideration al-

lows the simplification and the speed-up of all the calculations.

To do the calculations the program ask for four different kind of archives that are the

bases for almost all the calculations of this project. The four archives are, an INPUT, an

OUTPUT, and fort.9 and fort.34,

• INPUT

This archive contains the following structure for the dada: First of all there are one

line for the title, the next lines indicate the type of calculation that is going to be

done and the conditions (in this case the value of the pressure) and other parameters.

Then comes the crystallographic bases, the order doesn’t matter. And lastly comes

the step, the functionals and another values as modes of work that can be found in

the manual. This archive is the base to make the calculations.

• OUTPUT

This archive contains the results of the calculations. First of all the output shows

the information related to the process to make the calculations (time, steps, type

of calculations, parameters set in the input). When this first part ends a resume

of the equations that has been solved and all the calculation are shown. Lastly the

iteration process can be found with the final solution at last.

• fort.34

Those archives are given by crystal as a complement of the optimization processes.

Fort.34 gives additional information of the geometry of the structure and serve as

complement in subsequent calculations.

• fort.9

This archive contains information related to the electronic structure that can be used

in different programs (Xcrysden, crysplot or origin) to obtain the bands diagram and

a band gap.
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5 Previous Data

Before beginning the experimental calculations it must be explained which structures are

going to be studied for GeSe under pressure.

According to another investigations and papers which study the effect of increasing pres-

sure or temperature in the GeSe and others chalcogenides compounds. These structures

are orthorhombic Pnma (spg 62), orthorhombic Cmcm (spg 63) and cubic Fm-3m (spg

225).

• Pnma structure (spg 62)

The structure has been obtained by the use of Diamond software [12]:

Figure 5: Structure of Pnma
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Green atoms are Germanium Blue atoms are Selenium

This is a orthorombic structure, space group 62, Pnma. The latticce parameters are

a=10.9208 Å b=3.8708 Å and c=4.4075 Å.

Seeing this Figure the Germanium is surrounded by one atom of Selenium at 2.5665

Å and by two atoms of Selenium at 2.5770 Å. The coordination of Germanium

around Selenium is three, so, this is a layer structure. There are also two other

atoms of Selenium at 3.3387 Å and it could be considered a very irregular five fold

coordinatio. The coordination of Selenium is also three. Selenium is surrounded by

one atom of Germanium at 2.5665 Å, and there are two other atoms of Germanium

at 2.5770 Å.

Figure 6: Ball and stick Pnma structure

It is also represented the structure of Pnma taken form [13] (a) Balls-and-sticks

representation. Ge atoms are drawn as smaller, orange spheres, and Se atoms are

larger and in purple. (b) Close-up of the coordination environment surrounding one

of the germanium atoms. Both species are interchangeable in principle. The closest

covalent Ge-Se bond distances are given in boldface; the next-nearest Ge-Se bonds,

drawn with dashed lines, allude to the relationship with the rocksalt structure. There

are also two Ge-Ge bonds in the second coordination sphere.

16



• CmCm structure (spg 63)

The structure has been obtained by the use of Diamond software:

Figure 7: CmCm structure

This structure is also orthorombic structure, space group 63, CmCm, the lattice

parameters are a=5.3100 Å b=12.4850 Å c=4.6500 Å.

This structure is caracterized because the coordination is 5 both for Se and Ge

• Fm-3m structure (spg 225)

The structure has been obtained by the use of Diamond software:

This structure is a cubic structure, space group 225, Fm-3m, the lattice parameters

are a=b=c=5.5040 Å.
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Figure 8: Fm-3m structure

Red atoms are Germanium and Blue atoms are Selenium.

Seeing this Figure, Germanium is surrounded by 6 atoms of Selenium at 2.7379 Å,

and the Selenium is surrounded by 6 atoms of Germanium at 2.7379 Å too. The

coordination, as the germanium is surrounded by 6 selenium atoms, as deformed

octahedra.
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6 Stability criteria

A structure presents an energy minimum if the first derivate of the energy respect to the

energy is equal to zero. In order to determine which structure presents more stability at

a determinate pressure we must study three criteria.

• An energy minimum

The necessary condition for a structure to be an energy minimum is that the first

derivate of the energy front of q (the coordinates) becomes zero. The coordinates

are the ones that are going to be optimized. These coordinates are related to the

volume of the structure that will be affected as the pressure changes

• Second derivative: Dynamic criteria

To ensure that the optimized structure is a true minima it is necessary that all

the second derivatives of the energy with respect to the coordinates are greater than

zero.

ω =
d2E

dq2
> 0 (23)

Besides, as the frequency values are equal to the second derivate of the energy front

q, this condition is equivalent to that all the frequency vibrations are positives. if the

frequecy values increases with the pressure, the structure is stable. If the vibration

frequency has decreased means that there is an instability and the structure can be

transformed in other one.

• Mechanical stability

The mechanical stability for the GeSe phases was analyzed by calculating the cor-

responding symmetrized elastic constant at several pressures. From these elastic

constants, we applied the Born criteria [14] for the confirmation of the stable struc-

ture [15]

Firstly, the elastic constants are been calculated. Furthermore, the generic mechan-

ical stability conditions for crystals and Born criteria [10] for each structure will be

studied. In the case of Orthorhombic systems (Pnma and CmCm in our case) the

stiffness matrix for an orthorhombic crystal has the following form, with 9 constants

and no relatonships between them:
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Cortho =



C11 C12 C13

. C22 C23

. . C33

C44

C55

C66


(24)

The following Born criteria for an orthorhombic system:

C11 > 0;C11C22 > C2
12 (25)

C11C22C33 + 2C12C13C23 − C11C
2
23 − C22C

2
13 − C33C

2
12 > 0 (26)

C44 > 0;C55 > 0;C66 > 0 (27)

The conditions of the Pnma and CmCm structures are both equal to the Equa-

tion 18, 19 and 20, and the matrix is both the same.

If the structure is a cubic crystal system:

Ccubic =



C11 C12 C12

. C11 C12

. . C11

C44

C44

C44


(28)

The following Born criteria for an cubic system:

C11 − C12 > 0;C11 + 2C12 > 0;C44 > 0 (29)
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7 Geometry and Energy

• In addition to the elastic stability criteria, more also studies are also going to be

made to ensure the results are reliable. It is going to be stydied the Equations

of State (EOS). This is being based on third order Birch-Murnaghan equation of

state for energy and and also on the equations Pressure vs Volume (see in page 11,

equations 19 and 20)

Murnagham Equation

E(V ) = E0 + (
K0V

K
′
0

)(
rK

′
0

(K
′
0 − 1)

+ 1)− V0K0

K
′
0 − 1

(30)

3rd order Birch-Murnaghan equation

E(V ) = E0 +
9

4
K0V0(

1

2
r4/3 − r2/3) +

9

16
K0V0(K

′
0 − 4)(r2 − 3r4/3 + 3r2/3) (31)

Moreover the band structures of each structure will also be made. Once this band

structures will be made it will be possible calculate and determine the Band Gap

Energy and if it is direct or indirect.

8 Results

• HYBRID FUNCTIONALS

In the case of this study, the hybrid functional that will be used, is which produces

the least error compared to the experimental data of the Pnma GeSe orthorhombic

structure.

Table 1: Table 1. Results of B3LYP and HSE06

a (Å) b (Å) c (Å)

experimental 10.9208 3.8708 4.4075

HSE06-D3 10.7990 3.8424 4.4142

B3LYP 10.9672 3.8632 4.4984
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Table 2: Table 2. Results of Volume, error Volume and Hartree Energy of B3LYP and

HSE06

volume (Å3̂) error volume (Å3̂) Eg (eV) Error Eg (eV)

experimental 186.32 - 1.1 -

HSE06-D3 183.16 3.15 1.21 0.11

B3LYP 190.59 4.27 1.78 0.68

According to the results, the hybrid functional HSE06-D3 will be used to make the

calculations to discuss the effect of pressure on the GeSe. The error of the volume

as well as the energy gap are lower in HSE06-D3 than in B3LYP.

The same occurs with the difference between the Hartree energy of the functional

hybrid HSE06-D3 and B3LYP. It is smaller when is used HSE06-D3.

• GEOMETRY AND ENERGY

Figure 9 is done using the Gibbs free energy values in all the pressure range. By

this plot is check if there are any intersection between the structures. This graph

represents the difference of the Gibbs free energy for the three studied structures of

GeSe with respect to that of the Pnma structure.
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Figure 9: Variation of Gibbs free energy vs Pressure
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Figure 10: Variation of internal energy vs Pressure

In this graphs is observed that at zero pressure the structure that is more stable in

its fase is the yellow line, it corresponds to the cubic structure because the value for

each pressure of Gibbs free enthalpy is the lowest. But a cubic structure is more

stable at lower pressure than the Pnma and CmCm, it is due to is only accessible at

high temperatures, and probably kinetics impedance.[16]

Moreover in the Figure 9 is observed that at 27GPa there is a crossing between the

blue and red lines, this may indicate that it is a phase change between structures.

It changes from a orthorhombic(Pnma) to a CmCm structure.

At lower pressures the Pnma structure is more stable than the CmCm structure.

According to the Figure 9, the calculations predict the possibility of the phase tran-

sition from the orthorombic phase Pnma to phase CmCm at a pressure about 27

GPa.

Respect to the Figure 10, the internal energy of cubic phase is less stable up to 10

GPa and the internal energy of CmCm is less stable than the Pnma structure.
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• It has been also studied the evolution of the lattice parameters of the orthorhombic

(Pnma structure) as the pressure increases.

ao (Å) 10.7990

bo (Å) 3.8424

co (Å) 4.4142

P (GPa) a (Å) b (Å) c (Å) a/ao b/bo c/co

0 10.7990 3.8424 4.4142 1 1 1

5 10.2583 3.7587 4.0421 0.9499 0.9782 0.9157

10 10.0971 3.7091 3.7091 0.9350 0.9653 0.8403

15 9.9847 3.6643 3.8140 0.9246 0.9536 0.8640

20 9.8767 3.6269 3.7463 0.9146 0.9439 0.8487

25 9.7628 3.6577 3.5757 0.9040 0.9519 0.8100

30 9.6854 3.6222 3.5397 0.8969 0.9427 0.8019

Table 3: Lattice parameters at different pressures

Figure 11: Evolution of lattice parameters when pressure increases

Seeing this, the parameter c/co is the one that varies the most when the pressure

increases.
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All the parameters decreases with the pressure, so the volume values decrease under

pressure too.

• MECHANICAL STABILITY

P (GPa) K (GPa) G (GPa) E (GPa) v

0 70.87 32.06 83.59 0.303

5 77.03 54.85 132.98 0.212

10 88.03 63.11 152.81 0.211

15 112.25 75.34 184.71 0.226

20 135.18 85.22 211.28 0.240

25 164.35 105.79 261.30 0.235

30 182.81 119.37 294.10 0.232

Table 4: Modulus data for Pnma structure

In this table, K means Bulk modulus [17], G is the Shear modulus, E is the Young

modulus and v is the Poisson ratio. All of them are measured in GPa except Poisson

ratio that is adimensional. This calculations are made according Hill method [18]

(it is the arithmetic average between Voigt and Reuss methods)

The bulk modulus or compressibility modulus of a material measures its resistance

to uniform compression and, therefore, indicates the increase in pressure required to

cause a unit decrease in a given volume.

Also it is shown the evolution of Poisson Coefficient increasing pressure.
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Figure 12: Poisson coefficient vs Pressure

It can be determined that at pressures highers tan 20 GPa the Poisson Coefficient

decreases.

Seeing the table in the annex is determined that the conditions are met It is also

studied the generic elastic stability conditions for each pressure. In all of them the

conditions are accepted.

Besides, the elastic stability conditions of orthorombic Pnma and Cmcm, and cubic

Fm-3m structures have been studied, and all structures fulfill the Born at ambient

pressure criteria.

The table the most important elastic which contains each elastic constants are in

the annex.

It is observed that at zero pressure the orthorhombic structure Pnma is stable at

P=0 and for all pressure (tables in the Annex)
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124.081 40.714 41.940 0.000 0.000 0.000

0.000 129.392 70.883 0.000 0.000 0.000

0.000 0.000 87.565 0.000 0.000 0.000

0.000 0.000 0.000 54.385 0.000 0.000

0.000 0.000 0.000 0.000 28.835 0.000

0.000 0.000 0.000 0.000 0.000 28.038

Table 5: Elastic constants at 0 GPa of Pnma

In the following table at pressure 0, is demonstrated that Fm-3m structure is stable.

174.308 30.087 30.087 0.000 0.000 0.000

0.000 174.308 30.087 0.000 0.000 0.000

0.000 0.000 174.308 0.000 0.000 0.000

0.000 0.000 0.000 -6.417 0.000 0.000

0.000 0.000 0.000 0.000 -6.417 0.000

0.000 0.000 0.000 0.000 0.000 -6.147

Table 6: Elastic Constants at 0 GPa of Fm-3m

CmCm strucutre is also stable at 0 GPa seeing the tfollowing table:

129.306 2.936 54.296 0.000 0.000 0.000

0.000 131.117 -5.204 0.000 0.000 0.000

0.000 0.000 119.686 0.000 0.000 0.000

0.000 0.000 0.000 11.024 0.000 0.000

0.000 0.000 0.000 0.000 111.006 0.000

0.000 0.000 0.000 0.000 0.000 33.201

Table 7: Elastic Constants at 0 GPa of CmCm
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• FREQUENCIES

To study the geometry and the energy of the structure is possible to rely on a

vibrational frequency analysis. It is based within harmonic approximation.

Pressure (GPa)

Raman Modes 0 5 10 15 20

B2g 48.54 58.37 60.76 61.22 59.39

Ag 46.49 59.10 62.42 63.58 63.70

B1g 86.27 85.34 86.22 87.25 88.90

Ag 94.08 99.40 106.30 101.06 95.53

B3g 98.32 109.56 108.23 113.84 118.69

B3g 106.36 117.48 133.61 147.71 158.93

B2g 156.64 173.14 172.10 167.39 160.05

Ag 168.31 199.42 196.62 192.01 188.07

B1g 183.65 201.47 211.51 218.20 222.39

B3g 205.45 215.06 218.21 220.44 223.73

Ag 206.63 226.82 243.71 247.23 249.91

B3g 232.92 243.72 245.58 256.58 270.59

Table 8: Vibrational frequencies for each Raman mode at different pressure

Besides, studying the Gruneissen parameter, according to the Table 4, in the mode

B2g at 15GPa there are a drop in the frequency. In the mode Ag at 15 GPa there

is a drop in the frequency too. And in the case of the B2g mode, at 10 GPa there

is also a drop in the frequency. In the mode Ag at 10 GPa the frequency decreases

too. These variations in the frequency cause the Gruneissen becomes negative and

this facts indicates that the structure becomes unstable. This could lead to a phase

change.

29



Figure 13: RAMAN frequencies vs Pressure

This graph shows the decrease of the active frequencies in Raman modes B2g, Ag,

B2g and Ag (modes in which the frequency decreases), with the pressure, and pass-

ing from positive to negative slopes indicates that Gruneisen parameter becomes

negative and the structure becomes unstable.

• BAND STRUCTURE

The obtained files fort.9 of each pressure are used to get all the different band

structures. To do it is necessary a specific software, the Xcrysden programm [19],

which allow the transformation of the fort.9 values into a band structure by calcu-

lations, related on the first Brillouin zone k points and vectors that link those.[20]

If the band structure evolution is studied, irregularities can be detected. The most

important irregularities that can be found is the change of the band gap type, from

direct to indirect or vice versa and a change in the band gap values.
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Figure 14: Band structure of Pnma

The gap is direct at Gamma (0,0,0) (two blue points marcked in the graph)

In the case of Cmcm structure:

Figure 15: Band structure of Cmcm

The top of the valence band is found at a point between Y (½,½,0) and T (½,½,½), this

being H with coordinates (½,½,alpha) The GAP is indirect and its value is given by

the difference between the points Y and T. This difference is 0.4813 eV This value
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coincides with the energy of indirect GAP which is 0.4815 eV

Finally in the case of Fm3m structure:

Figure 16: Band structure of Fm3m

The top of the valence band is found at point L, with coordinates (½,½,½) The GAP

is direct and its value is 0.4129 eV The lowest value of the virtual band is at point

Q, between point L (½,½,½) and W (1/2,1/4,3/4) of coordinates (½,½-alpha,½+alpha)

The GAP is direct at point L

In all of this figures the blue points that represents de GAP are the top of the valence

bands (for the lower point) and the bottom of conduction bands (for the upper point)
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The effect of pressure to the Energy of Band Gap.

Figure 17: Band Gap vs Pressure

It may be commented that when passing from 5 to 10 GPa, the band gap decreases

and this structure of GeSe becomes conductive up to 10 GPa.
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9 Conclusions

As conclusions of this work on the theoretical study of the effect of pressure on the

structure and properties of GeSe, we can say first of all that of the two functional

structure and properties of GeSe, we can say in the first place that of the two func-

tional hybrids chosen for the study, HSE06 has been used, since it has the least error

the HSE06 has been used since it is the one that gives the least error with respect

to the experimental data.

Regarding the stability of the structure, it can be observed that from 0 GPa to

27 GPa the structure with the more stability, without taking into account the cubic

structure with the highest stability due to kinetic impedance factors and temper-

ature, is Pnma structure, but the Pnma structure above 27 GPa suffers a phase

change to CmCm structure.

As for the frequency analysis, a tendency is also observed that at higher pressure

the structure tends to be unstable. In the case of the Pnma structure, this has been

studied based on Gruneisen parameter. The Gruneisen parameter which, as the fre-

quency decreases with pressure,becomes negative. It indicates that the structure is

becoming unstable and it can be dueto a phase change.

The three structures studied show mechanical stability at ambient pressure (0 GPa)

and Pnma is also mechanically stable throughout the range of pressures studied (0-

30 GPa).

Regarding the study of the band structure, looking at the value of the Band Gap

decreases with respect to the pressure, when passing from 5 to 10 GPa the structure

becomes conductive up to 10 GPa.

As a final conclusion we can say that by applying a pressure lower than 10 GPa

to the Pnma structure, without increasing the temperature (which can overcome the

kinetic barrier and make it transits to the cubic structure) the GeSe decreases its

gap being still semiconductor, which can be beneficial for its computer applications.
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11 Annex

182,003 25,816 35,201 0 0 0

- 166,019 68,397 0 0 0

- - 100,576 0 0 0

- - - 97,72 0 0

- - - - 53,178 0

- - - - - 43,246

Table 9: Elastic constants matrix for an Pnma crystal at 5 GPa

227,865 43,865 55,732 0 0 0

- 177,426 59,682 0 0 0

- - 102,777 0 0 0

- - - 126,353 0 0

- - - - 63,322 0

- - - - - 44,629

Table 10: Elastic constants matrix for an Pnma crystal at 10 GPa

271,996 51,644 64,979 0 0 0

- 217,973 84,395 0 0 0

- - 141,432 0 0 0

- - - 153,954 0 0

- - - - 74,882 0

- - - - - 47,466

Table 11: Elastic constants matrix for an Pnma crystal at 15 GPa

310,161 63,499 76,399 0 0 0

- 243,134 104,272 0 0 0

- - 186,678 0 0 0

- - - 180,584 0 0

- - - - 84,473 0

- - - - - 47,655

Table 12: Elastic constants matrix for an Pnma crystal at 20 GPa
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395,317 39,532 79,946 0 0 0

- 302,096 148,553 0 0 0

- - 247,386 0 0 0

- - - 226,159 0 0

- - - - 82,856 0

- - - - - 65,592

Table 13: Elastic constants matrix for an Pnma crystal at 25 GPa

433,173 48,2 81,823 0 0 0

- 328,825 165,415 0 0 0

- - 292,931 0 0 0

- - - 249,232 0 0

- - - - 89,123 0

- - - - - 77,955

Table 14: Elastic constants matrix for an Pnma crystal at 30 GPa
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Volume (A3) P (GPa) E (au) G (au) AE AG

181.46 -1.00 -9792.4077 -9792.4494 0 0

171.75 -0.00 -9792.4090 -9792.4090 0 0

166.99 1.00 -9792.4085 -9792.3702 0 0

163.84 2.00 -9792.4075 -9792.3323 0 0

161.50 3.00 -9792.4061 -9792.2950 0 0

159.64 4.00 -9792.4046 -9792.2582 0 0

158.10 5.00 -9792.4031 -9792.2217 0 0

156.79 6.00 -9792.4014 -9792.1856 0 0

155.65 7.00 -9792.3997 -9792.1498 0 0

154.64 8.00 -9792.3980 -9792.1142 0 0

153.73 9.00 -9792.3962 -9792.0789 0 0

152.91 10.00 -9792.3944 -9792.0437 0 0

152.17 11.00 -9792.3926 -9792.0087 0 0

151.48 12.00 -9792.3908 -9791.9739 0 0

150.84 13.00 -9792.3890 -9791.9392 0 0

150.25 14.00 -9792.3872 -9791.9047 0 0

149.70 15.00 -9792.3853 -9791.8703 0 0

149.18 16.00 -9792.3835 -9791.8360 0 0

148.69 17.00 -9792.3816 -9791.8018 0 0

148.23 18.00 -9792.3798 -9791.7678 0 0

147.79 19.00 -9792.3779 -9791.7338 0 0

147.37 20.00 -9792.3761 -9791.7000 0 0

146.98 21.00 -9792.3742 -9791.6662 0 0

146.60 22.00 -9792.3723 -9791.6326 0 0

146.24 23.00 -9792.3705 -9791.5990 0 0

145.89 24.00 -9792.3686 -9791.5655 0 0

145.56 25.00 -9792.3667 -9791.5321 0 0

145.24 26.00 -9792.3649 -9791.4987 0 0

144.94 27.00 -9792.3630 -9791.4654 0 0

144.64 28.00 -9792.3611 -9791.4322 0 0

144.35 29.00 -9792.3593 -9791.3991 0 0

144.08 30.00 -9792.3574 -9791.3660 0 0

Table 15: EOS for Pnma structure
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Volume (A3) P (GPa) E (au) G (au) 2*G AG 2*E AE

46.26 -2 -4896.0420 -4896.0633 -9792.1265 - -9792.0841 -

46.38 -1 -4896.0420 -4896.0526 -9792.1053 9.3585 -9792.0840 8.8054

46.5 0 -4896.0420 -4896.0420 -9792.0840 8.8410 -9792.0840 8.8413

46.62 1 -4896.0420 -4896.0313 -9792.0626 8.3666 -9792.0840 8.8269

46.75 2 -4896.0420 -4896.0206 -9792.0412 7.9178 -9792.0841 8.7957

46.88 3 -4896.0421 -4896.0099 -9792.0197 7.4872 -9792.0842 8.7554

47.01 4 -4896.0422 -4895.9991 -9791.9982 7.0715 -9792.0845 8.7092

47.15 5 -4896.0424 -4895.9883 -9791.9766 6.6679 -9792.0847 8.6584

47.29 6 -4896.0425 -4895.9775 -9791.9549 6.2749 -9792.0851 8.6039

47.43 7 -4896.0428 -4895.9666 -9791.9332 5.8914 -9792.0855 8.5459

47.58 8 -4896.0430 -4895.9557 -9791.9114 5.5163 -9792.0860 8.4848

47.74 9 -4896.0433 -4895.9448 -9791.8896 5.1491 -9792.0866 8.4205

47.9 10 -4896.0437 -4895.9338 -9791.8676 4.7891 -9792.0873 8.3532

48.06 11 -4896.0441 -4895.9228 -9791.8456 4.4361 -9792.0881 8.2827

48.23 12 -4896.0445 -4895.9118 -9791.8235 4.0897 -9792.0890 8.2090

48.41 13 -4896.0450 -4895.9007 -9791.8014 3.7494 -9792.0900 8.1319

48.59 14 -4896.0456 -4895.8896 -9791.7791 3.4154 -9792.0912 8.0512

48.78 15 -4896.0462 -4895.8784 -9791.7568 3.0871 -9792.0924 7.9666

48.98 16 -4896.0469 -4895.8672 -9791.7344 2.7647 -9792.0938 7.8779

49.19 17 -4896.0477 -4895.8559 -9791.7118 2.4480 -9792.0954 7.7847

49.41 18 -4896.0486 -4895.8446 -9791.6892 2.1370 -9792.0972 7.6865

49.64 19 -4896.0496 -4895.8333 -9791.6665 1.8315 -9792.0991 7.5828

49.88 20 -4896.0507 -4895.8218 -9791.6437 1.5315 -9792.1013 7.4730

50.14 21 -4896.0519 -4895.8104 -9791.6207 1.2374 -9792.1038 7.3563

50.41 22 -4896.0532 -4895.7988 -9791.5977 0.9489 -9792.1065 7.2316

50.71 23 -4896.0548 -4895.7872 -9791.5745 0.6662 -9792.1095 7.0979

51.03 24 -4896.0565 -4895.7756 -9791.5512 0.3898 -9792.1130 6.9532

51.38 25 -4896.0585 -4895.7638 -9791.5277 0.1195 -9792.1169 6.7955

51.77 26 -4896.0607 -4895.7520 -9791.5040 -0.1442 -9792.1214 6.6216

52.2 27 -4896.0634 -4895.7401 -9791.4802 -0.4008 -9792.1267 6.4268

52.71 28 -4896.0665 -4895.7281 -9791.4561 -0.6497 -9792.1331 6.2035

53.31 29 -4896.0705 -4895.7159 -9791.4318 -0.8899 -9792.1410 5.9379

54.09 30 -4896.0758 -4895.7036 -9791.4072 -1.1199 -9792.1516 5.5993

Table 16: EOS for CmCm structure
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Volume (A3) P (GPa) E (au) G (au) 4*G (eV) AG 4*E (eV) AE

42.96 -2 -2448.1025 -2448.1222 -9792.4888 0.0000 -9792.4100 0.0000

42.33 -1 -2448.1027 -2448.1124 -9792.4497 -0.0100 -9792.4109 -0.0857

41.75 0 -2448.1028 -2448.1028 -9792.4112 -0.0579 -9792.4112 -0.0579

41.21 1 -2448.1027 -2448.0933 -9792.3731 -0.0783 -9792.4109 -0.0649

40.71 2 -2448.1026 -2448.0839 -9792.3355 -0.0877 -9792.4102 -0.0750

40.23 3 -2448.1023 -2448.0746 -9792.2984 -0.0924 -9792.4091 -0.0818

39.79 4 -2448.1019 -2448.0654 -9792.2617 -0.0955 -9792.4077 -0.0835

39.37 5 -2448.1015 -2448.0563 -9792.2254 -0.0989 -9792.4060 -0.0797

38.98 6 -2448.1010 -2448.0474 -9792.1894 -0.1035 -9792.4040 -0.0705

38.6 7 -2448.1004 -2448.0385 -9792.1539 -0.1101 -9792.4018 -0.0560

38.25 8 -2448.0998 -2448.0296 -9792.1186 -0.1191 -9792.3993 -0.0366

37.91 9 -2448.0992 -2448.0209 -9792.0837 -0.1307 -9792.3967 -0.0128

37.58 10 -2448.0985 -2448.0123 -9792.0490 -0.1453 -9792.3939 0.0152

37.28 11 -2448.0977 -2448.0037 -9792.0147 -0.1629 -9792.3909 0.0471

36.98 12 -2448.0969 -2447.9952 -9791.9806 -0.1835 -9792.3878 0.0824

36.7 13 -2448.0961 -2447.9867 -9791.9468 -0.2072 -9792.3845 0.1210

36.43 14 -2448.0953 -2447.9783 -9791.9133 -0.2340 -9792.3812 0.1626

36.17 15 -2448.0944 -2447.9700 -9791.8800 -0.2639 -9792.3777 0.2070

35.92 16 -2448.0935 -2447.9617 -9791.8469 -0.2968 -9792.3741 0.2539

35.67 17 -2448.0926 -2447.9535 -9791.8141 -0.3327 -9792.3705 0.3031

35.44 18 -2448.0917 -2447.9454 -9791.7815 -0.3715 -9792.3667 0.3546

35.22 19 -2448.0907 -2447.9373 -9791.7490 -0.4133 -9792.3629 0.4080

35 20 -2448.0898 -2447.9292 -9791.7168 -0.4580 -9792.3590 0.4633

34.79 21 -2448.0888 -2447.9212 -9791.6848 -0.5054 -9792.3551 0.5203

34.58 22 -2448.0878 -2447.9132 -9791.6530 -0.5557 -9792.3511 0.5790

34.39 23 -2448.0867 -2447.9053 -9791.6214 -0.6086 -9792.3470 0.6391

34.19 24 -2448.0857 -2447.8975 -9791.5899 -0.6641 -9792.3429 0.7006

34.01 25 -2448.0847 -2447.8897 -9791.5586 -0.7223 -9792.3387 0.7634

33.83 26 -2448.0836 -2447.8819 -9791.5275 -0.7830 -9792.3345 0.8274

33.65 27 -2448.0825 -2447.8741 -9791.4965 -0.8461 -9792.3302 0.8926

33.48 28 -2448.0815 -2447.8664 -9791.4657 -0.9117 -9792.3259 0.9588

33.32 29 -2448.0804 -2447.8588 -9791.4351 -0.9797 -9792.3216 1.0260

33.16 30 -2448.0793 -2447.8512 -9791.4046 -1.0501 -9792.3172 1.0941

Table 17: EOS for Fm-3m structure
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