
 

Intensity Modulated Photocurrent Spectroscopy for solar 
energy conversion devices. What does negative value mean? 
 
Small perturbation techniques constitute a wide family of tools for the 

characterization of solar energy conversion devices such as photovoltaic cells and 
photoelectrochemical (PEC) cells for solar fuel production. Two main small 
perturbation methods frequently used in the area of solar energy conversion materials 
are Impedance Spectroscopy (IS) and Intensity Modulated Photocurrent Spectroscopy 
(IMPS). The first one consists of applying a small voltage perturbation and measuring 
modulated extracted current. The second one consists of applying the perturbation to the 
illumination and measuring the modulated extracted current.  

It is well known that we can get the resistances and the capacitances of the system 
from the real and the imaginary part of the IS spectra respectively, and recently we have 
demonstrated that the differential External Quantum Efficiency (𝐸𝑄𝐸#$%%) can be 
obtained from the real part of the IMPS spectra.1 However, researchers working on solar 
cell characterization such as the IS of metal halide perovskite solar cells are well aware 
that spectral responses are often not straightforward to interpret. There appear frequently 
experimental responses that display exotic behaviours that do not correspond to usual 
quantities or phenomena. For example, in the case of IS, there have been reports about 
negative values of the real part of the impedance, which are associated to negative 
resistances.2 Negative values of the IS imaginary part or negative capacitances have 
been also reported, particularly in recent results on perovskite solar cells.3-7 Those 
unexpected results, as compared to ordinary physical-chemical behaviour, are difficult 
to explain and their origins are still under debate, with different interpretations found in 
the literature.6-9  

Recently, IMPS has become increasingly popular for understanding the charge 
transfer/transport/recombination dynamics and its connection to performance limitations 
of semiconductor materials in PECs.10-17 One such material is BiVO4, which has become 
an attractive candidate as a photoanode for water oxidation in PEC water splitting cells, 
due to its suitable band gap and valence band position for light absorption and hole 
injection, respectively.18-20 Despite these desirable properties, this material also exhibits 
several limitations related to the charge mobility within the bulk, concomitant to surface 
limitations evidenced as a low charge injection efficiency.19 In particular, the origin of 
these surface limitations has been extensively discussed, leading to divergent 
interpretations on whether the bare surface of BiVO4 is catalytically active or not, and 
hence, about the true role of the co-catalysts used to improve the photoelectrode 
performance.15, 21-22 This context motivates the investigation of the intrinsic and surface 
properties of this promising material in order to overcome its current limitations and, 
furthermore, to properly understand and interpret the results obtained from small 
perturbation experimental techniques. 
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In this Viewpoint we handle a puzzling result that is frequently obtained in IMPS 
measurements, particularly when measuring photoanodes for water splitting 
applications. It has been observed that at the region of applied potential close to the 
open-circuit potential (OCP), the IMPS response goes to the negative real part of the 
complex plane representation at low frequency. This phenomenon is usually 
accompanied by a photocurrent sign switching, observed in linear sweep voltammetry 
(LSV) measurements. This feature has been reported in BiVO4 photoanodes,23 for 
inject-printed CuBi2O4 photocathodes24 and in Gold- decorated Cadmium chalcogenide 
nanorods.25 

While the switch of the sign of the low frequency value of the IMPS response, 𝑄(0), 
that reaches negative values under different conditions, has been associated to the sign 
of the photocurrent in many papers,23-25 here we show that such interpretation is not 
consistent with the experimental measurements. A physical model based on the general 
features of IMPS1 will be presented to explain negative 𝑄(0), that sheds new light into 
the interpretation of quantum efficiency and charge extraction in solar energy 
conversion devices. 

The two techniques of IS and IMPS can be summarized in a general expression that 
relates the photocurrent, 𝚥*, arising from a small perturbation of light, 𝚥+, or voltage, 𝑉, 
at any frequency as a linear combination of the IMPS (𝑄) and IS (𝑍) transfer functions 
expressed as coefficients:26 

𝚥* = 𝑄 𝜔 𝚥+ + 𝑍12(𝜔)𝑉	 (1) 

From this general constraint, the IS response is obtained in the absence of modulated 
illumination (𝚥+ = 0) and otherwise IMPS when 𝑉 = 0. IS combines current and 
voltage, and consequently, the real part of the transfer function is related to a resistance 
and the imaginary part conveys information about capacitance. Therefore, IS enables 
distinguishing between loss processes (resistive) and polarizing processes (capacitive) 
and it provides an estimation of the time-scale for these processes. Moreover, the low 
frequency intercept corresponds to the DC resistance: 

𝑍 0 =
𝑉(0)
𝚥*(0)

=
𝜕𝑉
𝜕𝚥*

= 𝑅67	
(2) 

where 𝑉 and 𝚥* are the DC voltage and steady state extracted current respectively. On 
the other hand, IMPS relates the extracted photocurrent and the illumination, as shown 
in the scheme of Figure 1a. Therefore, the real part of its transfer function is related to 
the variation of the EQE. 
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Figure 1. a Schematic representation of IMPS measurement setup in solar conversion 
photoelectrodes; b IMPS complex representation, where 𝑄′ and −𝑄′′ are the real and 
imaginary components, respectively, of the transfer function 𝑄	(𝜔); c 
Representative	𝑗* − 𝑗+ plot showing that the slope in this graph is directly linked whit 
the 𝑄 0  intercept from IMPS measurements. 
 

Similarly to IS and the 𝑅67 , the low frequency value of the IMPS is directly linked 
with the DC component of the slope of 𝚥* with 𝚥+ , as depicted in Figure 1c.27 

𝑄 0 =
𝚥*(0)
𝚥+(0)

=
𝜕𝚥*
𝜕𝚥+

	
(3) 

This expression has a connection with the external quantum efficiency (EQE), which 
is a key parameter for the evaluation of solar conversion devices, including PECs, since 
it gives the ratio of the incident photons that are converted into electron-hole pairs 
further extracted, as function of the wavelength. Usually, in photoelectrochemical 
characterization, the EQE is referred as the Incident Photon-to-Current Efficiency 
(IPCE) which is calculated by measuring the extracted steady state photocurrent 𝚥*	under 
a monochromatic light source of DC spectral photon flux, ϕ(𝜆). We will refer to this 
quantity as 𝐸𝑄𝐸==, defined as: 

𝐸𝑄𝐸== =
𝑗>?
𝑞𝜙>?

=
𝚥*
𝚥+
	

(4) 
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Here, q is the elementary charge. However, another method widely employed in solar 
conversion device characterization involves the measurement of the differential spectral 
response,  𝐸𝑄𝐸#$%%.28 In this method, the sample is illuminated by a DC white light 
intensity, and the extracted photocurrent is measured under a small low frequency 
perturbation of monochromatic light. Usually, an optical chopper is employed to provide 
the AC perturbation. At infinitely slow perturbation, i.e. 𝜔 → 0, the 𝐸𝑄𝐸#$%% can be 
written as: 

𝐸𝑄𝐸#$%% =
𝚥*
𝚥+
(𝜔 → 0) ≈

𝜕𝚥*
𝜕𝚥+

	

Comparing equations (3) and (5) we get that: 

(5) 

𝑄 0 = 𝐸𝑄𝐸#$%%	 (6) 

Hence, the IMPS measurements constitute an alternative method to obtain the 
𝐸𝑄𝐸#$%%, and it must match the slope of the extracted photocurrent with changing the 
illumination, as already shown by Ravishankar et al.28 

Based on these definitions, we show that the IMPS transfer function negative value is 
associated to the derivative of the photocurrent with the illumination independently 
whether the photocurrent is positive or negative. To demonstrate this statement, we 
show an example of negative 𝑄(0) and negative  𝐸𝑄𝐸#$%%, and simultaneously, positive 
value of its photocurrent. Moreover, we demonstrate experimentally the match of values 
of 𝑄 0  and 𝐸𝑄𝐸#$%% as predicted by Eq. (6). 

Figure 2a shows a linear sweep voltammetry (LSV) curve performed on a BiVO4 
photoanode, at monochromatic DC illumination (λ =470 nm; 90 mW cm-2) and scan rate 
of 50 mV s-1. The complete details about the photoelectrode preparation and the 
experimental setup can be found in the Supporting Information file. The inset in 
Figure 2a shows the region closer to the OCP, which is around 0.25 V vs RHE. Below 
this value, negative photocurrent is obtained, leading to a photocurrent switching point, 
and such photocurrent is strongly dependent on the incident light intensity. Similar 
behaviour has been previously reported on BiVO4 photoanodes.23 
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Figure 2. a Linear sweep voltammetry for a BiVO4 photoanode, recorded at 50 mV s-1 
under monochromatic DC illumination (λ=470 nm, 90 mW cm-2). The inset shows the 
region closer to the OCP value; b 𝑗* − 𝑗+ plot at representative applied potentials closer 
to the OCP value; c Q complex representation measured at 𝑗+=36 mA cm-2 
(corresponding to 90 mW cm-2) at different applied potentials; d Magnification of 
region of c. All the measurements were performed in potassium phosphate buffer, at pH 
7.5.  

 
In Figure 2b, we show the relationship between the steady state extracted 

photocurrent and the incident light intensity at representative applied potentials. At 
applied potentials above the OCP, the extracted photocurrent tends to increase with 
increased photon flux, however this trend is nonlinear, and the slope tends to decrease 
with increasing light intensity. This means that the 𝐸𝑄𝐸#$%% decreases with light 
intensity. At closer values to the OCP, the extracted current does not significantly 
change with light intensity, then the 𝐸𝑄𝐸#$%% is zero. This situation changes at potentials 
below the OCP, where the extracted photocurrent becomes more negative when 
increasing the photon flux, meaning that the differential EQE value is negative. It is 
worth noting that when measuring the extracted photocurrent at a certain applied 
potential and different light intensities, a stable record of the extracted photocurrent was 
obtained after 60 seconds of chronoamperometric measurement. However, for 
intensities below 10 mW cm-2, and especially at the region below the OCP, the time 
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needed to reach a stable photocurrent value was around 120 s. 
First, we carried out IMPS measurements at three different applied potentials and 

maximum illumination. In Figure 2c, at 0.45 V vs RHE, the IMPS signal at low 
frequency is clearly located at the positive real axis of the spectrum. At 0.25 V vs RHE, 
the IMPS response tends to zero at low frequency as shown in the zoom from Figure 
2d, in good agreement with the evolution of the 𝚥* − 𝚥+ plot shown in Figure 2b, where 
a constant photocurrent is shown. Thus, we have 

𝑄 0 = 𝐸𝑄𝐸#$%% = 0	 (7) 

Finally, at -0.05 V vs RHE, at the lowest frequency values, the IMPS transfer 
function moves to the negative part of the real axis, resulting in a negative 𝑄 0 . 

However, these measurements at maximum illumination, (i.e. at the points on the 
right side of Figure 2b) are not able to discriminate whether the IMPS sign switching is 
due to the photocurrent sign switching or to the 𝐸𝑄𝐸#$%% one. Nevertheless, from the 
points at -0.05 V vs RHE in Figure 2b, we can differentiate two regions, one with 
negative photocurrent and negative slope (right side) and one with positive photocurrent 
and negative slope (left side), at lower illumination intensities. At this second region, the 
slope is negative and consequently, the differential EQE is also negative, even when the 
photocurrent is positive. This point allows clearly discriminating whether the IMPS sign 
is related to photocurrent sign, or to the sign of the slope of 𝚥* − 𝚥+ plot, i.e., the 
𝐸𝑄𝐸#$%%. If the IMPS switching is only related to the photocurrent switching, this point 
will give a positive 𝑄 0 , whereas if IMPS is related to the 𝐸𝑄𝐸#$%%, 𝑄 0  will be 
negative. 

To better illustrate this, Figure 3a represents both the extracted photocurrent and the 
𝐸𝑄𝐸#$%% calculated from the slope of Figure 2b. Here it is shown unequivocally that, at 
the low illumination intensity region, the net extracted current is positive, while the 
slope is negative. At this point (same illumination intensity and applied voltage) we 
carried out IMPS measurements and found out that the IMPS transfer function at low 
frequency is also negative (Figure 3b), discarding the hypothesis that IMPS sign 
switching is related to photocurrent sign switching. At higher illumination intensities, 
the photocurrent is negative and, as shown before, the IMPS spectrum at the lowest 
frequency region is also negative (Figure 3c). Here, the negative IMPS is not related to 
the negative sign of the photocurrent, but its negative slope with increasing illumination. 

Finally, we compared the values of the 𝐸𝑄𝐸#$%% calculated from the slope of the data 
at -0.05 V vs RHE in Figure 2b with the values of 𝑄 0  extracted from IMPS spectra 
by extrapolating the final arc. As we expected, the values are in the same order of 
magnitude. The values are shown in Table S1, in the Supporting Information. 
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Figure 3. a Extracted photocurrent measured at -0.05 V vs RHE and 𝐸𝑄𝐸#$%% 

calculated from the slope of steady-state values as function of the illumination intensity; 
b and c Q complex representation recorded under 4.4 mA cm-2 and 36 mA cm-2 photon 
current density, respectively, showing the tendency to negative values of the real part of 
Q at low frequency. We have included an extrapolation of the last arc to estimate the 
value of 𝑄 0 . 

 
The results discussed so far provide a general opto-electrical method of investigation 

of PEC cells that can yield a rich amount of information regarding its operation. The 
evolution of the steady state photocurrent with light intensity can provide direct intuition 
regarding specific recombination mechanisms, such as changes in ideality factors, 
trapping effects and injection barriers. For example, an 𝐸𝑄𝐸#$%% value of 0 at voltages 
close to OCP as seen in Figure 1b (0.25 V vs RHE) indicates an invariant value of 
photocurrent for different light intensities, indicating that LSV measurements at 
different light intensities will converge to the same or very similar OCP value. This can 
indicate the occurrence of Fermi level pinning in the BVO4 (as has been suggested from 
IS measurements in ref. 29), where the applied potential is absorbed by a dipole at the 
interface, as has also been observed for crystal-deficient rutile TiO2 nanowires30. For 
observations of a negative 𝐸𝑄𝐸#$%% at voltages close to or beyond the OCP, it is likely 
that the applied light intensity promotes the filling of a local density of shallow traps 
around the electron Fermi level. This promotes recombination of the photogenerated 
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holes with the trapped electrons which, coupled with the poor transport properties of the 
BiVO4, creates a reduction in the extracted photocurrent. Finally, for large reverse 
biases, the shallow traps are filled with holes, allowing the photogenerated holes to be 
extracted efficiently and causing a rise in photocurrent with light intensity.31 Detailed 
validation of these mechanisms related to the negative 𝐸𝑄𝐸#$%% is currently in progress 
but beyond the scope of the present Viewpoint. 

In summary, we have experimentally demonstrated that the negative value of the real 
part of the transfer function observed in IMPS measurements is not a consequence of a 
current sign switching but indicating the change in the extracted photocurrent with a 
change in the incident photon flux intensity. We confirm this in BiVO4 photoanodes by 
identifying a region beyond the OCP that shows a positive photocurrent while yielding a 
negative 𝐸𝑄𝐸#$%% value. We also establish the study of photocurrent-light intensity 
spectra at different voltages as a powerful method to provide extra insight regarding 
specific mechanisms of operation such as trapping and recombination, and Fermi level 
pinning in PEC devices. 
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