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Abstract Shape composition is a challenge in spatial
reasoning. Qualitative Shape Descriptors (QSD) have pro-
ven to be rotation and location invariant, which make
them useful in spatial reasoning tests. QSD uses quali-
tative representations for angles and lengths, but their
composition operations have not been defined before. In
this paper, the Qualitative Model for Angles (QMAngles)
and the Qualitative Model for Lengths (QMLengths) are
presented in detail by describing their arity, reference sys-
tems and operators. Their operators are defined taking
the well-known temporal model by Allen (1983) as a ref-
erence. Moreover, composition tables are built, and the
composition relations of qualitative angles and lengths are
proved using their geometric counterparts. The correct-
ness of these composition tables is also proved compu-
tationally using a logic program implemented using Swi-
Prolog.

Keywords qualitative representation ¨ qualitative
reasoning ¨ spatial reasoning ¨ shapes ¨ qualitative
angles ¨ qualitative lengths ¨ composition tables ¨
correctness ¨ geometry

1 Introduction

Qualitative modelling (Forbus, 2011) concerns the repre-
sentations and reasoning that people use to understand
continuous aspects of the world. Qualitative Spatial and
Temporal Representations and Reasoning (QSTR) (Stock,
1997; Cohn and Renz, 2007; Ligozat, 2011) models and
reasons about time (i.e. coincidence, order, concurrency,
overlap, granularity, etc.) and also about properties of
space (i.e. topology, location, direction, proximity, geom-
etry, intersection, etc.) and its evolution between contin-
uous neighbouring situations. So maintaining the consis-
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tency in space and time are the basics in qualitative rea-
soning when solving spatial and temporal problems.

Shape composition is a challenge in spatial reason-
ing. Qualitative Shape Descriptors (QSD) have proven to
be rotation and location invariant, have been applied to
compute shape similarity (Falomir et al, 2013a), and they
have also been effective in mosaic building (Falomir et al,
2013b). This paper is a step towards proving that QSD
can be used for solving shape composition tasks (e.g. sol-
ving Tangram puzzles). Qualitative descriptors of shape
include qualitative angles and qualitative lengths that de-
scribe the boundary of objects. When juxtaposing two
objects, that is, placing them close together, some angles
and lengths of the final boundary are transformed. For in-
ferring the resulting angles and lengths of the final shape,
composition tables can be built.

The main contribution of this paper is presenting the
operations that can be applied to the qualitative model
for angles and lengths which are defined taking the well-
known Allen’s temporal relations (Allen, 1983; Allen and
Hayes, 1985) as a reference. Using these operators, the
geometric counterparts of the composition of qualitative
angles and lengths are shown. Moreover, the composition
relations of angles and lengths needed to solve shape com-
position challenges (see Section 3) in LogC-QSD (Pich
and Falomir, 2018) are provided and their correctness is
proved.

The rest of this paper is organized as follows. Sec-
tion 2 presents related work in the literature. Section
3 presents the challenge of shape composition in spa-
tial tests. Section 4 provides an outline of the Quali-
tative Shape Descriptor (QSD) (Falomir et al, 2013a)
which can be used for describing the objects involved in
the spatial reasoning text. Section 5 details the Quali-
tative Model for describing Lengths (QMLengths), its ar-
ity, its reference system and its operators, and it also
presents its geometric counterparts. The composition of
qualitative angles with respect to these operators is pre-
sented and its correctness is also proved. Section 6 details
the Qualitative Model for describing Angles (QMAngles),
its arity, its reference system and its operators, and it
also presents their geometric counterparts. The inverse
and composition relations of qualitative angles with res-
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pect to the operators is also presented and its correct-
ness is also proved. Section 7 presents a Swi-Prolog im-
plementation of both models QMLengths and QMAngles
to prove its correctness computationally. Section 8 shows
how both models can be used for shape composition (Pich
and Falomir, 2018) using an example. Section 9 discusses
about the nature of the provided composition tables. Fi-
nally, conclusions and future work are provided.

2 Related Work

Qualitative calculus and its algebraic properties have been
studied in the literature (Ligozat, 2001; Ligozat and Renz,
2004). However, there is very few research works dedi-
cated to prove the validity of composition tables used by
qualitative calculi:

– Wolter (2012) analysed the algebraic properties of the
following qualitative calculi: Allen’s temporal interval
algebra (Allen, 1983), the point calculus (Vilain et al,
1990), the qualitative spatial LR calculus (Ligozat,
1993) and the double cross calculus (DCC) (Freksa,
1992). The computational properties of these calculi
were analysed using SparQ (Wallgrün et al, 2007).

– Ghourabi and Takahashi (2016) also proved the va-
lidity of the composition table used in the temporal
calculus by Allen (1983).

– Dylla et al (2017) carried out a detailed survey on al-
gebraic properties of qualitative spatio-temporal cal-
culi which included also proofs for the 9-Intersection
calculus of simple 2D regions (Egenhofer, 1991), the
cardinal direction calculus (Frank, 1991; Grigni et al,
1995), the calculus for the oriented point-relation alge-
bra (OPRA) (Moratz, 2006; Mossakowski and Moratz,
2012), the qualitative trajectory calculus (QT C) (Van de
Weghe, 2004; Van de Weghe et al, 2005), the region
connection calculus (RCC-5, RCC-8) (Randell et al,
1992), etc. However, this survey did not included any
proof for demonstrating qualitative angle composition
and qualitative lengths composition.

All these works inspired the current paper, whose main
aim is to proof the validity of the composition tables
used previously by the LogC-QSD approach (Pich and
Falomir, 2018) in shape composition operations. The con-
struction of these tables is presented and discussed here.

As far as the authors are concerned, there is no pre-
vious work that prove composition tables relating angles
and lengths of a shape. Museros et al (2011) presented
composition tables of angles and lengths. However, there
is no proof of the validity of these tables, which cor-
respond to a coarse shape descriptor and whose tables
are also different from those used by the LogC-QSD ap-
proach (Pich and Falomir, 2018).

3 The Challenge

Spatial cognition studies have shown that there is a strong
link between success in Science, Technology, Engineering
and Math (STEM) disciplines and spatial skills (New-
combe, 2010; Wai et al, 2009). Spatial reasoning questions

in psychometric tests (i.e. those by Mcmunn (2010)) in-
volve object composition questions. An example of a test
question is showed in Fig. 1. The instructions provided are
the following: Take a look to the presented shapes. Note
the letters on the side of each shape. Join these shapes to-
gether with the corresponding letters to make the corres-
ponding shape. Look at the given shapes and decide which
of the examples matches the final shape built when all the
shapes joined together by the corresponding letters. You
have 3 minutes to answer 8 questions.

Fig. 1 Drawings reproducing Question 3 at Psychometric Tests
by Mcmunn (2010). Note that the correct answer is the option C
and any of its rotations.

The shapes of the objects showed in Fig. 1 can be
qualitatively described by the Qualitative Shape Descrip-
tor (QSD) by Falomir et al (2013a) and combined with a
network of connections and composition operators regard-
ing the angles and lengths, the final composed shape can
be inferred (Pich and Falomir, 2018). This paper presents
and prove the geometric correctness of these composition
tables.

4 The Qualitative Shape Descriptor (QSD˚)

Given a two-dimensional object, the Qualitative Shape
Description (QSD) (Falomir et al, 2013a) abstracts the
relevant points of its boundary. Thus a set of relevant
points, denoted by {P0 ,P1 ,...,PN }, determines the shape
of the object.

Each relevant point Pi is described depending on the
relation appearing between Pi and the previous point,
Pi´1, and Pi and the following point, Pi`1:

QSDipPi´1,Pi,Pi`1q.

Each QSDi is composed by the following features,
which are defined as:

QSDi = xECi, Ai | TCi, Ci, Liy

where ECi describes the Edges Connected at the relevant
point Pi; the feature Ai or TCi describes the Angle or the
Type of Curvature at Pi; the Li describes the length of
the edges; and Ci describes the convexity at Pi.
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– ECi describes the Edges Connected at the relevant
point Pi as: {line-line, line-curve, curve-line, curve-curve,
curvature-point};
– Ai describes the Angle at Pi (which is a not a cur-
vature point) as: {very-acute (va), half-right (hr), acute
(a), right (r), obtuse (o), 3q-right (3qr), very-obtuse (vo),
plane (pl)};
– TCi describes the Type of Curvature at Pi (which is
a curvature point) as: {very-acute, acute, semicircular,
plane, very-plane};
– Li of the two edges connected by Pi, described quali-
tatively by: {smaller-short (ss), short (s), larger-short
(ls), quarter-longest (ql), smaller-medium (sm), medium
(m), larger-medium (lm), half-longest (hl), smaller-
long (sl), long (l), larger-long (ll), longest (lst)};
– Ci describes the convexity at the relevant point Pi as:
{convex (cx), concave (cv)}.

Using an extended QSD˚ descriptor, a shape can be
expressed as a set of:

– logical facts as:
QSD˚ Ď @P PObject DhasQSDpointpObject,P,X,Y,
qsdpECLabel,ATCLabel,CLabel,LLabelqq.

– or lists of strings extracted from these facts, such as:
[[EC1, A1|TC1, L1, C1],¨ ¨ ¨ ,[ECn, An|TCn, Ln, Cn]]
where n is the total number of relevant points in the
object, starting by the closest to the upper-left corner
of the object, and the rest of the relevant points are
arranged cyclically in a clockwise direction.

For example, the QSD˚ corresponding to the object
in Fig. 5 is the following set of logical facts:

hasQSDpoint(obj1, p1, -1.2, 4, line-line, o, cx, m).
hasQSDpoint(obj1, p2, 5, 9, line-line, o, cx, m).
hasQSDpoint(obj1, p3, 11.2, 4, line-line, o, cx, m).
hasQSDpoint(obj1, p4, 8, -1, line-line, o, cx, m).
hasQSDpoint(obj1, p5, -1.2, 4, line-line, o, cx, m).

p2

p3

p4p5

p1

Fig. 2 Example of an object and its shape determining points:
p1, p2, p3, p4, p5.

Note that p1 is located at coordinate (-1.2,4), it connects
two straight lines, it defines an obtuse and convex angle,
and its length is medium. The rest of shape determining
points are described similarly.

The QSD˚ can also be represented as a Prolog list:
[ [line-line,o,cx,m], [line-line,o,cx,m], [line-line,o,cx,m],

[line-line,o,cx,m], [line-line,o,cx,m] ]
It is important to note that the reference systems

that define the qualitative concepts representing the fea-
tures Angle, Type of Curvature and Compared Length are
based on interval values (AINT , TCINT and LINT , re-
spectively). Thus they can be calibrated using different
granularities according to the final application and sys-
tem.

5 The Qualitative Model for Length

A detailed description for the qualitative length magni-
tude representation is provided in this section, where its
arity, reference system and operators are explained.

Length = xLA, LRS , LOP y

5.1 Length Arity (LA)

The number of entities implied in each relation is defined
as the arity. Length is defined geometrically by a straight
segment with a starting and ending point a1a. The length
magnitude is obtained by operating on those points: a´
a1. For simplicity, it can be assumed that a1 “ 0, so the
length magnitude is determined by a.

a1 a

Fig. 3 Length is defined geometrically by a segment with a start-
ing and ending point a1a.

Note that QSD˚ can describe points that connect
straight lines but also curves. So, as the length of straight
lines has always arity two, that is it is always calculated
by two points, the arity corresponding to the length of
a curve can be larger, depending on how it is calculated
(e.g. a calculation by approximation to straight segments
involves that the finer the approximation, the use of more
points, so the larger the arity).

5.2 Length Reference System (LRS)

A reference system (RS) is defined as the set of relations
between the objects and it depends on the level of granu-
larity considered. Formally, this set of relations contains a
set of qualitative symbols and a set of structure relations
which define the acceptance areas or interval values for
each qualitative symbol.

The length is a quantitative continuous magnitude
that can be compared and discretised using the following
Length Reference System or LRS = {uL, LLAB , LINT },
where uL or unit of Length refers to the chosen relation
for comparing edges; LLAB refers to the set of labels for
length; and LINT refers to the values of uL related to
each label. In general,

LLAB = { L1, L2, ..., LK}
LINT = { [0, l1], (l1, l2], ..., (lK´1,lK ] }

where K is the number of concepts used for defining
lengths.

In object composition operators, the length comes from
relating an edge from an object with another edge from
a different object. And, as all the objects involved in the
composition are known, the largest object is taken as a
reference and the rest of the edges are compared in rela-
tion to it. As Fig. 4 shows, the edges in Tangram pieces
are related to each other. Thus, this relation is used for
defining compared length relations in LRS. The selected
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values for LLAB and LINT are the following:

LLAB1 = {smaller-short (ss), short (s), larger-short
(ls), quarter-longest (ql), smaller-medium (sm),medium
(m), larger-medium (lm), half -longest (hl), smaller-
long (sl), long (l), larger-long (ll), longest (lst), larger-
than-longest (llst)}

LINT1 = {(0, a{4), a{4, (a{4, ha{4), ha{4, (ha{4,
a{2), a{2, (a{2, ha{2), ha{2, (ha{2, a), a, (a, ha), ha “?
a2`a2, (ha, 8)}

where a is the longest edge of the largest object, as it is
showed in Fig. 4. These relations are obtained by trigonom-
etry as Table 1 shows. Note that this discretisation of
length in LINT1 was chosen because it particularly fits
the relationships existing among the Tangram pieces as
Fig. 4 shows.

Fig. 4 Relations of length among Tangram pieces which are
taken as a baseline for LRS.

Table 1 Length Reference System (LRS).

LLAB LINT

smaller-short (ss) p0,a{4q
short (s) a{4
larger-short (ls) pa{4,ha{4q
quarter-longest (ql) ha{4
smaller-medium (sm) pha{4,a{2q
medium (m) a{2
larger-medium (lm) pa{2,ha{2q
half -longest (hl) ha{2
smaller-long (sl) pha{2,aq
long (l) a
larger-long (ll) pa,haq

longest (lst) ha“
a

a2`a2 “
?

2a2

larger-than-longest (llst) (ha, 8)

5.3 Length operators (LOP )

When composing lengths, the operators associated to a
representation correspond to the possible actions or situ-
ations in which the lengths can take part. So, which are
the operations we can carry out with qualitative lengths?

Allen’s calculus (Allen, 1983; Allen and Hayes, 1985),
which presents 13 binary relations that define all pos-
sible time arrangements between two events –equal, be-
fore/after, meets/is met by, overlaps/is overlapped by, start-
s/is started by, finishes/is finished by, during/includes,

see Table 2– can be taken as a reference for studying
compared length relations.

Table 2 Allen’s time relations (Allen, 1983; Allen and Hayes,
1985).

p
q (p,q)P e p equals q

p
q (p,q)P b

(q,p)P b´1
p is before q
q is after p

p q (p,q)P m
(q,p)P m´1

p meets q
q is met by p

p
q (p,q)P ov

(q,p)P ov´1

p overlaps q
q is overlapped

by p
p

q (p,q)P s
(q,p)P s´1

p starts q
q is started by

p
p

q (p,q)P f
(q,p)P f´1

p finishes q
q is finished

by p
p
q (p,q)P d

(q,p)P d´1
p during q
q includes p

Thus, relations between lengths can be defined as Allen
defined relations between time intervals. The operations
that can be used for length composition regarding the
edge of the pieces are the following:

LOP “ tmeetpmq,startpsq,finishpfqu

The relation meet (m) is shown by Fig. 1 (option A):
note that the left edge of the triangle meets the left edge
of the square, so they have ending and starting points
in common and therefore, the final length of the shape
boundary can be calculated by composition.

The relation start (s) is shown by Fig. 1 (option A):
note that the down edge of the triangle starts the up-
per edge of the square, so they have both starting points
in common and therefore, the final length of the shape
boundary can be calculated by composition.

The relation finish (f) is shown by Fig. 1 (option D):
note that the down edge of the pentagon is finished by
the upper edge of the triangle, so they have both ending
points in common and therefore, the final length of the
shape boundary can be calculated by composition.

However, our study case involves object composition
and therefore, some restrictions are involved, e.g. over-
lapping of objects is not allowed. Thus, these are the re-
lations between lengths which do not allow composition:

– equal, note that if two edges are juxtaposed and they
are equal, there is no length feature to describe by the
QSD. For example, in Fig. 1 (option A) the down edge
of the square and the upper edge of the pentagon, they
are equal and therefore, they do not take part in the
boundary of the final shape.

– before/after, note that there is no juxtaposition of
lengths in this case.

– overlap/is overlapped and during/includes, note that,
in this cases, there is not enough known common points,
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so that the new lengths can be calculated qualitatively
by composition. So, for these cases, new quantitative
points must be found out.

5.4 Composition of Qualitative Lengths

Let pi, qi be two points described according to the QSD˚,

QSDppi´1,pi,pi`1q

QSDpqi´1, qi, qi`1q.

Then, let us name the length of the segments starting
at pi and qi as Lp,Lq, respectively, which are defined as:

Lp “ Lpipi`1

Lq “ Lqiqi`1 .

If Lp and Lq meetpmq, that is, Lq starts as Lp ends,
Lpq “ Lpiqi`1 , then, they can be composed as follows:

compositionLpLp,Lqq “ xLpqy

where Lp, Lq and Lpq are described according to the
Length Reference System (LRS). The resulting length
Lpq is obtained according to the composition table shown
in Table 3.

If Lp and Lq startpsq together, then Lpq “ Lpi`1qi`1 .
And if Lp and Lq finishpfq together, then Lpq “ Lpiqi

.
Thus a decomposition is required in order to find the fi-
nal length at the corresponding edge. This decomposition
operation can be easily obtained from Table 3 since:

decompositionLpLX ,LY q “ LZ Ø

compositionLpLX ,LZq“LY Ø compositionLpLZ ,LY q“LX

For that, the greater length is selected as Lpq and the
shorter as Lp. Thus, Lq is calculated by finding all the
entries of the table that when combined with Lp produce
Lpq.

5.5 Proof of the Geometric Correctness for the Length
Composition

In this section, the geometric correctness of the composi-
tion table showed in Table 3 is proved. In Table 2 it can be
observed that the LRS defines qualitative lengths as seg-
ments of exact length (e.g. short(s) = a{4) but also as seg-
ments with variable length (e.g. larger-long (ll) P pa,haq).
The composition table relates all the different combina-
tions of qualitative lengths, thus four possible cases of
compositions need to be distinguished:

– composing segments of exact length,
– composing segments of variable length,
– composing a segment of variable length with a seg-

ment of exact length, and
– composing a segment of exact length with a segment

of variable length.

In the following sections, these compositions are il-
lustrated geometrically and proved using examples taken
from the composition table.

5.5.1 Composing segments of exact length

Let S̄1 be a segment of exact length defined by a and b,
and S̄2 another segment of exact length defined by a1 and
b1. The composition of qualitative lengths defined by S̄1
and S̄2, that is, S̄1 ˝ S̄2, is a segment defined by a2 and
b2. This can be represented geometrically as follows:

a b

a1 b1

a2 b2

S̄1

S̄2

S̄1 ˝ S̄2

Without loss of generality let us assume that a“ a1 “
a2 “ 0. On the other hand, b2 is obtained from the previ-
ous data as follows:

b2 “ b` b1.

And then, in order to calculate S̄1˝ S̄2 it suffices to ob-
tain the qualitative length (LLAB) and its corresponding
interval (LINT ) where b2 is included.

Let us exemplify this by composing the following quali-
tative lengths from LRS:

LLAB LINT

S̄1 short (s) a{4
S̄2 medium (m) a{2

Then, b2 is first obtained as:
b2 “ b` b1 “ a{4`a{2“ 3{4a.

At this point the LLAB that fulfills that b2 PLINT ,
must be obtained. Thus note that

ha{2ă 3{4a Ø
?

2a2{2ă 3{4a Ø
?

22{2ă 3{4.
Then sl P S̄1 ˝ S̄2. Since sl is the only LLAB whose

interval includes b2. Therefore the composition s ˝m is
proved to correspond to the qualitative length smaller-
long (sl) indicated by the composition table in Table 3:

S̄1 ˝ S̄2 “ s˝m“ sl.

It is worth noting that, if S̄1 and S̄2 are exact seg-
ments, S̄1 ˝ S̄2 corresponds to only one concept of quali-
tative length (i.e. one value in the composition table).
That is, there is no uncertainty obtained.

Finally, note that the rest of the cases composing two
qualitative lengths LLAB involving two segments of exact
lengths are solved following the same procedure.

5.5.2 Composing segments of variable length

Let S̄1 be a segment of variable length defined by a, b1
and b2, and S̄2 another segment of variable length defined
by a1, b11 and b12. Then, S̄1˝S̄2 generates a segment defined
by a2, b21 and b22. This can be represented geometrically
as follows:

a b2b1

a1 b12b11

a2 b21 b22

S̄1

S̄2

S̄1 ˝ S̄2

Without loss of generality let us assume that a“ a1 “
a2 “ 0, and hence S̄1 ˝ S̄2 can be calculated by obtaining
b21 and b22 from the previous data as follows:

b21 “ b1` b
1
1
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ss s ls ql sm m lm hl sl l ll lst llst

ss {ss,s,ls,
ql,sm}

{ls,ql,
sm}

{ls,ql,
sm,m,
lm}

{sm,m,
lm}

{sm,m,
lm,hl,

sl}
{lm,hl,

sl}
{lm,hl,

sl} sl {sl,l,
ll} ll {ll,lst,

llst} llst llst

s {ls,ql,
sm} m lm lm {lm,hl,

sl} sl sl sl {sl,l,
ll} ll {ll,lst,

llst} llst llst

ls
{ls,ql,
sm,m,
lm}

lm lm lm {lm,hl,
sl} sl {sl,l,

ll}
{sl,l,
ll}

{sl,l,
ll} ll {ll,lst,

llst} llst llst

ql {sm,m,
lm} lm lm hl sl sl {sl,l,

ll} ll ll ll {ll,lst,
llst} llst llst

sm
{sm,m,
lm,hl,

sl}
{lm,hl,

sl}
{lm,hl,

sl} sl sl sl {sl,l,
ll} ll {ll,lst} {ll,lst} {ll,lst,

llst} llst llst

m {lm,hl,
sl} sl sl sl sl l ll ll {ll,lst,

llst} llst llst llst llst

lm {lm,hl,
sl} sl {sl,l,ll} {sl,l,ll} {sl,l,ll} ll ll ll {ll,lst,

llst} llst llst llst llst

hl sl sl {sl,l,ll} ll ll ll ll lst {ll,lst,
llst} llst llst llst llst

sl {sl,l,ll} {sl,l,ll} {sl,l,ll} ll {ll,lst,
llst}

{ll,lst,
llst}

{ll,lst,
llst}

{ll,lst,
llst} llst llst llst llst llst

l ll ll ll ll {ll,lst,
llst} llst llst llst llst llst llst llst llst

ll {ll,lst,
llst}

{ll,lst,
llst}

{ll,lst,
llst}

{ll,lst,
llst}

{ll,lst,
llst} llst llst llst llst llst llst llst llst

lst llst llst llst llst llst llst llst llst llst llst llst llst llst
llst llst llst llst llst llst llst llst llst llst llst llst llst llst

Table 3 Composition table for Length in QSD˚. Note that the lengths are abbreviated according to the LRS presented in Section 4.

b22 “ b2` b
1
2.

Then, the qualitative lengths LLAB must be obtained
which correspond to the intervals LINT that intersect
with the interval between b21 as the lower length value
and b22 as the upper length value.

Let us illustrate this with two examples. First, let
us consider the composition of the following qualitative
lengths from LRS:

LLAB LINT

S̄1 larger-medium (lm) pa{2,ha{2q
S̄2 larger-long (ll) pa,haq

S̄1 ˝ S̄2 is obtained as indicated previously:
b21 “ b1` b

1
1 “ 3a{2

b22 “ b2` b
1
2 “ 3ha{2.

Note that the only LLAB that fulfills the requirements
is llst. Indeed, ha “

?
2a ă 3a{2 and 3ha{2 ă 8, and

hence p3a{2,3ha{2q Ď pha,8q.
Thus, the composition lm˝ ll is proved to correspond

to the qualitative length larger-than-longest (llst) indi-
cated by the composition table in Table 3:

S̄1 ˝ S̄2 “ lm˝ ll “ llst.

Observe that llst is the longest interval and it is the
result of composing lengths with high magnitude.

As a second example, let us consider the following
lower magnitude lengths from LRS:

LLAB LINT

S̄1 smaller-short (ss) p0,a{4q
S̄2 smaller-medium (sm) pha{4,a{2q

S̄1 ˝ S̄2 is obtained as indicated previously:
b21 “ b1` b

1
1 “ ha{4

b22 “ b2` b
1
2 “ a{4`a{2“ 3a{4.

So let us study which LLAB fulfills that pb21, b22q inter-
sects LINT , and obtain that:

pha{4,3{4aqXpha{4,a{2q “ H;
a{2Xpha{4,3a{4q “ H;
pa{2,ha{2qXpha{4,3a{4q “ H ;
ha{2Xpha{4,3a{4q “ H;
pha{2,aqXpha{4,3a{4q “ H.
Hence the composition ss˝ss is proved to correspond

to the set of qualitative lengths indicated by the compo-
sition table in Table 3:

S̄1 ˝ S̄2 “ ss˝sm“ tsm,m,lm,hl,slu.

Note that, in this case, some uncertainty is obtained
by the composition operation since any of the previously
indicated results can be obtained.

5.5.3 Composing a segment of variable length with a
segment of exact length

Let S̄1 be a segment of variable length defined by a, b1
and b2, and S̄2 a segment of exact length defined by a1

and b1. Thus S̄1 ˝ S̄2 generates a segment defined by a2, b21
and b22. This can be represented geometrically as follows:

a b2b1

a1 b1

a2 b21 b22

S̄1

S̄2

S̄1 ˝ S̄2

Without loss of generality let us assume that a“ a1 “
a2 “ 0, and then b21 and b22 are obtained from the previous
data:

b21 “ b
1` b1

b22 “ b
1` b2.

Then, S̄1 ˝ S̄2 can be calculated by finding the LLAB

which fulfills that pb21, b22q intersects with the corresponding
LINT . Let us exemplify this by composing the following
qualitative lengths from LRS:

LLAB LINT

S̄1 quarter-longest (ql) ha{4
S̄2 larger-short (ls) pa{4,ha{4q
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S̄1 ˝ S̄2 is obtained as indicated previously:
b21“ b

1`b1“ ha{4`a{4“
?

2a2`a{4“ p
?

2`1qa{4«
0.6a

b22 “ b1` b2 “ ha{4`ha{4 “ ha{2 “
?

2a2 “
?

2a{2 «
0.7a.

Finally, note that pb21, b22q intersects only the inter-
val pa{2,ha{2q, that is, the LLAB associated to lm, since
a{2ă 0.6a and ha{2ą 0.7a.

Thus the composition ql ˝ ls is proved to correspond
to the qualitative length larger-medium (lm) indicated
by the composition table in Table 3:

S̄1 ˝ S̄2 “ ql ˝ ls“ lm.

Note that the rest of the cases composing two qualitative
lengths LLAB involving two segments of variable lengths
are solved and proved following the same procedure.

5.5.4 Composing a segment of exact length with a
segment of variable length

Let S̄1 be a segment of exact length defined by a and b,
and S̄2 a segment of variable length defined by a1, b11 and
b12. Thus S̄1 ˝ S̄2 generates a segment defined by a2, b21
and b22. This can be represented geometrically as follows:

a b
a’ b12b11

a” b21 b22

S̄1

S̄2

S̄1 ˝ S̄2

Without loss of generality let us assume that a“ a1 “
a2 “ 0, and b21 and b22 are obtained from the previous data
as follows:

b21 “ b
1` b1

b22 “ b
1
2` b.

Again, S̄1˝ S̄2 is calculated by finding the LLAB which
fulfills that pb21, b22q intersects with the corresponding LINT .
Let us exemplify this by composing the qualitative lengths
from LRS of last example. In this way it can be seen that
the composition ˝ is in fact a symmetric operation.

LLAB LINT

S̄1 larger-short (ls) pa{4,ha{4q
S̄2 quarter-longest (ql) ha{4.

S̄1 ˝ S̄2 is obtained as indicated previously:
b21“ b

1`b1“ a{4`ha{4“ a{4`
?

2a2“ p
?

2`1qa{4«
0.6a

b22 “ b1` b2 “ ha{4`ha{4 “ ha{2 “
?

2a2 “
?

2a{2 «
0.7a.

Finally, note that pb21, b22q intersects just with pa{2,ha{2q,
that is, the LLAB associated to lm, since a{2ă 0.6a and
ha{2ą 0.7a.

Thus the composition ql ˝ ls is proved to correspond
to the qualitative length larger-medium (lm) indicated
by the composition table in Table 3:

S̄1 ˝ S̄2 “ ls˝ ql “ lm.

6 The Qualitative Model for Angles

A detailed description for the qualitative angle magnitude
representation is provided in this section, where its arity,
reference system and operators are explained.

Angle = <AA, ARS , AOP >

6.1 Arity of Angle (AA)

The number of entities implied in each relation is defined
as the arity. An angular relation (α) is defined by three
points a, b, c. Thus the angular relationship is quaternary:
α is defined geometrically wrt the three independent en-
tities acb.

a
c α

b

‚

‚

‚

Fig. 5 Angle definition: α is defined geometrically wrt the three
independent entities acb.

6.2 Angle Reference System (ARS)

A reference system is composed of a set of relations de-
pending on the level of granularity considered which con-
tains a set of qualitative symbols and a set of structure
relations which define the acceptance areas or interval
values for each qualitative symbol.

Angles are quantitative continuous features that can
be discretized using the Angle Reference System or

ARS “ t
˝,ALAB ,AINT u

where, degrees (˝) indicate the unit of measurement of
the angles; ALAB refers to the set of labels for the an-
gles; and AINT refers to the values in degrees (˝) related
to each label. In general,

ALAB = {A1, A2, ...,AKa}
AINT = {[0, a1], (a1, a2], ..., (aKa´1, 180]}

where Ka is the number of concepts used for defining
angles.

Some possibilities for ALAB and AINT are the follow-
ing:

ALAB1 = {acute, right, obtuse}
AINT1 = {(0, 85], (85, 95], (95, 180]}

ALAB2 = {very-acute (va), half-right (hr), acute (a),
right (r), obtuse (o), 3q-right (3qr), very-obtuse (vo), plane
(pl), full}

AINT2 = {(0, 45), 45, (45,90), 90, (90,135), 135, (135,180),
180, 360_0 ]}

The ALAB1 and AINT1 have a broader granularity,
whereas the ALAB2 and AINT2 use a finer granularity
level. The ALAB2 and AINT2 is selected for our scenario
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since manufactured objects usually use right angles (and
its derivatives: half-right, three-quarters of right and plane),
so humans recognize them easily. These are also the an-
gles used by pieces in Tangram puzzles, as Fig. 4 shows.

The Convexity feature at c is related to the Angle
and the interior and exterior of the shape that QSD is
describing. Geometrically, considering the relevant points
of the shape ordered clockwise, an oriented line can be
built from a to b, and if c is on the left of the segment,
then Pi`1 is convex; otherwise c is concave. Note that
mathematically c cannot be within the oriented line from
Pi´1 to Pi`1, otherwise Pi cannot be a relevant point
of the shape. Note also that a convex angle refers to the
angle located in the interior of the object, while a concave
angle refers to the angle on the exterior of the object.

Table 4 presents the geometrical representation of the
qualitative angles defined by ALAB2 and its convexities/-
concavities.

6.3 Angle operators (AOP )

When composing angles, the operators associated to a
representation correspond to the possible actions or sit-
uations in which the angles can take part. So, which are
the operations we can carry out with qualitative angles?

As in the case of the operators for length, Allen’s cal-
culus (Allen, 1983; Allen and Hayes, 1985) is taken as a
reference (see Table 2).

The spatial relationships between angles can be de-
fined similarly to Allen’s relations between time intervals.
Table 5 illustrate geometrically these angular relations:

– disjoint: two angles (α,α1) are disjoint if they do not
share any of a,b,c.

– same: two angles (α,α1) are the same if they share
a,b,c and its convexity (i.e. its interior)1

– inverse: two angles are inverse if they share a,b,c but
its convexity is different, that is, they do not share
their interior.

– meets/is met by: two angles (α,α1) meet if they share
centres (c “ c1) and the ending point of an angle b is
the starting point of the other angle a1 (i.e. b “ a1 or
b1 “ a).

– overlaps: two angles (α,α1) overlap if they share cen-
tres (c“ c1) but they do not have any of their starting
and ending points in common. Moreover, they also
share part of their interior.

– starts/is started by: an angle (α) starts another an-
gle (α1) if they share they centres (c “ c1) and their
starting points (a “ a1). This relation is possible if
both angles (α,α1) have inverse convexities, so that
no overlapping happens.

– finishes/is finished by: an angle (α) finishes another
angle (α1) if they share their centres (c“ c1) and their
ending points (b“ b1). This relation is possible if both
angles (α,α1) have inverse convexities, so that no over-
lapping happens.

1 Note that this relation is named same instead of equals (like
in Allen’s relation) in order to distinguish from two angles whose
spatial relation is disjoint but whose magnitude relation can be
equal.

Table 4 Qualitative Angles and their Convexities represented
geometrically.

ARS Convexity Geometry
ALAB2 AINT2 depiction

va p0,45q cx α

hr « 45 cx
α

a p45,90q cx
α

r « 90 cx
α

o p90,135q cx α

3qr « 135 cx α

vo p135,180q cx α

pl « 180 cx/cv
α

α

vo p180,225q cv
α

3qr « 225 cv α

o p225,270q cv α

r « 270 cv α

a p270,315q cv α

hr « 315 cv α

va p315,360q cv α

full « 360_« 0 cv/cx α

– during/includes: an angle (α) includes another angle
(α1) if they share they centres (c “ c1), they do not
share interiors (i.e. they have inverse convexities) and
their starting and ending points are not the same (i.e.
a‰ a1, b‰ b1).

As our study case involves shape composition by jux-
taposing objects, this excludes overlapping, so the follow-
ing relations are not suitable for angle composition:
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Table 5 Spatial relationships between angles in the composition
operation: AOP . These are inspired also in Allen’s relation in
Table 2.

a

b
α

a1

b1

α’

c

c1

‚

‚

‚

‚‚

‚

(α,α’) P d
a‰a1

b‰b1

c‰c1

α is disjoint (d) α’

a

b

α

a1

b1

α’c c1‚

‚

‚

(α,α’) P e
a=a1
b=b1
c=c1
convexity “

α same (e) α’

a

b

α

a1

b1

α’cc1 ‚

‚

‚

(α,α’) P i
a=a1
b=b1
c=c1
convexity ‰

α inverse (i) α’

a

b
α

a1

b1
α’

c c1‚

‚

‚

‚

(α,α’)P m
(α’,α)P m´1

b=a1 _ b1=a
c=c1
α,α’ convex

α meets (m) α’
α’ is met by α

a

b
α a1

b1
α’

c c1‚

‚

‚

‚

‚

(α,α’)P o
(α’,α)P o´1

b‰a1 ^ b1‰a
c=c1
α,α’ convex

α overlaps (o) α’
α’ is overlapped by
α

a

b
α

a1

b1α’

cc1

‚
‚

‚ ‚

(α,α’)P s
(α’,α)P s´1

a=a1
c=c1
α is concave
α’ is convex

α starts (s) α’
α’ is started by α

a

b

α a1

b1
α’cc1

‚

‚

‚ ‚

(α,α’)P f
(α’,α)P f´1

b=b’
c=c’
α is concave
α’ is convex

α finishes(f) α’
α’ is finished by α

a

bα

a1

b1α’
cc1

‚

‚

‚

‚ ‚

(α’,α)P d
(α,α’)P d´1

c=c’
α is concave
α’ is convex
α is divided into
α1paca

1
q

α2pb
1cbq

α’ during (d) α
α includes α’

– same: note that if two angles are the same, that in-
volves overlapping when composing them and the pur-
pose of our study case is building new shapes by jux-
taposition, not by overlapping.

– disjoint: note that if two angles are disjoint, then there
is no composition of angles possible, since they need
at least to share two points.

– overlap/is overlapped and during/includes: note that
there is not enough known common points in these
cases for the new lengths to be calculated qualitatively
by composition. In these cases, new quantitative points
must be found out.

Other relations that may happen when composing ob-
jects are those shown by Fig. 6. Note that, in the following
situations, no composition of angles is possible:

(1) angles share their centres but they are opposed, so
there is not enough information to obtain a new com-
posed qualitative angle.

(2) angles do not share their centres, but they share their
starting and ending points. Although they share some
features, these features cannot be used to infer a new
composed angle according to our operators. In this
case, if at least one angle is concave, they may gen-
erate a hole.

(3) the starting and ending point of an angle is shared
with the centres of other two angles. Similarly to the
previous situation, although they share features, they
cannot generate a composed angle and they also may
generate a hole.

(2)

(2)

(1)

(1)

(3) (1)

(1)

Fig. 6 Other situations for angles: (1) opposition, (2) not sharing
centres but sharing extrems and (3) sharing extremes with centres.

Thus, the operators that can be applied for angle com-
position when building new objects with pieces are the
following:

AOP “ tinversepiq,meetpmq,startpsq,finishpfqu

where:

– inversepiq operator involves changing the interior of
the angle. Note that Table 5 shows its geometric de-
scription and it is described logically in the next sec-
tion.

– meetpmq operator allows composition of convex an-
gles. Note that the geometric description of compos-
ing two angles by the operator meet is shown in Table
5. Next, Section 6.5 defines the composition operation
formally and Table 7 presents the obtained composi-
tion table.

– startpsq and finishpfq operators allow composition of
convex and concave angles. Note that Table 5 presents
their corresponding geometric description. Section 6.5
defines this composition formally and the composition
table is given by Table 8.

Note that, for composition, both angles need to share
c“ c1 and a pair of the extremes (a,a1, b,b1) at least. And
these operators ensure this.

6.4 Defining the Inverse of Qualitative Angles

The inverse operator is defined as follows. Let pi be a
point described according to the QSD˚, and let Api ,Cpi

be its angle and convexity respectively, its inverse is de-
fined as follows:

inverseCpApi ,Cpiq “

"

inverseCpApi , cvq “ăApi , cxą

inverseCpApi , cxq “ăApi , cv ą
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where Api PARS and Cpi P tcx,cvu as defined in QSD˚.
Note that Table 6 provides the inverses for all qualitative
angles defined by ARS and that Table 4 shows its geo-
metric counterparts. An angle and its inverse complete
the space, that is, if they are composed they got 3600,
the full qualitative angle.

Table 6 Inverse operator for the angle qualitative model (AOP ).

Original Inverse
very-acute & convex very-acute & concave
half-right & convex half-right & concave

acute & convex acute & concave
right & convex right & concave

obtuse & convex obtuse & concave
3q-right & convex 3q-right & concave

very-obtuse & convex very-obtuse & concave
plane & convex plane & concave

6.5 Defining the Composition of Qualitative Angles

Let pi, qi be two points described according to the QSD˚,
that is:

QSDippi´1,pi,pi`1q

QSDipqi´1, qi, qi`1q.

Let Api ,Cpi and Aqi ,Cqi be their angles and their con-
vexities respectively, then the composition of these angles
is defined as follows:

compositionACpApi ,Cpi ,Aqi ,Cqiq “ăApq,Cpq ą

where Api ,Aqi ,Apq P ARS and Cpi ,Cqi ,Cpq P C defined
in QSD˚. The resulting operator is obtained from the
composition table shown in Table 7, if both angles are
convex, or from the composition table shown in Table 8,
if one of the angles involved is concave. The grey cells
in Table 7 and Table 8 refer to resulting concave angles
whereas white cells refer to resulting convex angles. Note
that the compositions in these tables take the angles lo-
cated at pi and qi and that compositions obtaining an
angle greater than 360˝ are not possible.

This composition operator is binary, that is, it takes
two angles at a time, but it can be applied as many times
as angles occurring at a connection. So, if another angle is
involved (i.e. At) the result of the previous composition
can be composed again with this angle. Thus, let Apq,
Cpq be the resulting angle and convexity of the previous
operator, and let At, Ct be another angle and its con-
vexity, then the composition between them is defined as
follows:

compositionACpApq,Cpq,At,Ctq “ăApqt,Cpqt ą

where Apqt PARS and Cpqt P C defined in QSD˚.
For example, Fig. 1 (option C) shows a shape compo-

sition where 3 composition of angles must be calculated:
two situations involving 2 angles, and one situation in-
volving 3 angles.

6.6 Proof of the Geometric Correctness for Convex
Angle Compositions with the Operator Meet

In this section, the geometric correctness of the compo-
sition table showed in Table 7 is proved. In Table 2 you
can observe that the ARS defines qualitative angles of ex-
act amplitude (e.g. hr « 45) but also defines angles with
variable amplitude (e.g. acute (a) P r46,89s). The com-
position table relates all the qualitative angles, thus four
possible cases of compositions need to be distinguished:

– composing angles of exact amplitude,
– composing angles of variable amplitude,
– composing an angle of variable amplitude with an an-

gle of exact amplitude, and
– composing an angle of exact amplitude with an angle

of variable amplitude.

In the following sections, these compositions are il-
lustrated geometrically and proved using examples taken
from the composition table.

6.6.1 Composing angles of exact amplitude

Let pA1 be an angle of exact amplitude defined by a, b
and c, and pA2 another angle of exact amplitude defined
by a1, b1 and c1. Thus the composition of qualitative angles
defined by pA1 and pA2, that is, pA1 ˝ pA2, is an angle defined
by a2, b2 and c2. This can be represented geometrically
as follows:

a

b

c
pA1

a’

b’

c’
pA2

a”

b”

c”
pA1 ˝ pA2

Note first that, without loss of generality let us as-
sume that a “ a1 “ a2 “ 0. Moreover, c “ c1 “ c2 by the
meet operator. So it remains to obtain b2, which can be
calculated from the previous data as follows:

b2 “ b` b1.

Then, to obtain pA1 ˝ pA2 let us find out the qualitative an-
gle (ALAB) and its corresponding interval (AINT ) where
b2 is included. Let us exemplify this by composing the
following qualitative angles from ARS :

ALAB AINT convexity
pA1 half -right (hr) « 45 convex (cx)
pA2 right (r) « 90 convex (cx)

Thus b2 is obtained as indicated previously:

b2 “ b` b1 “ 45`90“ 135.

Hence it is clear that the only qualitative angle whose
corresponding interval includes b2 is 3qr{cx (i.e. 135). And
the composition hr{cx ˝ r{cx is proved to correspond to
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meetop:
cx/cx va hr a r o 3qr vo pl

va {va, hr, a} a {a,o,r} o {o,3qr,vo} vo {vo,pl} vo
hr a r o 3qr vo pl vo 3qr
a {a,r,o} o {o,3qr,vo} vo {vo,pl} vo {vo,3qr,o} o
r o 3qr vo pl vo 3qr o r
o {o,3qr,vo} vo {vo,pl} vo {vo,3qr,o} o {o,r,a} a

3qr vo pl vo 3qr o r a hr
vo {vo,pl} vo {vo,3qr,o} o {o,r,a} a {a,hr,va} va
pl vo 3qr o r a hr va full

Table 7 Composition table for Angle feature in QSD˚ when composing convex (cx) angles. Note that the angles are abbreviated
according to the ARS presented in Section 4 and that grey cells refer to resulting concave angles while white cells refer to resulting
convex angles.

startsop,
finishop:
cx/cv

pl vo 3qr o r a hr va

va vo {vo,3qr,o} o {o,r,a} a {a,hr,va} va {va,full,E}
hr 3qr o r a hr va full E

a o {o,r,a} a {a,hr,va} va {va,full,E} E E

r r a hr va full E E E

o a {a,hr,va} va {va,full,E} E E E E

3qr hr va full E E E E E

vo va {va,full,E} E E E E E E

pl full E E E E E E E

Table 8 Composition table for Angle feature in QSD˚ when composing convex (cx) and concave (cv) angles. Note that the angles
are abbreviated according to the ARS presented in Section 4 and that the full angle is referring to 360 degrees.

the qualitative angle 3qr indicated by the composition
table in Table 7:

pA1 ˝ pA2 “ hr{cx ˝ r{cx “ 3qr{cx

Note that, if pA1 and pA2 are exact segments, pA1 ˝ pA2
corresponds to only one concept of qualitative length (i.e.
one value in the composition table).

6.6.2 Composing angles of variable amplitude

Let pA1 be an angle of variable amplitude defined by a,
c, b1 and b2, and pA2 another angle of variable amplitude
defined by a1, c1, b11 and b12. Then, pA1 ˝ pA2 generates an
angle defined by a2, c2, b21 and b22. This can be represented
geometrically as follows:

a

b2

b1

c
pA1

a’

b’2 b’1

c’
pA2

a”
b”2
b”1

c”
pA1 ˝ pA2

Note first that, without loss of generality let us assume
that a “ a1 “ a2 “ 0. Moreover, c “ c1 “ c2 by the meet
operator. So it remains to obtain b21 and b22, which can be
calculated from the previous data as follows:

b21 “ b1` b
1
1

b22 “ b2` b
1
2.

Hence pA1 ˝ pA2 is obtained finding those qualitative angles
(ALAB) whose associated intervals (AINT ) are contained

in pb21, b22q. Let us exemplify this by composing the follow-
ing qualitative angles from ARS :

ALAB AINT convexity
pA1 very-acute (va) p0,45q convex (cx)
pA2 obtuse (o) p90,135q convex (cx)

Taking into account the indications above, we first
obtain b21, b

2
2:

b21 “ 0`90“ 90

b22 “ 45`135“ 180.

Since the only qualitative angles (ALAB) whose asso-
ciated intervals (AINT ) are contained in p90,180q are
o{cx,3qr{cx,vo{cx, the composition of an angle very-acute
and another angle obtuse, both convex, by the operator
meet is proved to correspond to the qualitative angles
obtuse three-quarters-right and very-obtuse, all convex,
as indicated by the composition table in Table 7:

pA1 ˝ pA2 “ va{cx ˝o{cx “ to{cx,3qr{cx,vo{cxu.

6.6.3 Composing an angle of variable amplitude with an
angle of exact amplitude

Let pA1 be an angle of variable amplitude defined by a, c,
b1 and b2, and pA2 an angle of exact amplitude defined by
a1, c1, and b1. Thus pA1 ˝ pA2 generates an angle defined by
a2, c2, b21 and b22. This can be represented geometrically
as follows:
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a
b2

b1

c
pA1

a’

b’

c’
pA2

a”

b”2

b”1
c”

pA1 ˝ pA2

Again, without loss of generality let us assume that
a “ a1 “ a2 “ 0. In addition, c “ c1 “ c2 by the meet op-
erator. So it remains to obtain b21 and b22, which can be
calculated from the previous data as follows:

b21 “ b1` b
1

b22 “ b2` b
1.

Hence pA1 ˝ pA2 is obtained finding those qualitative angles
(ALAB) whose associated intervals (AINT ) are contained
in pb21, b22q. Let us exemplify this by composing the follow-
ing qualitative angles from ARS :

ALAB AINT convexity
pA1 very-obtuse (vo) p135,180q convex (cx)
pA2 right (r) « 90 convex (cx)

For that, first let us obtain pb21, b22q:

b21 “ 135`90“ 225

b22 “ 180`90“ 270.
Note that the only qualitative angle (ALAB) whose

associated interval (AINT ) is contained in p225,270q is
o{cx. Thus, the composition of a very-obtuse angle and a
right angle (both convex) by the operator meet is proved
to correspond to the qualitative angle obtuse, concave, as
indicated by the composition table in Table 7:

pA1 ˝ pA2 “ vo{cx ˝ r{cx “ o{cv.

6.6.4 Composing an angle of exact amplitude with an
angle of variable amplitude

Let pA1 be an angle of exact amplitude defined by a, b and
c, and pA2 an angle of variable amplitude defined by a1,
c1, b11 and b12. Then, pA1 ˝ pA2 generates an angle defined by
a2, c2, b21 and b22. This can be represented geometrically
as follows:

ab c
pA1

a’

b’2
b’1

c’
pA2

a”

b”2

b”1

c”

pA1 ˝ pA2

Note first that, without loss of generality let us assume
that a “ a1 “ a2 “ 0. Moreover, c “ c1 “ c2 by the meet
operator. So it remains to obtain b21 and b22, which can be
calculated from the previous data as follows:

b21 “ b` b
1
1

b22 “ b` b
1
2.

Hence pA1˝ pA2 is obtained finding those qualitative an-
gles (ALAB) whose associated intervals (AINT ) are con-
tained in pb21, b22q. Again, let us exemplify this by compos-
ing the following qualitative angles from ARS :

ALAB AINT convexity
pA1 plane (pl) « 180 convex (cx)
pA2 acute (a) p45,90q convex (cx)

For that, let us obtain pb21, b22q:

b21 “ 180`45“ 225

b22 “ 180`90“ 270.

Note that, as in the previous case, the only qualitative
angle (ALAB) whose associated interval (AINT ) is con-
tained in p225,270q is o{cx. Thus, the composition of a
very-obtuse convex angle and a right convex angle by
the operator meet is proved to correspond to the quali-
tative angle obtuse and concave, as indicated by the com-
position table in Table 7:

pA1 ˝ pA2 “ vo{cx ˝ r{cx “ o{cv.

6.7 Proof of the Geometric Correctness for
Convex-Concave Angle Compositions with the Operator
Meet

The composition of convex and concave angles (Table 8)
is proved similarly as shown previously in Section 6.6.
The only conditions to take into account are that:

– the composition of an angle with its inverse (i.e. acute-
convex and acute-concave) produces the full angle,
and

– the composition of an angle with a wider angle than its
inverse is not possible (E). Note that analytically this
composition produces an angle that is greater than
360˝ and that geometrically, this composition involves
overlapping, which is not allowed in the study case.

7 Implementation

The Qualitative Model for Lengths and the Qualitative
Model for Angles were implemented in Prolog program-
ming language (Sterling and Shapiro, 1994) and Swi-Prolog2

was the testing platform (Wielemaker et al, 2012).
The implemented Qualitative Model for Lengths (QM-

Lengths) asks first for the maximum side of the object
(i.e. a) to initialise the Length Reference System (LRS).
Then it asks for the 2 points in 1D that define segment Ā
(i.e. its starting and ending point) and then it finds out

2 SWI-Prolog: http://www.swi-prolog.org/
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the quantitative value of its length and its corresponding
qualitative descriptor according to Table 1. Then, the
QMLengths-approach asks for the 2 points that define
segment B̄, and after finding out its quantitative and
qualitative values, it also obtains the relation between
both segments, Ā and B̄, according to those defined in
Table 2. If the relation obtained is meetpmq, startpsq,
finishpfq or any of their inverses (i.e.met-bypm´1q, started-
byps´1q, or finished-bypf´1q) then the composition is
calculated. The result calculated by the corresponding
mathematical operation is shown and the result from the
composition table is also obtained for comparison. Next,
some examples of the QMLengths-approach are shown.

In the following example, the QMLengths-approach
compose a segment Ā of 2 units, which is labelled as ss
by LRS , that is, a label which corresponds to a variable
length, with a segment B̄ of 5 units, which is labelled as
m by the LRS (exact length). The relation found is that
segment Ā is met by segment B̄ or B̄ meets Ā.

?- lengths.
Welcome to the Qualitative model for Lengths
Introduce the length of the maximum side of the object (a):
|: 10.
LRS={(0,2.50),2.50,(2.50,3.54),3.54,(3.54,5.00),5,(5,7.07),
7.07,(7.07,10),10,(10,14.14),14.14,(14.14,inf)}
Introduce the 2 coordinates that define segment A [x1,x2]:
|: [5,7].
The Length is: ss
Introduce the 2 coordinates that define segment B [x1,x2]:
|: [0,5].
The Length is: m
Segment A is met by B.
Let us try to compose these lengths (y/n)
|: y.
Quantitative Segment Length is 7 according to LRS: lm.
Qualitative composition (A o B): (ss o m): [lm,hl,sl].
true .

Note that the quantitative composition provides a seg-
ment of 7 units, which is labelled as lm by LRS . For
the qualitative composition, the knowledge in Table 3 is
used, which includes lm as one of the possible results of
Ā ˝ B̄ “ tlm,hl,slu. Note that, when the exact numeri-
cal values of the segments are not known, the qualitative
composition is still possible and provides comparable re-
sults. Note that, if the exact points defining a segment
are not available, a qualitative composition is still possi-
ble and then, an uncertain result is still useful in contrast
to no result at all.

In the following example, the QMLengths approach
compose a segment Ā of 6 units, which is labelled as sm
by LRS (that is, a label which corresponds to a variable
length) with a segment B̄ of 2 units, which is labelled as ss
by the LRS (which also corresponds to a variable length).
The relation found is that segment Ā starts segment B̄.
In this case, the operator starts involves a decomposition
operation, that is, we need to find out which length com-
posed with segment B̄ provides segment Ā. The quantita-
tive decomposition provides a segment of 2 units, which is
labelled as s by LRS . For the qualitative decomposition,
the knowledge in Table 3 is used, that is, we need to find
out which length combined with ss provides sm.

?- lengths.
Welcome to the Qualitative model for Lengths
Introduce the length of the maximum side of the object (a):
|: 16.
LRS={(0,4),4,(4,5.66),5.66,(5.66,8),8,(8.00,11.31),11.31,
(11.31,16),16,(16,22.63),22.63,(22.63,inf)}
Introduce the 2 coordinates that define segment A [x1,x2]:
|: [0,6].
Its Length is: sm
Introduce the 2 coordinates that define segment B [x1,x2]:
|: [0,2].
Its Length is: ss
Segment A starts B.
Let us try to compose these lengths (y/n)
|: y.
Quantitative Segment Length (B o ?):A or (6 o ?):2 is 4
according to LRS: s.
Qualitative composition (B o ?): A or (ss o ?): sm --> ss.
true ;
Qualitative composition (B o ?): A or (ss o ?): sm --> s.
true ;
Qualitative composition (B o ?): A or (ss o ?): sm --> ls.
true ;
Qualitative composition (B o ?): A or (ss o ?): sm --> ql.
true ;
Qualitative composition (B o ?): A or (ss o ?): sm --> sm.
true ;
false.

The results obtained correspond to the caption of the
five columns tss,s, ls,ql,smu in the composition table shown
in Table 3. Note that the numerical example provided cor-
responds to one of all those that were considered when
building the composition table for lengths, since s is ob-
tained as a result, but other results are also possible.

The following example is similar to the previous one
since it involves decomposition, but note that the relation
found between segment Ā and segment B̄ is an inverse
relation in Table 5: finished by. That is, B̄ finishes Ā

or Ā is finished by B̄. The decomposition operation is
explained as in the previous case.
?- lengths.
Welcome to the Qualitative model for Lengths
Introduce the length of the maximum side of the object (a):
|: 12.
LRS={(0,3), 3, (3,4.24), 4.24, (4.24,6), 6, (6,8.49), 8.49,
(8.49,12), 12, (12,16.97), 16.97, (16.97,inf)}
Introduce the 2 coordinates that define segment A [x1,x2]:
|: [6,8].
Its Length is: ss
Introduce the 2 coordinates that define segment B [x1,x2]:
|: [4,8].
Its Length is: ls
Segment A is finished by B.
Let us try to compose these lengths (y/n)
|: y.
Quantitative Segment Length (A o B) is 2 according to LRS: ss.
Qualitative composition (? o B): A or (? o ss): ls --> ss.
true ;
Qualitative composition (? o B): A or (? o ss): ls --> s.
true ;
Qualitative composition (? o B): A or (? o ss): ls --> ls.
true ;
false.

In the situations where the composition of lengths is
not possible due to the relation of the segments or to the
lack of extra quantitative information, the QMLengths-
program indicates it.

The implemented Qualitative Model for Angles (QMAn-
gles) asks for the 3 coordinates in 2D that define angle pA,
and then it finds out the quantitative value of the angle
in degrees and its corresponding qualitative descriptor ac-
cording to Table 4. Then, the QMAngles-approach asks
for other 3 coordinates in 2D that define angle pB, and
after finding out its quantitative and qualitative values,
it also obtains the relation between both angles, pA and
pB, according to those defined in Table 5. If the relation
obtained is inversepiq, meetpmq, startpsq, finishpfq or
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any of their inverses (i.e. met-by, started-by, finished-by)
then the composition is carried out. The result calculated
by the mathematical operation and the result obtained
from the composition tables are shown.

Next, the QMAngles-approach compose convex an-
gles, pA and pB, which are defined by qualitative labels
which correspond to exact values in the reference system.
The relation found out between both angles is that pA

meet pB, so the composition is possible. For calculating
the qualitative composition, the knowledge in Table 7 is
used, which corresponds to the numerical composition.

?- angles.
Welcome to the Qualitative model for Angles
Input 3 points (a,c,b) that define angle A as [[x,y],[x,y],[x,y]].
|: [[3,0],[0,0],[3,3]].
Points read: a=[3,0], c=[0,0] b=[3,3]
Is this angle concave? (y/n).
|: n.
Angle at c: 45 degrees, Qualitative Angle: [hr, cx].
Input 3 points (a,c,b) that define angle B as [[x,y],[x,y],[x,y]].
|:[[3,3],[0,0],[-3,3]].
Points read: a’=[3,3] b’= [0,0] c’= [-3,3]
Is this angle concave? (y/n).
|: n.
Angle at c’: 90 degrees, Qualitative Angle: [r, cx].
Angle A meets B.
Let us try the composition operation (y/n).
|: y.
Quantitative final angle: 135, [3qr,cx]
Qualitative composition (A o B): [3qr,cx]
true .

In the following situation, the QMAngles-approach
compose two angles pA and pB using the operator pA is

meet by pB or pB meets pA. The qualitative label for pA

corresponds to an variable amplitude and pB corresponds
to a qualitative label with an exact amplitude. For the
qualitative composition, the knowledge in Table 7 is used,
which corresponds to the numerical composition.

?- angles.
Welcome to the Qualitative model for Angles
Input 3 points (a,c,b) that define angle A as [[x,y],[x,y],[x,y]].
|: [[3,3],[0,0],[-1,4]].
Points read: a=[3,3], c=[0,0] b=[-1,4]
Is this angle concave? (y/n).
|: n.
Angle at c: 59 degrees, Qualitative Angle: [a, cx].
Input 3 points (a,c,b) that define angle B as [[x,y],[x,y],[x,y]].
|: [[3,0],[0,0],[3,3]].
Points read: a’=[3,0] b’= [0,0] c’= [3,3]
Is this angle concave? (y/n).
|: n.
Angle at c’: 45 degrees, Qualitative Angle: [hr, cx].
Angle B is met by A.
Let us try the composition operation (y/n).
|: y.
Quantitative final angle: 104, [o,cx]
Qualitative composition (A o B): [o,cx]
true .

In the next example, the QMAngles-approach com-
pose two convex angles pA and pB that meet. The quali-
tative label for pA corresponds to an variable amplitude,
and angle pB corresponds also to a qualitative label with
variable amplitude. For the qualitative composition, the
knowledge in Table 7 is used, which corresponds to the
numerical composition.

Note that, in this case, the qualitative composition
introduces some uncertainty. However, its advantage is
that it can be carried out even if the exact numerical
values of the angles are not known, in contrast to the
quantitative composition.

?- angles.
Welcome to the Qualitative model for Angles
Input 3 points (a,c,b) that define angle A as [[x,y],[x,y],[x,y]].
|: [[3,1],[0,0],[3,3]].
Points read: a=[3,1], c=[0,0] b=[3,3]
Is this angle concave? (y/n).
|: n.
Angle at c: 27 degrees, Qualitative Angle: [va, cx].
Input 3 points (a,c,b) that define angle B as [[x,y],[x,y],[x,y]].
|: [[3,3],[0,0],[-1,4]].
Points read: a’=[3,3] b’= [0,0] c’= [-1,4]
Is this angle concave? (y/n).
|: n.
Angle at c’: 59 degrees, Qualitative Angle: [a, cx].
Angle A meets B.
Let us try the composition operation (y/n).
|: y.
Quantitative final angle: 86, [a,cx]
Qualitative composition (A o B): [[a,o,r],cx]
true .

In the next example, the QMAngles-approach com-
pose a convex angle pA with a concave angle pB. The quali-
tative label for pA corresponds to an variable amplitude
and pB corresponds to a qualitative label with an exact
amplitude. The relation between both angles is: pA is

started by pB, or pB starts pA. For the qualitative composi-
tion, the knowledge in Table 8 is used, which corresponds
to the numerical composition.

?- angles.
Welcome to the Qualitative model for Angles
Input 3 points (a,c,b) that define angle A as [[x,y],[x,y],[x,y]].
|: [[3,3],[0,0],[-1,4]].
Points read: a=[3,3], c=[0,0] b=[-1,4]
Is this angle concave? (y/n).
|: n.
Angle at c: 59 degrees, Qualitative Angle: [a, cx].
Input 3 points (a,c,b) that define angle B as [[x,y],[x,y],[x,y]].
|: [[3,3],[0,0],[-3,-3]].
Points read: a’=[3,3] b’= [0,0] c’= [-3,-3]
Is this angle concave? (y/n).
|: y.
Angle at c’: 180 degrees, Qualitative Angle: [pl, cv].
Angle B is started by A.
Let us try the composition operation (y/n).
|: y.
Quantitative final angle: 239, [o, cv].
Qualitative composition (A o B): [o,cv]
true .

In the last example, the QMAngles-approach compose
a concave angle pA with a convex angle pB. The quali-
tative label for pA corresponds to an variable amplitude
and pB corresponds also to a qualitative label with an vari-
able amplitude. The relation between both angles is: pA

finishes pB. For the qualitative composition, the knowl-
edge in Table 8 is used, which corresponds to the numer-
ical composition. Note that, as in the case for lengths,
the qualitative composition introduces some uncertainty.
However, its advantage is that this qualitative composi-
tion can be calculated even if the exact numerical values
of the angles are not known, in contrast to the quantita-
tive composition, where no result can be obtained without
the exact values. Thus, in some situations, some uncer-
tainty is preferable to no result at all.
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?- angles.
Welcome to the Qualitative model for Angles
Input 3 points (a,c,b) that define angle A as [[x,y],[x,y],[x,y]].
|: [[0,5],[0,0],[3,2]].
Points read: a=[0,5], c=[0,0] b=[3,2]
Is this angle concave? (y/n).
|: y.
Angle at c: 304 degrees, Qualitative Angle: [a, cv].
Input 3 points (a,c,b) that define angle B as [[x,y],[x,y],[x,y]].
|: [[1,2],[0,0],[3,2]].
Points read: a’=[1,2] b’= [0,0] c’= [3,2]
Is this angle concave? (y/n).
|: n.
Angle at c’: 30 degrees, Qualitative Angle: [va, cx].
Angle A finishes B.
Let us try the composition operation (y/n).
|: y.
Quantitative final angle: 334, [va, cv].
Qualitative composition (A o B): [[a,hr,va],cv]
true .

In the situations where the composition of angles is
not possible due to the relation between the segments
(i.e. overlaps, includes, during, etc.) or to the lack of
extra quantitative information, the QMAngles-program
indicates it.

More examples of executions of QMLengths and QMAn-
gles programs are available to download together with
the codes for further testing at: https://sites.google.
com/site/zfalomir/publications-by-zfalomir.

8 Application: QSD composition

The composition tables for lengths and angles presented
and proved in this paper are applied by LogC-QSD ap-
proach (Pich and Falomir, 2018) where a logical program
solves a Dataset of 15 tests on shape composition.

Let us exemplify how the length and angle composi-
tion are useful to compose shapes described qualitatively
by using the juxtaposition of the objects in Fig. 7.

Fig. 7 Example of juxtaposing two triangles T1 and T2 and com-
posing the angles and lengths at the connections C1 and C2.

Note that the triangles T1 and T2 are connected by
points s3 and r2, and its qualitative shape description is
the following:

?- hasQSDpoint(objectT2,s3,_,_,TC,Angle,Convexity,
Length).
PSource=s3, TC=line-line, Angle=hr, Convexity=cx,
Length=l.
?- hasQSDpoint(objectT1,r2,_,_,TC,Angle,Convexity,
Length).
PSource=r2, TC=line-line, Angle=hr, Convexity=cx,
Length=lst.

Then, the angles are composed according to the com-
position tables:

?- compose_angles(hr,cx,hr,cx,Angle,Convexity).
Angle=r, Convexity=cx.

And, in this case, the length is taken from the point
s3. Therefore, the composed QSD of the connection C1
of objects T1-T2, that is, at point ps3, r2q, is [line - line,
right, convex, long].

The other connection happening between objects T1
and T2 in Fig. 7 is defined by the line g1 and the point
s1. The features of g1 are obtained from its source point,
that is, r2.

?- hasQSDpoint(objectT1,r2,_,_,EC,A,C,L).
PSource=r2, EC=line-line, A=hr, C=cx, L=lst.
?- hasQSDpoint(objectT2,s1,_,_,EC,A,C,L).
PSource=s3, EC=line-line, A=r, C=cx, L=hl.

The features angles and convexities from s1 are com-
posed with the plane angle and the lengths are composed,
requiring a subtraction/decomposition between r2 and s1.
Note that the same composition tables are used for the
subtraction/decomposition operation, only changing the
order of the variables.

?- compose_angles(r,cx,pl,cx,A,C).
A=r, C=cv.
?- compose_length(lm,sm,Length).
L=[sl,l,ll].

So the composed QSD at the connection C2 of objects
T1-T2, that is, at point pg1,s1q is obtained: [line-line,
right, concave, [smaller-long, long, larger-long]].

For a more detailed description of object composition
(i.e. more than two juxtaposed objects) please read Pich
and Falomir (2018).

9 Discussion: Qualitative Spatial Reasoning and
Weak Composition

Relations in (most) qualitative temporal and spatial rea-
soning models are infinite, that is, their domains are infi-
nite: there are many points or intervals in a line or time
line and also infinite regions in a 2D or 3D space. Thus it
is not feasible to apply algorithms to enumerate values of
the domains. Instead qualitative relations (symbols) are
used, and reasoning is carried out by manipulating sym-
bols. This means that the calculus (which deals with ex-
tensional relations in the finite case) becomes intensional
because it deals with symbols which stand for infinite re-
lations (Renz and Ligozat, 2005). That is, the fact that
relations are infinite involves that there is no feasible way
of dealing with them extensionally.

In Allen’s model (Allen, 1983), although the domains
are infinite, the compositions of the atomic relations are
themselves unions of atomic relations. Note that genuine
composition could lead to considering an infinite number
of relations, whereas the basic idea of qualitative reason-
ing is to deal with a finite number of relations (Renz and
Ligozat, 2005). In order to overcome this issue, most cal-
culi use weak composition as a way to approximate true
composition.

In qualitative spatial and temporal reasoning, we deal
with this issue by defining a small finite set A of jointly
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exhaustive and pairwise disjoint (JEPD) relations, that
is, each possible tuple pa,bq P DˆD is contained in exactly
one relation R P A and the full set of relations is 2A.
And then, we exploit the nature of temporal and spatial
domains, where points or intervals are ordered in a line
or well-structured in space, so that composition can be
computed using formal definitions of relations (Ligozat,
2001).

In this paper, for the QMLengths and the QMAngles,
a composition table is a mapping τ : RˆRÑ βpRq, where
R is a set of relational symbols. A model of xR, τy is a
pair xU,vy, where U is a set and v : R Ñ RelpUq is a
mapping such that {vpaq : a P R} is a partition of UˆU .
Then, according to Düntsch et al (2001), the model is
called consistent if

c P τpa,bq ô pvpaq ˝ vpbqq X vpcq ‰ 0,
for all a,b,c P R. Then, a weak composition (˛) of two
relations a, b is defined as the strongest relation in 2A

which contains a ˝ b, or formally, a ˛ b = {c P A | c X (a
˝ b) ‰ 0}. Note that, as Ligozat and Renz (2004) men-
tion: “the advantage of weak composition is that we stay
within the given set of relations 2A while applying the
algebraic operators since 2A is by definition closed under
weak composition, union, intersection, and converse.”

So, as in Allen’s model, we assume weak composition
(˛) since we can use algebraic closure algorithm (Ligozat
and Renz, 2004) to prove consistency. Thus Table 3 for
QMLengths and Table 7 and 8 for QMAngles are weak
composition tables.

Note that, as Renz and Ligozat (2005) mentioned: “it
turns out that the most important property of a quali-
tative calculus is not whether weak composition is equiv-
alent to composition, but whether the relations are closed
under constraints.”

10 Conclusion

The Qualitative Model for Lengths and the Qualitative
Model for Angles are presented in detail in this paper. For
each one, its arity, reference systems and operators are
provided. Allen’s well-known time relations are taken as
a reference for defining the operators applied in the Quali-
tative Model for Lengths and in the Qualitative Model for
Angles. The definition of these operators are one of the
main contributions of this paper.

The geometric correctness of the Qualitative Model
for Lengths and the Qualitative Model for Angles has
been proved in this paper to show that the qualitative
results inferred using the composition tables are geomet-
rically and analytically correct. This is the second main
contribution in this paper.

Regarding the applicability of these models, note that
the relations and compositions of angles and lengths are
useful to automatically solve spatial reasoning tests re-
garding shape composition (e.g. Tangram puzzle). The
composition tables for lengths and angles presented and
proved in this paper are applied by LogC-QSD approach
(Pich and Falomir, 2018) where a logical program solves
a Dataset of 15 tests on shape composition.

As future work, we intend to study in detail the prop-
erties of the composition functions presented in this paper
(i.e. associative, commutative, etc.).
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