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Abstract. The thumb plays a key role in the performance of the hand for grasp-

ing and manipulating objects. In artificial hands the complex thumb’s kinematic 

chain (TKC) is simplified and its five degrees of freedom are reduced to only 

one or two with the consequent loss of dexterity of the hand. The Kapandji op-

position test (KOT) has been clinically used in pathological human hands for 

evaluating the thumb opposition and it has also been employed in some previ-

ous studies as reference for the design of the TKC in artificial hands, but with-

out a clearly stated methodology. Based on this approaches, in this study we 

present a computational method to optimize the whole TKC (base placement, 

link lengths and joint orientation angles) of an artificial hand based on its per-

formance in the KOT. The cost function defined for the optimization (MPE) is a 

weighted mean position error when trying to reproduce the KOT postures and 

can be used also as a metric to quantify thumb opposition in the hand. As a case 

study, the method was applied to the improvement of the TKC of an artificial 

hand developed by the authors and the MPE was reduced to near one third of 

that of the original design, increasing significantly the number of reachable po-

sitions in the KOT. The metric proposed based on the KOT can be used directly 

or in combination with other to improve the kinematic chain of artificial hands. 

Keywords: Artificial Hand, Kinematic Chain, Optimization. 

1 Introduction 

The human hand is a marvelous tool optimized in an evolutionary process since our 

ancestors [1,2]. Thumb opposition is said to be one distinctive feature of the human 

hand. Interestingly, this dexterity can be obtained even with an important variability 

in the thumb anatomy among individuals [3]. The human thumb is composed of three 

bones (Fig. 1) [4]: the distal phalanx, the proximal phalanx and the first metacarpal 

bone, connected to the wrist. The interphalangeal joint (IP) is a hinge joint with one 

degree of freedom (DoF) whereas the metacarpo-phalangeal joint (MCP) is condylar 

and the carpo-metacarpal joint (CMC) is of saddle type, both with two DoFs. There-

fore, the thumb’s kinematic chain (TKC) can be considered as an open chain connect-

ed to the wrist with 5 DoFs, allowing a high range of positions and orientations of the 
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thumb tip. It has been shown that the assumption of universal joints (two perpendicu-

lar and intersecting axes of rotation) for the CMC and MCP joints is not realistic and 

that a biomechanical model with five links [4], including two virtual links in these 

joints and considering non-orthogonal and non-intersecting axes in the joints is more 

realistic and represents better the anatomical evidences [3]. 

 

Fig. 1. Bones and joints of the human thumb [4]. 

The design of artificial hands, both prosthetic and robotic, is moving in last decades 

towards devices more anthropomorphic, to improve the functionality and the cosmetic 

appearance. Given the complexity of the TKC above explained, the designers of arti-

ficial hands need to introduce simplifications for this digit. These simplifications are 

mainly guided by the difficulty of obtaining adequate mechanical solutions for repro-

ducing the geometry and mobility of the CMC and MCP joints, but also by the at-

tempt to simplify the artificial hand control. Generally, the five DoFs of the human 

thumb are simplified in mechanical hands to achieve two basic motions: flex-

ion/extension and circumduction. The circumduction rotation of the thumb is the 

movement requested to change the type of opposition of the thumb with respect to the 

long fingers, it allows to alternate between a lateral grasp and a power or precision 

grasp. In the human hand, the circumduction motion is achieved through a combina-

tion of 3 joints at the base of the thumb [5]. Belter et al. [6] reviewed the thumb de-

sign and position for different prosthetic hands. They highlighted the relevance of the 

relationship between the circumduction rotation axis of the thumb and the main axis 

of the wrist for functional grasps. In most of the prosthetic hands that Belter et al. 

analyzed, the thumb is actuated with a simple closing or opening (flexion/extension) 

and along the circumduction rotation axis, that is not always oriented parallel with the 

wrist rotation axis. They recommended to jointly approximate in a single DoF the 
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thumb flexion and circumduction rotation for keeping complexity low. Ten Kate et al. 

[7] reviewed the kinematic specifications of 3D-printed hand prostheses and specified 

the range of motion for the thumb flexion and thumb circumduction of 58 devices. 

Three of the hands analyzed lack a thumb, 7% of the thumbs of the other hands did 

not perform flexion movement and 62% did not perform circumduction movement. 

Grebenstein et al. [8] analyzed anatomy, surgery and rehabilitation data for defining 

some guidelines to be used for the design of a robotic thumb for the DLR hand. They 

proposed a minimum of 3 DoF to allow proper manipulation.  

From the literature of both robotic and prosthetic fields, we can find thumbs with 

different mechanical configurations, changing the number of links and DoFs. Fig. 2 

shows several representative examples. 

 

Fig. 2. Thumb’s kinematic chain (TKC) for several artificial hands. a: SensorHand Speed [9], 

b: FRH-4 Hand [10], c: Bebionic hand [9], d: DLR/HIT Hand II [11], e: Shadow Dexterous 

Hand [12]. Red arrow: actuated by an independent actuator; yellow arrow: several DoFs actuat-

ed by the same actuator. 

The thumb of the SensorHand Speed [9] (Fig. 2a) is a rigid bar with only 1 DoF. The 

thumb of the FRH-4 Hand of the mobile-assisting robot ARMAR [10] (Fig. 2b) has 2 

DoFs actuated by two independent fluidic actuators that produce flexion motion of the 

MCP and IP joints, respectively. The thumb of the Bebionic hand [9] (Fig. 2c) has 3 

DoFs, one actuator produce the flexion of the MCP and IP joints and the MCP cir-

cumduction has two selectable fixed positions, manually placed by the user of the 

prosthesis. The thumb of the DLR/HIT Hand II [11] (Fig. 2d) has 4 DoFs and 3 actua-

tors, one for the CMC flexion, other for the MCP and IP flexion and other for the 

CMC abduction. The thumb of the Shadow Dexterous Hand [12] (Fig. 2e) has 5 inde-

pendently actuated DoFs, as the human hand, but the MCP and CMC are universal 

joints. 

It could be interesting to have objective methods to evaluate the impact of simplifi-

cations made in the thumb of artificial hands in the loss of ability to grasp in real life 

applications. These objective methods could help designers to obtain hand designs 

with improved grasping abilities. The Kapandji opposition test (KOT) [13], also 
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called total opposition test, can be of interest for this goal. The KOT was proposed as 

a simple method for assessing the opposition of the thumb in pathological hands and 

is used in current clinical practice. It involves touching different areas of the four long 

fingers with the tip of the thumb (Fig. 3). The score obtained in the test ranges from 1 

to 10 depending on the last reached area, being the test performed in the order indi-

cated in Table 1. 

Table 1. Scores according to the Kapandji opposition test (KOT) 

Score Finger Area of contact 

1 Index Lateral side of the second phalanx 

2 Index Lateral side of the third phalanx 

3 Index Tip 

4 Middle Tip 

5 Ring Tip 

6 Little Tip 

7 Little DIP crease 

8 Little PIP crease 

9 Little Proximal crease 

10 - Distal volar crease of the hand 

 

Fig. 3. Areas to touch with the thumb tip in the Kapandji opposition test (KOT) 

Grebenstein et al. [8] considered that the KOT includes motion of the fingers and the 

thumb sufficient to evaluate the manipulation abilities. Other authors used the KOT to 

evaluate the functionality and anthropomorphism of artificial hands. Shin et al. [14] 

used the KOT to analytically analyze a new dexterous robot hand for delicate object 

grasping. Chalon et al. [15] used the KOT to optimize the thumb of the Awiwi Hand 

obtaining the maximum score at KOT. Roa et al. [16] explored the relationship be-

tween kinematic design and manipulation performance of robotic hands, to analyze it 
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they performed the KOT on seven thumb placements of a modular robotic hand. 

Deimel et al. [17] also assessed the dexterity of the opposable thumb of a soft robotic 

hand using the KOT. Cerruti et al. [18] used the KOT to validate the thumb base 

placement of a kinematic model of an anthropomorphic robotic hand used for gestur-

ing and grasping.  

Some of the above mentioned studies that used the KOT made some adaptation of 

the test. For example, in some studies the authors did not consider the positions 1 and 

2 corresponding to contact of the thumb with the lateral side of the index [16,17] or 

removed some positions in the little finger [17]. Contrary, in some cases additional 

positions in the middle and ring fingers are included [16,17]. In most of these studies 

the KOT is only used to evaluate different hand designs. In some of them the authors 

used the KOT to optimize the thumb base placement [15,16,18]. In [15] the optimiza-

tion of the thumb included also as parameters the orientation of the joints, but the 

details about the cost function are not provided. To our knowledge, no previous study 

made an optimization of the TKC including simultaneously base placement, link 

lengths and all the joint orientation angles. 

Following these approaches, in this study the objective was to define a computa-

tional method to optimize the whole TKC (base placement, link lengths and joint 

orientation angles) of an artificial hand based on its performance in the KOT. This 

method could be useful to improve the design of prosthetic and robotic hands regard-

ing thumb opposition, leading to a better object grasping and manipulation. The ap-

plication of the method involves defining an index, used in the cost function for opti-

mization, which provides a metric for rating thumb opposition in artificial hands. To 

test the method we applied it to a 3D-printed prosthetic hand developed by the au-

thors: the IMMA hand [19]. 

2 Materials and Methods 

2.1 IMMA Hand 

The IMMA hand [19] is a low-cost tendon-driven anthropomorphic prosthetic hand 

designed by the authors. It has five fingers with three phalanges per finger and 6 DoFs 

in total: independent flexion/extension in each of the four long fingers, and two inde-

pendent DoFs for the thumb. The MCP and IP joints of the thumb are actuated both 

with the same tendon for flexion and the CMC joint is actuated by a separate tendon 

for circumduction. Fig. 4 shows the TKC of the IMMA hand. Fig. 5 shows the 

achievable target areas of the KOT by the right IMMA hand prototype. As is shown, 

its score is 4, because the positions 5 to 10 (see Table 1) cannot be reached. 
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Fig. 4. Thumb’s kinematic chain (TKC) of the IMMA hand. 

 

Fig. 5. IMMA hand performing the Kapandji opposition test (KOT) in positions 1 (left) to 5 

(right). 

2.2 Computational Model 

Hand Model. The model of the hand used in this study has a maximum of four 

straight links for each digit and a maximum of five digits. To define the kinematic 

chain of the hand, a local coordinate system (LCS) for each link has to be defined. In 

this study the LCS of each link is located in the middle of the joint with the proximal 

link. The LCSs were defined under the following criteria: Z-axis coincident with the 

flexion/extension axis of the joint, and oriented so that the flexion motion corresponds 

to a positive rotation around Z, X-axis aligned in palmar-dorsal direction pointing 

dorsally, thus indicating the abduction/adduction axis in the joint and Y-axis defining 

a right-handed coordinate system with the previous ones, resulting in a distal direc-

tion, in other words, pointing in the direction towards the tip of the fingers. This con-

vention for the orientation of the axes is similar to that proposed by the ISB [20], with 

the difference that the X and Y axes have opposite positive directions. With this selec-

tion the position of each LCS relative to the proximal one in the kinematic chain pre-

sents positive values in the translation along the Y axis. 

Therefore, the kinematic chain of the hand is defined in the reference position with 

the three displacements and rotations of each LCS with respect to the immediate prox-

imal in the chain. The wrist is taken as the fixed LCS for all the digits. Specifically, 
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the LCS of link j (1: metacarpus, 2: proximal phalanx, 3: intermediate phalanx, 4: 

distal phalanx) of the digit i (1: thumb, 2: index, 3: middle, 4: ring, 5: little) is defined 

with the Equation 1. 

      [                          
        

        
]                              (1) 

where the first three elements of the vector correspond to the translation vector of 

LCSi,j with respect to LCSi,j-1 and the last three to the Euler angles with sequence of 

rotations XZY to orient LCSi,j-1 as LCSi,j. At each finger, a last LCS (j=5) is added, 

positioned at its end (fingertip), with its Y axis in the proximal-distal direction and its 

X axis in the palmar-dorsal direction. 

For each digit a maximum of six DoFs can be included in the hand model, two in 

CMC and MCP joints and one in the IP joints. Universal joints are considered in those 

with two DoFs. The hand position can be obtained straightforward by direct kinemat-

ics using the Equation 1 and the rotation angles in the joints. 

Cost Function. To optimize the TKC we defined a cost function based on the KOT 

postures. We defined the position error εi for each posture i of the KOT as the mini-

mum possible distance between the thumb tip and the corresponding target point of 

the test while the hand is moved within its workspace (Equation 2). 

                   )) (2) 

where    is the target point,    the thumb tip point, dist is a function defining the 

distance between two points and min is a function obtaining the minimum possible 

value of dist when moving the hand within its workspace. 

Given a hand geometry and the range of motion of their joints, the calculation of 

the    involves an optimization. The variables for this optimization are the joint rota-

tion angles of the hand. If these angles are coupled with a linkage, the number of vari-

ables for the optimization can be reduced, because the coupled rotation angles can be 

obtained from the coupling equations.  

The final cost function for the optimization of the TKC was defined with Equation 

3 as a relative mean position error (MPE) for the different positions of the KOT. 

     ∑       (3) 

where wi is a weighting coefficient for the posture i of the KOT. Dividing the 

lengths of the kinematic chain by the hand length is convenient for having a non-

dimensional index and making the evaluation independent of the hand size. 

Optimization algorithm. For optimizing the TKC based on the KOT, the MPE above 

defined (Equation 3) has to be minimized, being the optimization variables the pa-

rameters defining the TKC: base placement, joint angles orientation and links length. 

Depending on the designer interest, it is also possible to limit the variables to only 

some of those defining the TKC. As the calculation of the minimum MPE requires the 

previous computation of the position errors    (Equation 2), the computational model 
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involves two nested optimizations. Matlab was used in this study for the computation. 

The built-in Genetic Algorithm (‘ga’) was used for the optimization of the TKC 

whereas ‘fmincon’ function for non-linear optimization was used for the nested opti-

mization corresponding to each position of the KOT. Table 2 shows the pseudocode 

used in the computation model. 

Table 2. Pseudocode for optimizing the TKC. 

Define OpOpt_1=Stop_Optimization_Options_Genetic_Algorithm on MPE 

Define OpOpt_2=Stop_Optimization_Options_FMINCON_Algorithm on    

Define wi for MPE 

While OpOpt_1 not accomplished 

TKC updated by Genetic Algorithm 

For each KOT position i 

      Initialize JA=Joint_Rotation_Angles  

           While OpOpt_2 not accomplished 

                  JA updated by FMINCON algorithm 

             Compute    for TKC and JA 

           End 

End 

Compute MPE from    and wi 

End 

Output optimum TKC 

2.3 Case study: Optimization of the TKC of the IMMA hand 

A simplified model of the IMMA hand [19] was created in Matlab (Fig. 6). Table 3 

shows the components of the translation-rotation vectors that define the kinematic 

chain of the hand (vectors vi,j, Equation 1), where x, y, z are non-dimensional values 

related to the hand length (distance from the wrist to the end of the middle finger) and 

θx, θy, θz angles are the Euler rotations around the X, Y, Z axes, respectively, with 

rotation order XZY, expressed in radians. The joints range of motion (ROM) were 

defined based on the hand prototype (Fig. 5) and are shown in Table 4. For the abduc-

tion/adduction movement in the MCP joints we included a small ROM accounting for 

the flexibility of the joints in the prototype. 

Table 3. Data for the kinematic chain of the IMMA hand according to Equation 1 (lengths are 

non-dimensional values related to the hand length and Euler angles are in radians). 

Links vi,j Thumb Index Middle Ring Little 

Metacarpal x 0 0 0 0 0 

y 0.2169 0 0 0 0 

z 0.1577 0 0 0 0 

θx 1.5708 0 0 0 0 

θy 0 0 0 0 0 

θz 0 0 0 0 0 

Proximal phalanx x 0 0 0 0 0 

y 0.1320 0.4588 0.4370 0.4192 0.3874 
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z 0 0.1188 0.0016 -0.1054 -0.2004 

θx 0 0.0873 0 -0.1250 -0.2618 

θy -0.7854 0 0 0 0 

θz 0 0 0 0 0 

Intermediate phalanx x 0 0 0 0 0 

y 0.2158 0.2456 0.2725 0.2291 0.1968 

z 0 0 0 0 0 

θx 0 0 0 0 0 

θy 0 0 0 0 0 

θz 0 0 0 0 0 

Distal phalanx x 0 0 0 0 0 

y 0.1659 0.1399 0.1623 0.1509 0.0590 

z 0 0 0 0 0 

θx 0 0 0 0 0 

θy 0 0 0 0 0 

θz 0 0 0 0 0 

Fingertip x 0 0 0 0 0 

y 0 0.1243 0.1324 0.1324 0.1135 

z 0 0 0 0 0 

θx 0 0 0 0 0 

θy 0 0 0 0 0 

θz 0 0 0 0 0 

Table 4. Joints range of motion (minimum angle/maximum angle) in degrees for the IMMA 

hand (add/abd: adduction/abduction, ext/flex: extension/flexion). 

Joint Thumb Index Middle Ring Little 

CMC add/abd 0/0 0/0 0/0 0/0 0/0 

CMC ext/flex -10/70 0/0 0/0 0/0 0/0 

MCP add/abd -1/1 -1/1 -1/1 -1/1 -1/1 

MCP ext/flex -11/55 -20/85 -17/86.3 -15/70 -20/65 

PIP ext/flex -13/55 -20/60 -17/75 -20/75 -20/65 

DIP ext/flex 0/0 -15/50 -20/75 -20/70 -20/75 
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Fig. 6. Simplified model of the right IMMA hand. Colored arrows in the joints indicate local 

coordinate systems (LCSs): green for Z-axis, red for Y-axis, blue for X-axis. 

For the optimization of the TKC in this case study the position 10 of the KOT (see 

Fig. 3) was not considered because it was difficult to locate in a simplified model of 

the hand. The positions 1 and 2 where considered in the more proximal point of the 

corresponding index phalanx. In Equation 3 positions considered were weighted 

equally, so we used wi=1/9 for i=1 to 9 and w10=0. Moreover, in this case the joint 

rotation angles of the hand were considered independent, without taking into account 

the coupling equations resulting from the actuation of several joints with a same ten-

don. The variables for the optimization were the orientation of the CMC and MCP 

joints, the thumb’s links length and the position of the CMC joint. The feasible range 

of these variables, upper and lower bounds for the optimization, is shown in Table 5. 

The default optimization options were considered for the genetic algorithm of Matlab 

(‘ga’) except 'FitnessLimit' and 'FunctionTolerance' both set to 0.001 and 'Popula-

tionSize' set to 50. For the non-linear optimization with Matlab built-in function 

(‘fmincon’) the default optimization options were also considered except 'MaxFunc-

tionEvaluations' set to 10000 and 'StepTolerance' set to 0.0001. 

Table 5. Lower and upper bounds (Min/Max) of the optimization variables in this case study 

(lengths are non-dimensional values related to the hand length and Euler angles are in radians). 

vi,j component Min Max Anatomical meaning 

x1,1 -0.3 0 CMC position 

y1,1 0.1 0.3 

z1,1 0.1 0.3 
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θx1,1 𝜋/2 𝜋 CMC orientation 

y1,2 0.1 0.3 Metacarpal length 

θy1,2 -𝜋/2 𝜋/2 MCP orientation 

y1,3 0.1 0.3 Proximal phalanx length 

y1,4 0.1 0.3 Distal phalanx length 

3 Results 

Fig. 7 shows the position error (  , Eq. 2) for the the initial IMMA hand and for the 

IMMA hand after optimizing the TKC following the method indicated in Table 2. 

According to the simplified model the position 1 of the KOT is not reachable by the 

original hand nor by the improved one. Without considering this position, the score in 

the KOT improved from 3 in the original hand to 5 in the model with optimized TKC. 

The position error for positions 6 to 8 improved significantly. The MPE in the opti-

mized model was reduced to about one third with respect to the original model (0.121 

to 0.035). 

 

Fig. 7. Position error (  , Eq. 2) for each posture of KOT and mean position error (MPE). 

The kinematic chain of the improved hand can be seen in Fig. 8 and the Table 6 

shows the comparison of the initial and optimized values of the parameters for the 

TKC. From the comparison of the thumb in Fig. 6 and Fig. 8 it can be observed that 

the base placement of the thumb, i.e. the CMC joint, is closer to the center of the palm 

in the optimized design, the orientation of the MCP joint is slightly varied and the 

phalanges length has changed, being the distal phalanx longer in the optimized de-

sign. 
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Fig. 8. Kinematic chain of the right IMMA hand with optimized TKC. 

Table 6. Initial and optimized parameters of the TKC for the IMMA hand (lengths are non-

dimensional values related to the hand length and Euler angles are in radians). 

vi,j component  Initial Optimized 

x1,1  0.000 0.000 

y1,1  0.2169 0.3000 

z1,1  0.1577 0.1002 

θx1,1  1.5708 1.5714 

y1,2  0.1320 0.1000 

θy1,2  -0.7854 -0.3855 

y1,3  0.2158 0.1094 

y1,4  0.1659 0.3000 

Fifty-nine generations were necessary in the genetic algorithm for the optimization 

of the TKC and the execution took about 10 hours in an Intel Core i7 2.6 GHz proces-

sor. Fig. 9 shows the evolution of the mean and best fitness values, corresponding to 

MPE, for the different generations of the genetic algorithm. The 50 individuals of the 

last generation of the genetic algorithm were all very similar among them, represent-

ing quite similar TKCs. 
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Fig. 9. Fitness value (MPE) evolution among generations of the genetic algorithm for optimiz-

ing the thumb’s kinematic chain (TKC). 

4 Discussion 

We have presented a new method to optimize the TKC of an artificial hand based on 

their performance in the KOT. Despite the KOT has been taken into account in previ-

ous studies for the design of artificial hands [15,16,18] none of these previous studies 

presented a clear computational method able to do it following a formal optimization 

procedure and including all the parameters defining the TKC. The methodology pre-

sented here, using a double nested optimization method (Table 2) allows considering 

all the KOT postures for the optimization or only some of them. We have defined an 

index quantifying the mean weighted position error (MPE) based on the position error 

for each KOT posture, which can be useful as a method to compare the opposition 

performance of an artificial hand. The weight associated to each posture in this index 

can easily be tuned by the designer depending on their design specifications. Moreo-

ver, the optimization procedure allows including as variables any of the parameters 

defining the TKC or even other parameters of the kinematic chain of the hand. 

In this study the methodology was applied, as a case study, to the optimization of 

the TKC of the IMMA hand, a 3D-printed cable driven hand developed by the au-

thors. The MPE in the optimized design was reduced to less than one third of that of 

the original design, showing the effectiveness of the computational method. Due to 

the simplification of the hand model, whose segments are considered as straight lines, 

the computational model is only an approximation to the real prototype and some 

differences can be observed in the KOT score obtained with the real prototype and 

with the model. As Fig. 5 shows, the original prototype of the IMMA hand, can 

achieve the positions 1 to 4 of the KOT. Nevertheless, Fig. 7 shows a non-null posi-

tion error in the model for positions 1 and 4. This could be attributed to the fact that 

the width and thickness of the phalanges were neglected in the simplified model and 

also to the fact that positions 1 and 2 where considered in the more proximal point of 
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the corresponding index phalanx. Taking this into account, the positions 2 to 8 in the 

improved model can be considered as reachable in practical terms, whereas only the 

positions 2 to 4 are clearly reachable in the initial hand. Regarding the position 1, it 

could also be reachable depending on the position taken for the target point in the 

middle phalange of the index finger (Fig. 10). 

 

Fig. 10. Posture 1 of the Kapandji opposition test (KOT). Left: original IMMA hand. Right: 

optimized IMMA hand. 

Some of the parameters of the optimized model (Table 6) are in the upper or lower 

bounds selected in the optimization (Table 5), which could indicate that widening the 

allowable range for the parameters could produce TKC designs able to reduce even 

more the MPE. This has not been analyzed in the present study but is a possible future 

work. 

The optimized design obtained in this study has a thumb base location more distal, 

favoring the score in the KOT, but probably making more difficult grasping big ob-

jects. The total length of the optimized TKC is similar to that of the original design, 

but the proportion of the segments changed, with a longer distal phalanx and shorter 

metacarpal and proximal phalanges as compared to the original model. One possible 

reason for this is that this configuration helps to reduce the position error in the last 

postures of the KOT (7 to 9). We analyzed the changes in the results when the KOT 

positions included in the MPE are restricted to positions 1 to 6, reducing the effect of 

little finger opposition in the MPE. Fig. 11 shows a graphical comparison of the TKC 

parameters of the original design and the optimized designs including positions 1 to 9 

or 1 to 6 in the MPE, as well as the upper and lower bounds considered for the opti-

mization. The results indicate that the optimized TKCs including positions 1 to 9 or 1 

to 6 are very similar. 
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Fig. 11. Thumb’s kinematic chain (TKC) parameters (angles θx_1,1 and θy_1,2 divided by 2𝜋) for 

the original design of the IMMA hand and for the optimized versions obtained including posi-

tions 1-9 or 1-6 in the MPE. Upper (Max) and lower (Min) bounds for the optimization are 

shown with dotted lines. 

Additional simulations in Matlab for the original IMMA hand and the optimized de-

sign suggest that the reduction of MPE in KOT does not guarantee a better design 

according to other criteria when comparing with the human hand. We compared both 

designs with three different anthropomorphic indexes of the kinematic chain of the 

whole hand [21] and the performance was similar, with differences lower to 3%, for 

two of them: one based on the comparison of the kinematic chain with that of the 

human hand; a second based on grasping postures for some primitive objects (sphere, 

cylinder and prism). However, the optimized design had a worse performance, 25% 

lower, in the index defined considering the intersection of the workspaces of the arti-

ficial hand and the human hand. This result is aligned with the observation of Roa et 

al. [16] about the difficulties to find direct correlations between the Kapandji test 

score and the size of the functional workspace. This aspect should be better investi-

gated in the next future. The performance of the optimized design of the IMMA hand 

with respect to the original design should also be compared in the next future with 

physical prototypes, using grasping benchmarks. 

The index based on the MPE defined in this study is complementary to other an-

thropomorphism indexes developed by the authors and existing in the literature. Prob-

ably an adequate combination of these indexes can help to improve the hand’s kine-

matic chain and should be investigated, as well as the extension of the optimization to 

other parameters of the kinematic chain of the hand, not restricted to the thumb. 
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5 Conclusion 

A straightforward methodology to analytically optimize the kinematic chain of the 

thumb of an artificial hand based on the performance in the KOT has been presented. 

The cost function defined for the optimization (MPE) is a weighted mean position 

error when trying to reproduce the KOT postures and can be used also as a metric to 

quantify thumb opposition in the hand. The application of the method to the IMMA 

hand thumb allowed defining a new TKC reducing the MPE to near one third of that 

of the original design and increasing significantly the number of reachable positions 

in the KOT. However, additional simulations showed that the optimized design could 

have a worse outcome according to other index considering the intersection between 

the workspace of the artificial hand and that of the human hand. Benchmarking grasp-

ing test on physical prototypes could give additional insights about the usefulness of 

the proposed methodology. The metric proposed based on the KOT can be used di-

rectly or in combination with other to improve the kinematic chain of artificial hands. 
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