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ABSTRACT
Impedance Spectroscopy (IS) has proven to be a powerful tool for the extraction of significant electronic parameters in a wide variety of
electrochemical systems, such as solar cells or electrochemical cells. However, this has not been the case with perovskite solar cells, which
have the particular ionic-electronic combined transport that complicates the interpretation of experimental results due to an overlapping
of different phenomena with similar characteristic frequencies. Therefore, the diffusion of electrons is indistinguishable on IS, and there
appears the need to use other small perturbation experimental techniques. Here, we show that voltage-modulated measurements do not
provide the same information as light-modulated techniques. We investigate the responses of perovskite solar cells to IS, Intensity-Modulated
Photocurrent Spectroscopy (IMPS) and Intensity-Modulated Photovoltage Spectroscopy (IMVS). We find that the perturbations by light
instead of voltage can uncover the electronic transport from other phenomena, resulting in a loop in the high-frequency region of the complex
planes of the IMPS and IMVS spectra. The calculated responses are endorsed by the experimental data that reproduce the expected high
frequency loops. Finally, we discuss the requirement to use a combination of small perturbation techniques for successful estimation of
diffusion parameters of perovskite solar cells.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087705

Impedance Spectroscopy (IS) has been a valuable technique for
the analysis of the electrical response of a wide variety of semi-
conductor devices,1–5 and specifically solar cells.6,7 In fact, IS has
led to the determination of carrier diffusion and recombination,
charge transfer coefficient, and carrier lifetimes in silicon solar cells,8
dye-sensitized solar cells,9,10 and organic solar cells.6,11 This impor-
tant technique has also been widely used for the characterization
of Perovskite Solar Cells (PSCs).12–14 Although the IS characteris-
tics of PSC display a rich diversity of features,15 the interpretation
of such spectra is not straightforward and the extraction of impor-
tant parameters, such as the electronic carrier diffusion, has not been
achieved.

One of the reasons for the complex interpretation of IS data
on PSC is the influence of ionic motion inside the perovskite layer.
The mobile ions can cause interface polarization,16 affecting the

charge transfer rates or inducing capacitive accumulation of elec-
tronic carriers. These phenomena affect the IS spectra, hindering
the electronic information that is coupled with ionic phenomena
and preventing the extraction of electronic information. However,
the combination of IS and other small perturbation techniques has
been demonstrated to be effective in the understanding of PSCs.17–19

Recently, it was shown that electron diffusion parameters can
be extracted from Intensity-Modulated Photocurrent Spectroscopy
(IMPS).20 However, this is not possible with voltage-modulated
techniques such as IS.

Here, we aim to explain why voltage-modulated measure-
ments do not have the same information as light-modulated tech-
niques. For that purpose, we calculate the response of charge carrier
diffusion for one voltage-modulated technique, the IS, and two
light-modulated techniques, the IMPS and the Intensity-Modulated
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Photovoltage Spectroscopy (IMVS). From these results, we conclude
that while in IS, both the perturbation and the response take place at
the same contact, in IMPS and IMVS, it is possible to apply the per-
turbation far from the collecting contact of one of the charge carriers,
disclosing the diffusion of these particles along the film.

Following the methods that have been used for the calculation
of the transfer functions of IS, IMPS, and IMVS,20–23 we solve the
conservation equation in the frequency domain. The equation for
carrier density n(x, t) including recombination and Beer–Lambert
generation is as follows:

∂n
∂t
= Dn

∂2n
∂x2 −

n − n0

τn
+ αΦ(t)eα(x−d), (1)

where Dn is the diffusion coefficient, n0 is the equilibrium density
under dark conditions, τn is the recombination lifetime, d is the
active layer thickness, and α is the light absorption coefficient.

Since the solution has been already derived in the above-
mentioned references, we skip the calculation details and directly
show the solutions for the three techniques, in order to focus on
the relationship between the solutions that provides new physical
insight. We follow the notation used in Ref. 22, where the trans-
fer functions have been expressed in terms of three characteristic
frequency parameters that determine all possible spectral shapes.
The solution of Eq. (1) in the frequency domain for the IS is

Z(ω) = Rd(
ωd

p
)

1/2

coth ((
p

ωd
)

1/2
), (2)

where Rd is the diffusion resistance, p is defined as

p = iω + ωrec, (3)

and the two characteristics frequencies are defined as

ωd =
Dn

d2 , (4)

ωrec = τn
−1. (5)

The solution of Eq. (1) in the frequency domain for the IMPS is

Q(ω) =
F(ω)

cosh[( p
ωd
)

1/2
]

, (6)

and for IMVS, it is

W(ω) = Rd
F(ω)

(
p

ωd
)

1/2
sinh [( p

ωd
)

1/2
]

. (7)

The transfer functions of IMPS and IMVS have a common
factor F(ω), and is defined as

F(ω) =
1 − e−αd

{e(p/ωd)
1/2
+ [(

p
ωα
)

1/2
− 1] sinh [( p

ωd
)

1/2
]}

[1 − p
ωα
]

. (8)

The absorption coefficient α occurs in Eq. (8) and enables to
define the third frequency ωα,

ωα = Dnα2. (9)

The extraction of diffusion parameters from the IS is done via
the high frequency part of the spectra. There appears a 45○ line and
a turnover followed by an impedance arc that allows us to extract
the diffusion resistance Rd

23 and the diffusion frequency ωd.24 This
method was widely exploited to obtain the electron diffusion coef-
ficient and electron recombination lifetime in dye-sensitized solar
cells.25–27

Here, we calculate in Fig. 1 the spectra for the three tech-
niques with the characteristic frequencies obtained from a previous

FIG. 1. (a) IS, (b) IMPS, and (c) IMVS spectra for typical values of a carbon-
based perovskite solar cell. The values of the parameters are Rd = 2Ω,
ωd = 2 × 105s−1 (green), ωα = 1 × 108s−1 (red), and ωrec = 2 × 104s−1 (blue).
The inset in (a) shows the IS spectrum at high frequency.
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study via the data fitting of carbon-based perovskite solar cells.19

In Fig. 1(a), we see that the 45○ line of Eq. (2) indicating the trans-
port resistance appears at a very high frequency but with very small
values, due to the high diffusion coefficient of PSC.28,29 Hence, it
has not been possible to distinguish conclusively electron diffusion
from other phenomena via the impedance spectra in perovskite solar
cells.

However, if we look at the common factor F(ω) of IMPS and
IMVS, the diffusion frequency ωd appears coupled with ωα. This
opens a door to an alternative pathway to the extraction of diffu-
sion and recombination parameters via light-modulated techniques.
In Figs. 1(b) and 1(c), we calculate the IMPS and IMVS spectra
for the typical frequency values of carbon-based perovskite solar
cells.19 The coupling of both ωd and ωα results in a looping spiral
at high frequency crossing the real and/or imaginary axes and going
through several quadrants, as shown previously in Refs. 20 and 22.
It is important to remark that, as discussed previously in Ref. 20, the
IMPS response can be affected by the RC attenuation factor from the
series resistance and the geometrical capacitance. However, these RC
elements can be extracted from the IS characteristics, and they can be
controlled when extracting the diffusion parameters from the IMPS
data.

Following these results, we aim to prove these theoretical pre-
dictions by the measurement of the three distinct frequency domain
small perturbation methods of PSC. However, we note that many

different types of spectra are possible. The appearance of the loop-
ing spectra in IMPS and IMVS spectra is not a guaranteed result,
and neither is the coupling between the frequencies ωd and ωα. It
has been demonstrated that the loop at high frequency depends on
the relationship between these frequencies.22 This means, experi-
mentally, that the generation inside the perovskite film needs to be
non-uniform, i.e., the absorber has to be longer than the absorption
length.20 Therefore, we have chosen carbon-based perovskite solar
cells with perovskite film thicknesses above 1 μm and a blue light
illumination source that has a short absorption length.30

We have measured IS, IMPS, and IMVS at open circuit condi-
tions for a variety of light intensities. The region of interest inside the
spectra is in the high frequency domain. Therefore, we have used a
Zahner system for the IS that allows up to 10 MHz bias perturbation.
However, the results at such high frequencies using standard setups
have been proven to be obscured by instrument limitations. There-
fore, we have chosen a previously used technique capable of solving
these problems and obtaining satisfactory results.31 To facilitate the
correct measurement of current responses at high frequencies, our
experimental system uses a current amplifier. This current ampli-
fier introduces an internal series resistance of 50 Ω to the extracted
current in the IMPS measurements.

We have obtained the expected results for the entirety of the
different conditions used, i.e., IS spectra that remain in the positive
real part of the complex plane, while the IMPS and IMVS stable

FIG. 2. Experimental complex plane plots of (a) IS, (b) IMPS, and (c) IMVS for a carbon-based perovskite solar cell measured with illumination of 0,11 sun and at open
circuit voltage (V = 0.85 V). (d) shows the three normalized spectra together.
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responses looped at high frequency crossing the imaginary axis.
To illustrate this, we have put together three representative spectra
in Fig. 2. The rest of the measured spectra can be found in the
supplementary material.

We see in Fig. 2(a) that the IS spectrum draws only a positive
real arc where the Warburg element shown in the inset in Fig. 1(a)
cannot be distinguished. This can be caused by the interference
of other equivalent circuit elements that are orders of magnitude
larger than the diffusion resistance.12,15 Contrarily, both the IMPS
and IMVS spectra cross the second quadrant in Figs. 2(b) and 2(c),
respectively, clearly showing the effects of diffusion. For the sake of
clarity, we show the three spectra in a normalized complex plane
plot, in Fig. 2(d), where the shape of the different techniques can be
clearly distinguished.

In the combined plot of Fig. 2(d), we see there is a relation
in the responses of the three techniques, both in the number of
features and in the spectral shape. Previous works have already
explained the relationship of the three techniques.19,32,33 The rela-
tionship between IMPS and IMVS transfer functions must give the
IS transfer function, as demonstrated in Fig. S1, and following the
expression:

Z(ω) =
W(ω)
Q(ω)

. (10)

However, none of the previous studies has treated spiral IMPS
and IMVS spectra due to ωd and ωα coupling. From the expressions
of Eqs. (6) and (7), the factor F(ω), which is the cause of the looping
spectra, is canceled by the division, and the IS transfer function is

free of this factor. This is a demanding experimental test since the
spiraling of the light-modulated spectra of IMPS and IMVS must
disappear in the division of Eq. (10). We must show experimentally
that the F(ω) factor is canceled.

As mentioned earlier, the experimental setups for IMPS and
IMVS are different from the one we have used for IS. Specifically,
a series resistance of 50 Ω is introduced by the current amplifier
to the extracted current in the IMPS measurements. Therefore, the
quotient must be corrected by displacing the points in the com-
plex plane plot 50 Ω leftward on the real axis. For further checking
that the series resistance only moves the spectra rightward, we
have introduced additional series resistances to subsequent IMPS
measurements, proving that this is the only effect of the series resis-
tance in the quotient between W(ω) and Q(ω). This is clearly
seen in Fig. 3(a), where the subsequent addition of a series resis-
tance moves the experimental points of W/Q to the right side of
the complex plane. The corrected spectra in Fig. 3(b) show that
the experimental quotient (color points) gives a similar response to
the experimental IS measured directly (black points). In fact, the
looping into the second quadrant gets canceled, therefore, proving
that the factor F(ω) including the ωα appears neither in the IS
response nor in the quotient. We note that the resulting quotient
crosses the real axis into the fourth quadrant at high frequency,
which is likewise caused by experimental artifacts at the highest
frequencies.

Figure 3 confirms that the attainment of diffusion parame-
ters cannot be achieved only by IS, since it is hidden by other
phenomena. Therefore, it is convenient to use a combination
of techniques, which will allow further extraction of operation

FIG. 3. Experimental complex plane
plots of the directly measured IS (black
points) and the experimental quotient
of IMPS and IMVS given by Eq. (10)
(colored points). The IMPS and IMVS
measurements include a series resis-
tance of 50 Ω from the experimental
setup plus added resistances as indi-
cated in the legend. (a) shows the quo-
tients as it is, while (b) shows the cor-
rected spectra by moving leftward the
corresponding series resistance value.
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parameters. IS is still an important technique, since the series resis-
tance and bulk capacitance obtained at high frequency affect the
IMPS response.20 Hence, a full analysis of perovskite devices requires
the utilization of more than one frequency technique with both light
and voltage perturbations. In fact, the addition of time-dependent
techniques with similar perturbations could bring light on the high
frequency response of IMPS and IMVS.34–36

In conclusion, although the experimental extraction of diffu-
sion parameters via IS has been achieved in other kind of devices,
such as dye-sensitized solar cells, it is not normally possible in
perovskite solar cells, due to the infimum feature that it leaves in
the IS spectra. However, the obtention of diffusion parameters can
be achieved via light-modulated techniques due to the larger spec-
tral trace that is due to the coupling of diffusion and absorption
parameters in the high frequency part of the experimental IMPS and
IMVS spectra.

The supplementary material includes the experimental details
regarding both device fabrication and characterization methods;
an extra simulation of both IS and IMVS over IMPS quotient;
the current–voltage characteristics of the device; and additional IS,
IMPS, and IMVS spectra at different illumination conditions.
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