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Abstract 
This paper analyses the economic profitability provided by different types of Li-ion batteries when 

used in residential solar applications under a Model Predictive Control that optimizes the operation of the 
system. The control methodology takes profit of actually commercial time-of-use rates to minimize the 
operation costs. Also, the analysis takes into account the progressive degradation of the batteries involved 
by using state-of-the-art semi-empirical ageing models. The study is performed by means of annual 
simulations that use actual consumption curves for three different households and real PV production 
batteries, with extended lifetime warranties and prices below 600 €/kWh, under optimized operation and 
use even when only energy arbitrage and peak shaving services are considered.  
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1. Introduction 

Photovoltaic (PV) technology has added more capacity per year than any other power technology 
since 2016, overtaking wind that was the leading sector in previous years [1]. In all, new PV installations 
represented about 100 GW in 2018, achieving an accumulated capacity above 500 GW [2]. The 
skyrocketing situation of the PV sector has come true thanks to the prices plummeting experienced by this 
tech in the last decade. The cost for installing residential grid-connected PV systems is worldwide-
averaged around 1.3 €/W [3]. In line with it, the residential PV market has also experienced a big 
deployment that achieves very high shares of the energy production-consumption in certain local grids, 
Fig. 1. This casuistic is getting more and more common, with the “prosumer” role getting popular to an 
increasing extent. 

 
Fig. 1. “The Solar Settlement”, a sustainable housing community project in Freiburg, Germany (CC BY-SA 3.0). 



However, such big amounts of behind-the-meter renewable and stochastically intermittent 
installations pose certain problems in the management of the low voltage grids [4]. Hence, new technical 
and regulatory solutions have to be implemented to avoid running into the problem of systematically 
curtailing part of their production. A clear candidate solution to reduce these issues at the technical level 
is the introduction of some energy storage systems (ESS), mainly batteries, within the dwellings [5]–[7]. 
This combination provides benefits from the point of view of the grid (potential reduction of the 
intermittency of the local and distributed PV production, stabilization of the low voltage grid) and also 
from the point of view of the prosumer (potential reduction of the energy bill for the installation owners).  

Residential PV solutions with batteries are commercially available and gaining traction. Note that 
these installations outpaced utility-scale ones in the USA during the second quarter of 2019 [8]. Also note 
that, again in the USA, there were more residential batteries installed in Q2 2019 than in all of 2017 [8]. 
Even like that, the USA is not the leading scenario and it is the European residential energy storage 
market which keeps being the global market leader as of the end of 2018, with Germany presenting more 
than 120,000 households and small-businesses presenting PV installations with battery storage [9]. 
Estimates equally indicate the European market is on track for a five-fold increase in capacity by 2024. 
Therefore, this is an important sector to be surveyed and analysed.  

PV systems with batteries have been largely analysed in the literature. However, most of the previous 
works are focused on optimizations related to the sizing of the battery system [10]–[12] or to maximizing 
the economic income of the PV installations [13]–[15]. Other recent work [16] tries to determine the best-
suited battery technology depending on the size and the applications involved. It concludes residential 
batteries are not profitable yet even when combining applications at two different locations. In the same 
way, authors in [17] investigate the economic viability of residential PV with batteries plant by using a 
methodology for optimising the size of the storage. They also conclude that present costs of batteries are 
still too high to allow an economic convenience of the storage installation. In opposition to previous 
works, the analysis presented here contemplates a Model Predictive Control (MPC)-based methodology 
that allows performing an optimized operation of the system that returns certain economic profit. This is 
achieved with real irradiance and a monthly-averaged temperature profile at a location in a southern 
Mediterranean region. Also, various load profile data have been considered. The control methodology 
profits actually commercial time-of-use rates, and the analysis takes into account the progressive 
degradation of the batteries involved by means of a state-of-the-art ageing model.  

The work is organized as follows. Section 2 is devoted to the analysis of the different Li-ion 
chemistries available and to the selection of the best alternative for domestic use. Section 3 introduces the 
ageing models used for the selected batteries. The optimized control algorithm and the operation of the 
residential PV system with batteries are described in Section 4. Then, Section 5 introduces the results for 
the different combinations of cases analysed. Finally, some conclusion remarks are provided to complete 
the manuscript in Section 6. 

 
2. Lithium Ion Battery Types and Selection.  

Within the family known as Li-ion batteries, there are up to six different chemistries available in the 
market nowadays. These present different properties and characteristics as a function of their internal 
structure and composition [18], and are mainly identified as: Lithium Cobalt Oxide (LCO), Lithium 
Manganese Oxide (LMO), Lithium Iron Phosphate (LFP), Lithium Nickel Cobalt Aluminium Oxide 
(NCA), Lithium Nickel Manganese Cobalt Oxide (NMC), and Lithium Titanate (LTO). The main 
difference among them lies in the material that makes up the cathode. This material provides the name to 
the specific family, LCO or NCA, etc…, being the anode made of graphite for the first 5 chemistries. 
Only for the latter, the LTO family, receives the name from its anode’s material, being in turn the cathode 
made of graphite. The different internal compositions provide the six families with varying capabilities in 
terms of specific power (W/kg), specific energy (Wh/kg), thermal stability, cyclability and performance 
[19], [20]. They also differ in cost and lifetime expectancy [19], [21], [22]. When comparing them by 
means of Fig. 2, it can be observed how those containing cobalt present high power capacity and energy 
densities although they usually have drawbacks associated to lower safety and shorter lifespan [23], [24]. 



Conversely, those without cobalt (mainly LFP and LTO) present good cyclability and are considered very 
safe although they suffer from low energy and power densities, being LTO also still the most expensive. 
LMO would be the poorest chemistry in terms of operation properties while NMC would be the 
compromise chemistry applicable to any use or requirement [20]. Therefore, depending on the application 
and the associated ESS requirements, a different chemistry will be selected. For the case of residential 
applications in which batteries are used to maximize the PV production while reducing the economic cost 
of the electricity consumption in the dwelling, safety and space availability are generally assumed to be 
the most defining or limiting parameters [25]. In this sense, according to their different characteristics, 
LFP and NMC chemistries are those selected as candidate technologies for analysis in this work. In fact, 
with their pros and cons, these are the chemistries of choice in most of the commercial solutions available 
in the market nowadays for the residential sector [22]. When comparing the two of them, it is important to 
note that while LFP technology presents limitations in terms of specific volume and require larger 
locations for a given energy capacity than NMC, they also generally present better cyclability, power 
response and safety level [20].  

 
Fig. 2. Comparison of characteristics among Li-ion chemistries, derived from [20]. 

 
3. Ageing Models. 

There exist different types of models to predict the lifetime expectancy of Li-ion batteries [26], [27]. 
Among them, semi-empirical models are considered to be the best approach, in terms of complexity and 
reliability, for analysis as the one introduced here. According to the previous, we introduce in the 
following well accepted semi-empirical methods that analyse both the cycling and the calendar ageing in 
LFP and NMC cells.  

3.1. LFP ageing model 

The semi-empirical model used in this work to estimate the lifetime of LFP batteries is that suggested 
by Stroe et al. [28]. These authors propose a model to analyze the loss of the battery capacity (Cfade) 
associated separately to, on the one hand, the calendar ageing, as in: 

𝐶"#$%&'( = 3.087 · 1012 · 𝑒4.45678·9 · 𝑡4.5	 (1)	

where T is the temperature (in Kelvin) and t is the time (in months), and, on the other hand, to the 
operation (cycling ageing), as in: 

𝐶"#$%&>& = 6.87 · 1015 · 𝑒4.4@2·9 · 𝑁𝐶4.5	 (2)	

where NC represents the number of equivalent reference cycles. To obtain NC, it is necessary to process 
the evolution of the state of charge (SOC) of the battery during a given period (usually a year). Then, this 
is introduced to the Rainflow Counting Algorithm (RFC), which is capable of grouping those cycles 
presenting the same depth of discharge (DOD) and the same average SOC. Thus, by means of the 
Palmgren-Miner rule [29] and the capacity evolution curves of batteries provided by the manufacturer, the 
NC value can be calculated. This procedure is described in detail in [30].  



Thereafter, once accounted the NC, this is introduced into (1) and (2) together with the temperature 
and time analyzed. The resulting Cfade values are combined to finally provide a lifetime prognosis, in 
years, by means of equation (3). This equation takes into account that the battery manufacturer defines the 
end-of-life (EOL) of the batteries at the 70% of its initial capacity (C0). 

30% · C4 = CEFGHIJK yearPQR, T + 	CEFGHIVI NC, T · yearsPQR	 (3)	

The solution in years to this equation is the estimated lifetime expectancy of the LFP cell. 
 
3.2. NMC ageing model 

The reference semi-empirical model used for NMC batteries is that proposed by Schmalstieg et al. 
[31]. These authors presented a model for 18650 cylindrical NMC cells from Sanyo that also considers 
the ageing as the loss of battery capacity associated to both calendar and cycling. The first of these 
phenomena is described in [31] according to: 

𝐶"#$%&'( = 7.54 · 𝑉 − 23.75 · 108 · 𝑒1
8]28
9 · 𝑡4.25	 (4)	

where V is the average daily voltage (in Volts), T and t are again the temperature and the time (in Kelvin 
and in days for this model), respectively. The second phenomenon, the cycling ageing, is evaluated with:  

𝐶"#$%&>& = 𝑄 · 7.348 · 101_ · Ø𝑉 − 3.667 @ + 7.600 · 1017 + 4.081 · 101_ · ∆𝐷𝑂𝐷 	 (5)	

Where Q stands for the charge throughput (in ampere-hour), ∅V is the average voltage of the cycle (in 
Volts) and ΔDOD is the depth of discharge of the cycle (in range of 0 – 1). Then, the resulting Cfade values 
for calendar and cycling are combined to finally provide the lifetime prognosis (𝑦𝑒𝑎𝑟EOL, in years), by 
means of equation (6).  

30% · 𝐶4 = 𝐶"#$%&'( 𝑦𝑒𝑎𝑟hij, 𝑇, 𝑉 + 𝐶"#$%&>& 𝑄, ∅𝑉, 𝛥𝐷𝑂𝐷 · 𝑦𝑒𝑎𝑟hij		 (6)	

As for the previous model (LFP model), this “NMC cylindrical” model also takes into account that the 
EOL of the batteries is estimated at the 70% of its C0, according to the manufacturer. 

Finally, note that current residential battery solutions using NMC batteries do not usually contain 
cylindrical but pouch cells. These cells respond much better to high operation temperature within battery 
packs [32]. Also, both the number of cycles and the overall charge throughput that state-of-the-art NMC 
pouch cells can withstand is much larger than that of the Sanyo 18650 cylindrical NMC cells published in 
[31] in 2014. Therefore, this work considers a second enhanced model for NMC batteries, based on 
equations (4)-(6), that has been recalibrated according to the warranty provided for current NMC pouch 
cells provided by manufacturers such as LG Chem in their RESU models [33]. Thanks to the use of such 
last-generation pouch cells and the better thermal management achieved by improved cells arrangements 
and pack designs within the battery pack products by manufacturers, these commercial units withstand up 
to 20 MWh as energy throughput and are granted for 10 years if operated in a range of temperatures 
between -10 °C and 45 °C [34]. Then the updated model takes into account these improved properties to 
minimize the impact of the calendar ageing and to extend the cyclability of the battery. Results for this 
updated model are labeled as “NMC pouch”.   

 
4. Residential PV with batteries operation mode. 

Batteries are used in residential PV installations to boost the handling of local solar production Pno  
and to reduce the cost of the electricity supply in the dwelling. This is done by increasing the amount of 
self-production that becomes self-consumed and also by profiting a time-of-use electricity rate structure 
that allows energy arbitrage, i.e. storing energy during off-peak hours to profit it during expensive grid 
power periods. Moreover, the introduction of batteries allows peak shaving, i.e. reducing instantaneous 
demand power values beyond a given value, with the corresponding reduction in the fix charges associated 
to the electricity supply.  



The study here introduced presents an optimization control algorithm that combines these possibilities 
for different sizes of PV systems and various capacities of batteries with the target to minimize the 
electricity bill.  

4.1. Optimization control proposal for PV system with batteries. 

Consider that, during the typical operation of a PV system with batteries in a residential application 
there are permanently two uncontrollable power variables: 𝑃qr, and the consumption of the loads	(𝑃st#$). 
In general, these quantities are not to be equal and, when	𝑃st#$ > 𝑃qr, the panels production will have to 
be supplemented either from the ESS (𝑃hv) or from the grid 𝑃wxy$ . Conversely, when 𝑃st#$ < 𝑃qr,	the 
excess power can be fed into the ESS or sold to the grid. 𝑃hv and 𝑃wxy$ are therefore controllable variables, 
and it has to be decided which one is to be used in each situation. 

In a flat-rate electricity pricing structure, in which the prices of the electricity exchanged with the grid 
do not change throughout the day and with a buying cost higher than the acquisition one, the optimal 
operation strategy would always be to charge or discharge the ESS before exchanging power with the grid. 
However, most of electricity markets present a time-of-use rates structure with prices being more 
expensive during high demand periods in the power system (on-peak hours) and cheaper during lower 
demand ones (off-peak hours). In this context, the optimal strategy could be different from that described 
above: it might be convenient to save energy in the ESS in off-peak hours if it is going to be locally 
demanded during on-peak periods.  

This kind of problem, which requires taking into account the effect that current actions have on 
optimality and on the ability of meeting constraints in the future, is very suitable for the application of 
Model Predictive Control (MPC) [35]. This is a controller design technique based on an optimization 
strategy in which the future outputs for a given horizon N, called the prediction horizon, are predicted at 
each instant using process models. These predicted outputs depend on the future control signals, which are 
calculated by optimizing a determined criterion while fulfilling a set of constraints. Although a complete 
sequence of future control signals is computed, only the first one is effectively sent to the process, because 
at the next sampling instant new information will be available. This is known as receding horizon. 

For residential PV systems with batteries, the optimization criterion is mainly determined by the 
economic balance of the energy exchanged with the grid. However, it is also convenient to include in the 
optimization cost the power fed into, or taken from, the ESS. Regarding the constraints, the power balance, 
including powers from the PV system, the ESS, the grid and the loads, must be met; also the state of charge 
(SOC) of the ESS must be kept within its limits; and, finally, the power exchanged both with the grid and 
the ESS must also stay within certain limits.  

Note that the future production of the PV panels and the coming consumption of the loads should be 
somehow known in order to grant the fulfillment of the power balance. However, there is no way to 
advance the exact value of these variables, as they mainly depend on the future irradiance from the Sun and 
the stochastic behavior of the consumer, respectively. Therefore, suitable models (𝑃qr and 𝑃st#$) described 
in the following subsection, will be used. 

With all these considerations, and following an approach similar to [36], the optimization problem to be 
solved in the MPC framework can be formulated as follows: 

min 𝐽� = 𝑇 𝑐wxy$ 𝑡 + 𝑘 · 𝑃wxy$ 𝑡 + 𝑘 + 𝑐hv 𝑡 + 𝑘 · 𝑃hv 𝑡 + 𝑘
�

��4

 
 

(7) 

 
Subject for 𝑘 = 0…𝑁	to: 
 

𝑃qr 𝑡 + 𝑘 + 𝑃wxy$ 𝑡 + 𝑘 + 𝑃hv 𝑡 + 𝑘 = 𝑃st#$(𝑡 + 𝑘) 

𝐸hv 𝑡 + 𝑘 + 1 = 𝐸hv 𝑡 + 𝑘 − 𝑇 · 𝜂 · 𝑃hv 𝑡 + 𝑘  

𝐸hv,�y� ≤ 𝐸hv 𝑡 + 𝑘 ≤ 𝐸hv,�#� 



𝑃hv,�y� ≤ 𝑃hv 𝑡 + 𝑘 ≤ 𝑃hv,�#� 

𝑃wxy$,�y� ≤ 𝑃wxy$ 𝑡 + 𝑘 ≤ 𝑃wxy$,�#� 

where: 
• T is the sampling period. 
• 𝑃qr 𝑡 + 𝑘  and 𝑃st#$(𝑡 + 𝑘) are the predictions for 𝑃qr 𝑡 + 𝑘  and 𝑃st#$ 𝑡 + 𝑘 , respectively. 
• 𝑃wxy$ 𝑡 + 𝑘  is the power exchanged with the grid at instant 𝑡 + 𝑘, with 𝑃wxy$ 𝑡 + 𝑘 > 0 when 

energy is purchased. 
• 𝑃hv 𝑡 + 𝑘  is the power exchanged by the ESS at instant 𝑡 + 𝑘, with 𝑃hv 𝑡 + 𝑘 > 0 when 

discharging. 
• 𝐸hv 𝑡 + 𝑘  is the energy available in the ESS at instant 𝑡 + 𝑘. 
• 𝑃hv,�y�, 𝑃hv,�#�, 𝑃wxy$,�y� and 𝑃wxy$,�#� are the lower and upper bounds for the power exchanged 

with the ESS and the grid. These constraints are due to the limitations on the power converters and, 
therefore: 𝑃hv,�y� = −𝑃hv,�#� and 𝑃wxy$,�y� = −𝑃wxy$,�#�. 

• 𝐸hv,�y� and 𝐸hv,�#� are the limits in between which the ESS SOC must be kept. 

• 𝑐hv(𝑡 + 𝑘) is the cost given to the power exchange with the ESS, used to tune the behavior of the 
system. 

• 𝑐wxy$ =
𝑐���(ℎ) 𝑓𝑜𝑟	𝑃wxy$ > 0
𝑐�%ss 𝑓𝑜𝑟	𝑃wxy$ < 0 are the electricity prices. 𝑐��� changes its values with the hour of 

the day ℎ depending on the rate period (on-peak or off-peak), while 𝑐�%ss is considered constant and 
𝑐��� ℎ > 𝑐�%ss for any given ℎ . 

• 𝜂 =
6

����
𝑓𝑜𝑟	𝑃hv > 0

𝜂��w 𝑓𝑜𝑟	𝑃hv < 0
, being 𝜂$y� and 𝜂��w the discharging and charging efficiencies, 

respectively.  
 
Although most of the equations in the above problem are linear, such problem in its current formulation 

is still difficult to solve because it presents two piecewise functions, 𝑐wxy$ and 𝜂, and a non-linear function, 
𝑃hv 𝑡 + 𝑘 . This kind of functions can be dealt with by introducing binary variables, which lead to a 

mixed integer linear program (MILP), computationally prohibitive for the size of the problem. Therefore, a 
different formulation is proposed.  

The idea is to replace 𝑃wxy$ by two new variables, 𝑃��� and 𝑃�%ss, for the cases when it is positive or 
negative. Similarly,  𝑃hv can be replaced by 𝑃��w and 𝑃$y�, and the cost of energy exchanged by the ESS, 
𝑐hv, is also substituted by 𝑐��w and 𝑐$y�.  

Furthermore, with the previous formulation, the optimization could present multiple solutions with the 
same minimum, due to the piecewise constant nature of the costs. To avoid this, two weighting sequences, 
𝜆� 𝑘 = 𝛼� and 𝜆$ 𝑘 = 𝛽� are introduced. 𝜆� 𝑘 , with 𝛼 = 0.999, weights 𝑃��w in a way that, in 
otherwise equal situations, favors charging as late as possible. Conversely, 𝜆$ 𝑘  with 𝛽 = 1.001, weights 
𝑃$y� to favor discharging as soon as possible.   

With the changes introduced, the optimization problem turns into: 

min 𝐽� = 𝑇 𝑐��� 𝑡 + 𝑘 𝑃��� 𝑡 + 𝑘 − 𝑐�%ss 𝑡 + 𝑘 𝑃�%ss 𝑡 + 𝑘 + 𝜆� 𝑘 𝑐��w 𝑡 + 𝑘 𝑃��w 𝑡 + 𝑘
�

��4

+ 𝜆$ 𝑘 𝑐$y� 𝑡 + 𝑘 𝑃$y� 𝑡 + 𝑘  

 

(8) 

Subject for 𝑘 = 0…𝑁	to: 
 

𝑃qr 𝑡 + 𝑘 + 𝑃��� 𝑡 + 𝑘 + 𝑃$y� 𝑡 + 𝑘 = 𝑃st#$ 𝑡 + 𝑘 + 𝑃�%ss 𝑡 + 𝑘 + 𝑃��w 𝑡 + 𝑘 	

𝐸hv 𝑡 + 𝑘 + 1 = 𝐸hv 𝑡 + 𝑘 + 𝑇 𝜂��w𝑃��w 𝑡 + 𝑘 −
1
𝜂$y�

𝑃$y� 𝑡 + 𝑘 	

𝐸hv,�y� ≤ 𝐸hv 𝑡 + 𝑘 ≤ 𝐸hv,�#�	

0 ≤ 𝑃��� 𝑡 + 𝑘 ≤ 𝑃wxy$,�#�	



0 ≤ 𝑃�%ss 𝑡 + 𝑘 ≤ −𝑃wxy$,�y�	

0 ≤ 𝑃��w 𝑡 + 𝑘 ≤ 𝑃hv,�#�	

0 ≤ 𝑃$y� 𝑡 + 𝑘 ≤ −𝑃hv,�y�	

𝑃��� 𝑡 + 𝑘 · 𝑃�%ss 𝑡 + 𝑘 = 0	

𝑃��w 𝑡 + 𝑘 · 𝑃$y� 𝑡 + 𝑘 = 0	

 
Note that, the objective function and all the constraints (apart from the last two) become linear with this 

new formulation. These two quadratic equality constraints are introduced to avoid illogical solutions from 
the solver, i.e. simultaneously buying/selling energy from the grid, or charge/discharge from the ESS.   

Let us now consider a new optimization problem by dropping the two last constraints, involving 𝑃��� 
and 𝑃�%ss, and 𝑃��w and 𝑃$y�. The new problem, with both the cost function and constraints defined as linear 
functions, is a linear program (LP), which is a convex optimization problem and its optimal solution can be 
easily found.  Furthermore, because of the structure of the problem at hand, this optimal solution is such 
that either 𝑃���

t�� = 0 or 𝑃�%ss
t�� = 0. Indeed, if  𝑃���

t�� ≠ 0 and 𝑃�%ss
t�� ≠ 0,	as c ¡¢ > c£H¤¤ > 0,	 there would 

exist a new feasible solution 𝑃′���
t�� = 𝑃���

t�� − 𝑃�%ss
t�� and P′£H¤¤

¦§¨ = 0 with a lower value of the cost function, 

rendering 𝑃���
t�� and 𝑃�%ss

t�� as suboptimal. From convexity of LP problems, the optimization algorithm will 

find 𝑃′���
t��  and 𝑃′�%ss

t�� 	instead of the suboptimal solutions. In order to get this same behavior with 𝑃��w and 
𝑃$y�, different costs for the charging and discharging (both near 0) are introduced. 

After all these considerations, the original optimization problem can be replaced by a linear program 
(LP) that achieves the same optimal solution, and can be easily solved with standard optimization tools. It 
must be noted that the power sequences obtained by the LP are optimal only if future  𝑃qr and 𝑃st#$ are 
exact. However, this is never the case in general and the system operation sequences may even be 
unfeasible. In an MPC framework, this is critical for the power values in the first time instant because they 
are actually applied. For the cases in this work when these are unfeasible (usually because the power 
balance is not met) a correction algorithm is described in subsection 4.3. 

Finally, it is important to remind that, for the application of the MPC strategy, prediction models 𝑃qr 
and 𝑃st#$ are needed. Those used in this work for each of them are introduced in the following section. 

4.2. Models required in the optimization. 

𝑃qr 	 is based on a clustering strategy of the actual irradiance at the target location. Clustering is a 
methodology to classify data vectors (24-hour irradiance profiles in this case) into groups in such a way 
that the resulting sets contain, respectively, those data vectors that are more similar to each other, 
according to a specific criterion. Moreover, the clustering strategy implemented also provides a centroid 
of all the data vectors in a group. These centroids are the 24-hour profile vectors used to generate 𝑃qr. 

There exist different methods designed to define the appropriate number of clusters in a dataset. Those 
more extended in the literature, Elbow method [37] and gap statistic [38], are implemented here. The 
Elbow method is based on the “k-means” algorithm, which partitions data into k distinct clusters based on 
the squared Euclidean distance of the data classified to the centroid of each cluster. Therefore, this method 
is based on calculating, for different values of k, the sum of all the distances of every data point to the 
centroid of its cluster. Finally, it graphically determines when the decrement of this sum, which descends 
continually with k, is not significant enough to keep increasing the number of clusters. On the other hand, 
gap statistic method uses the output of the clustering algorithm to compare the change in within-clusters 
dispersion with that expected under an appropriate reference null distribution. As for the Elbow method, 
the “k-means” algorithm has been used to group irradiance data. 

For the case under study, yearly real irradiance data measured every 15 minutes at a location in a 
southern Mediterranean region with 1880 peak sun hours are used. The resulting number of clusters for the 



irradiance experienced in that location, obtained using the Elbow and Gap statistic methods, is 5. Their 
centroids, used to generate 𝑃qr in this work, are shown in Fig. 3.  

 
Fig. 3. Reference cluster curves of annual actual irradiance.  

Observe how clusters 3 and 4 comprehend winter and summer sunny days, respectively. Note how 
cluster 3 shows a lower midday peak and a profile in which irradiance appears later and ends sooner than 
that for cluster 4. Furthermore, cluster 5 encompasses days that are sunny in the morning but cloudy in the 
afternoon. Conversely, cluster 2 includes days that are cloudy in the morning but sunny in the afternoon. 
Finally, cluster 1 corresponds to overcast days. 

For the sake of clarity in regards to the clustering strategy performance, check Fig. 4 which shows the 
centroid and all the irradiance curves contained in cluster 5. All these curves are used during the 
simulations to generate the results introduced in Section 5. Note in this sense that the colored curves in Fig. 
4 will give rise to 𝑃qr while black centroid curve will be used as 𝑃qr. The computation of 𝑃qr and 𝑃qr  
from the corresponding irradiance profiles has been performed taking into account the efficiency and losses 
of the different components conforming the PV installation and attending the proposal from [39] and [40]. 

 
Fig. 4. Example of irradiance clustering 

Contrary to 𝑃qr, models of dwelling consumption profiles cannot be derived out of a clustering 
analysis. This is due to the fact that the evolution of the daily consumption in a household is so stochastic 
that grouping it into a small number of clusters is unfeasible. Thus, the 𝑃st#$ used corresponds to one of 



the reference load profiles defined by the Spanish Ministry of Industry for the residential sector [41]. These 
profiles are used by energy retailers to bill hour-dependent tariffs to those consumers not updated yet with 
consumption telemetry. As for the case of Fig. 4, Fig. 5 represents the reference load profile, in black, and 
some examples of real daily load curves registered at one of the dwellings analyzed in the simulations. 

			
Fig. 5. Example of reference [29] and actual consumption curves at a dwelling.  

4.3. Final operation of the system. 

The operation of the PV system with batteries derived from the optimization in 4.1 may be unfeasible 
when 𝑃qr and 𝑃st#$ are not exact. In fact, this is the normal situation and when the power balance cannot 
be met it requires a series of decision rules defined with the goal to keep minimizing the electricity bill 
while avoiding uncontrolled operations. Thus, it is necessary to permanently determine not also the PV and 
load forecast errors but the global error in the hourly power balance. This is done by: 

𝑃%xxtx = 𝑃st#$ 𝑡 + 1 − 𝑃st#$ 𝑡 + 1 + 𝑃qr(𝑡 + 1) −	 𝑃qr 𝑡 + 1 	 (9)	

Then, 𝑃%xxtx > 0 means that there is an excess of energy in the dwelling electrical system during that 
operation hour and, hence, the control power preferences shown in Fig. 6 have to be implemented. Under 
such a casuistic, it is initially required to check if the system is purchasing energy from the grid (step 1 in 
Fig. 6). If so (step 2.1), the control system compares 𝑃%xxtx with the power purchased reducing the latter in 
case is larger than 𝑃%xxtx (step 3.1). On the contrary, the system cancels all the imports from the grid and 
recalculates the power still to be balanced, 𝑃%xxtx_#�� (step 3.2). After that, and together with the case 
analyzed in step 1 that returns no imports (step 2.2), 𝑃%xxtx_#�� will have to be charged to the batteries. 
Prior to that, the system checks and verifies if that excess of power together with the actual battery power 
(defined by the optimization) do not exceed the power ratings of the battery converter (step 4). If that is the 
case, all the power excess is instantly assumed by the battery (step 5.1). On the contrary, if the battery 
power ratings are exceeded, it will be charged to limited to it, thus generating a new excess power (step 
5.2). Once the new battery power reference is defined, it is time to check if the maximum battery SOC is 
not or it is not going to be exceeded (step 6). As a function of this, it will be necessary (or not) to sell some 
energy to the grid (steps 7.2 and 7.1). 

Conversely, when 𝑃%xxtx < 0, it is necessary to provide extra energy to the dwelling. In this case, the 
control power preferences shown in Fig. 7 are implemented. These basically imply to favor the use of the 
energy stored in the battery instead of purchasing from the grid. Thus, the system starts by checking 
whether the battery was being discharged (step 1). Then, as for the previous case when 𝑃%xxtx > 0, the 
battery discharge power limit is analyzed (step 2) and, as a function of the results, the new powers resulting 
to meet the power balance are defined (step 3 and 4). Likewise, it is also verified that, when the battery is 
discharged to complete the energy balance in the house, the discharge does not goes beyond its minimum 
SOC (step 5). Finally, the corresponding power references are set up (step 6). 



	
Fig. 6. Flowchart of the actual control ruling the operation of the PV installation with batteries under 𝑃%xxtx > 0.  

	
Fig. 7. Flowchart of the actual control ruling the operation of the PV installation with batteries under 𝑃%xxtx < 0. 
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Then, also note in Fig. 6 and Fig. 7 that only in the case that 𝑃qr = 𝑃qr and 𝑃st#$ = 𝑃st#$	the final 
power variables used for the operation of the plant will be those defined as optimal by the LP. That is:  

𝑃���
" = 𝑃���(𝑡 + 1)      𝑃�%ss

" = 𝑃�%ss 𝑡 + 1        𝑃��w
" = 𝑃��w(𝑡 + 1)        𝑃$y�

" = 𝑃$y�(𝑡 + 1) (10) 

Where 𝑃y
" are the final powers and 𝑃y(𝑡 + 1) are the power sequences obtained by the LP. 

All these cases of operation, subject to the different preferences depending on the casuistic, can be 
observed in Fig. 8. This shows in a) the ideal operation of the system in the case that 𝑃qr = 𝑃qr and 
𝑃st#$ = 𝑃st#$. On the contrary, Fig. 8b) represents the actual or final operation of the system under regular 
circumstances. Note how during on-peak hours (grey regions) no energy is purchased from the grid and 
battery is profited to the maximum. In the same way, if still profitable and proper PV production is 
forecasted for the coming day, the battery keeps discharging to supply demand during off-peak hours. In 
this way, most of the PV production is self-consumed and energy is only purchased from the grid during 
off-peak hours. Finally, check in Fig. 8c), which represents the evolution of the battery SOC during the 
actual operation just described for those three days, how the battery SOC evolves accordingly. 

 
5. Simulations and results. 

5.1. Benchmark of study cases. 

Annual simulations of the hourly system operation have been performed using Matlab®. The irradiance 
and temperature data employed were the same for all the cases: actual irradiance values measured every 15 
minutes throughout a year at the location of interest and the temperature profile provided by PVGIS [42] 
for that location during the same year. Note that these ambient temperatures were offset with 15 ºC to 
better emulate the operating temperatures of the cells within the battery packs.  

On the contrary, three different dwellings were considered with varying hourly-load distributions. The 
three of them present a global annual consumption that, although differently distributed throughout the day, 
rounds 5,000 kWh/year. Fig. 9 represents their different distributions as percentages of annually-averaged 
hourly consumption together with the reference load profile already introduced in Fig. 5, and used as 𝑃st#$. 
To summarize the differences in the load distribution among these households, note how the first one 
presents a peak of demand during two morning hours. On the contrary, the second household concentrates 
an important part of its consumption during the evening hours. Finally, the third household hardly deviates 
from the reference load profile, being in this sense a model consumer. These three distributions cover most 
of the main regular cases that can be encountered in the residential sector. They have been selected with the 
aim of providing results as general as possible.  

Fig. 9 also details the off-peak and on-peak hours during the different seasons of the year defined in the 
Iberian Market of the Electricity (MIBEL) for residential users. A commercial and much extended 
electricity time-of-use rate in Spain [43] has been assumed to assign costs to the sale and purchase of 
electricity during the different hours of the day. So, while the sale is defined constant throughout the day at 
5 c€/kWh, the purchase is rated at 22 c€/kWh during on-peak hours and 11 c€/kWh during off-peak hours.   

Moreover, three different PV installations (with rated powers of 2, 3, and 4 kW, respectively) have 
been considered for each of the dwellings. And for each of these 9 possible combinations, two cases 
without batteries (under two different economic regimes: with and without economic compensation of the 
surplus PV production exported to the grid) and four cases with different battery capacities (all with a rated 
power of 3.2 kW and roundtrip efficiency of 90 %, but storage capacities for 1, 2, and 4 hours), have been 
analyzed. The rated power and capacity values selected for both the PV installation and the battery are in 
accordance with the usual size of the installations in the residential sector in southern Europe and attending 
the most common models of home batteries available in the market. The simulation of each of the previous 
combinations provided differently shaped annual SOC evolutions. These were then fed, together with the 
temperature profile and the time vector, to the ageing models defined in equations (2) to (6). Finally, the 
resulting lifetime expectancies were used to calculate the profitability of the batteries under such a 
combination of operation conditions.   



 
a) 

 
b) 

 
c) 

Fig. 8. Operation of the residential PV system with batteries during three days under: a) optimal conditions, b) actual 
conditions, and c) state of charge evolution of the battery during actual operation.  



 	
Fig. 9. Load distribution profile for the 3 households analysed, and reference load curve used as model. 

5.2. Operation and profitability results. 

The results obtained for the different study cases just introduced are summarized in Tables 1 through 5. 
The first three tables initially introduce the lifetime expectancy calculated for the batteries, in years, when 
used at each of the households according to the optimized operation methodology explained in Section 4 
and for each of the ageing models introduced in Section 3. After that, these tables introduce the annual 
gross and net savings achieved when installing a given residential PV system with batteries and taking into 
account the expected lifetime of the components and their initial cost. The latter is calculated as: 

𝐴𝑛𝑛𝑢𝑎𝑙	𝑛𝑒𝑡	𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 𝐴𝑛𝑛𝑢𝑎𝑙	𝑔𝑟𝑜𝑠𝑠	𝑠𝑎𝑣𝑖𝑛𝑔𝑠 −
𝑃𝑉²³qh´
𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒

−
𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠²³qh´

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦
 (11) 

Where the annual gross savings for each dwelling are accounted as the difference between the initial 
electricity bill (that amounts for around 840 € without PV system and batteries) and the operating cost once 
the system is installed. Note in this sense that, in agreement with [3], an initial investment of 1,300 €/kW of 
installed capacity is assumed for the PV system (with a lifetime expectancy of 25 years). Also, taking into 
account [16] and [17], as well as different reviews and energy storage reports [44]–[47], a CAPEX of 350 
€/kWh has been assumed for the batteries, regardless of the chemistry and type, while the lifetime is 
calculated for each different battery and size. 

Then, two more tables are introduced, Table 4 and Table 5. These summarize the profitability results 
for the different system combinations. Three profitability metrics are presented in these tables: the 
“Payback Period” in Table 4, and the “Net Payback Period”, and the “Net Present Value” in Table 5, 
which only accounts for the cases using “NMC pouch” cells because is the sole model providing clear 
benefits when including batteries. These metrics are calculated according to the following equations: 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘	𝑃𝑒𝑟𝑖𝑜𝑑 𝑦𝑒𝑎𝑟𝑠 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤
=
𝑃𝑉²³qh´ + 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠²³qh´
𝐴𝑛𝑛𝑢𝑎𝑙	𝑔𝑟𝑜𝑠𝑠	𝑠𝑎𝑣𝑖𝑛𝑔𝑠

 (12) 

𝑁𝑒𝑡	𝑃𝑎𝑦𝑏𝑎𝑐𝑘	𝑃𝑒𝑟𝑖𝑜𝑑 𝑦𝑒𝑎𝑟𝑠 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
𝑁𝑒𝑡	𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤

=
𝑃𝑉²³qh´ + 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠²³qh´

𝐴𝑛𝑛𝑢𝑎𝑙	𝑛𝑒𝑡	𝑠𝑎𝑣𝑖𝑛𝑔𝑠
 (13) 

𝑁𝑃𝑉(€) =
𝑅�

(1 + 𝑖)�
	

�

��6

− 𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (14) 

Where i is the discount rate (with value 0.65%), n the number of periods (25 years in this case) and Rt is 
the Net Cash Flow during each t period. 



Table 1. Profitability and batteries lifetime expectancy results for household 1 

PV power 
(kW)  
// ES 

capacity 
(kWh) 

Lifetime 
LFP 

(years) 

Lifetime 
NMC 

cylindrical 
(years) 

Lifetime 
NMC 
pouch 
(years) 

Cost of 
energy 

purchases 
with 

PV+ES 

Energy 
sales 

revenues 
with 

PV+ES 

Operating 
costs with 
PV+ES 

Annual 
gross 

savings 

Annual 
net 

savings 
LFP 

Annual 
net 

savings 
NMC 

cylindric 

Annual 
net 

savings 
NMC 
pouch 

2 // 0 - - - 554 € -   € 554 € 280 € 176 € 176 € 176 € 
2 // 0 - - - 554 € 117 € 436 € 397 € 293 € 293 € 293 € 

2 // 3.2 6.35 3.04 13.45 369 € 73 € 295 € 539 € 258 € 67 € 351 € 
2 // 6.4 6.47 3.42 14.64 237 € 34 € 204 € 630 € 180 € -129 € 373 € 

2 // 12.8 8.17 6.70 26.69 207 € 21 € 187 € 647 € -5 € -125 € 375 € 
3 // 0 - - - 523 € -   € 523 € 311 € 155 € 155 € 155 € 
3 // 0 - - - 523 € 207 € 316 € 518 € 362 € 362 € 362 € 

3 // 3.2 6.34 3.10 13.54 336 € 161 € 175 € 658 € 326 € 141 € 420 € 
3 // 6.4 6.45 3.45 14.90 196 € 115 € 80 € 754 € 250 € -51 € 447 € 

3 // 12.8 8.02 6.55 26.21 155 € 98 € 57 € 777 € 62 € -64 € 450 € 
4 // 0 - - - 504 € -   € 504 € 330 € 122 € 122 € 122 € 
4 // 0 - - - 504 € 300 € 204 € 630 € 422 € 422 € 422 € 

4 // 3.2 6.31 3.08 13.51 317 € 253 € 64 € 770 € 384 € 198 € 479 € 
4 // 6.4 6.46 3.51 15.32 176 € 206 € -30 € 863 € 309 € 18 € 509 € 

4 // 12.8 8.04 6.59 26.47 137 € 188 € -52 € 886 € 120 € -2 € 509 € 
 
Table 2. Profitability and batteries lifetime expectancy results for household 2 

PV power 
(kW)  
// ES 

capacity 
(kWh) 

Lifetime 
LFP 

(years) 

Lifetime 
NMC 

cylindrical 
(years) 

Lifetime 
NMC 
pouch 
(years) 

Cost of 
energy 

purchases 
with 

PV+ES 

Energy 
sales 

revenues 
with 

PV+ES 

Operating 
costs with 
PV+ES 

Annual 
gross 

savings 

Annual 
net 

savings 
LFP 

Annual 
net 

savings 
NMC 

cylindric 

Annual 
net 

savings 
NMC 
pouch 

2 // 0 - - -  582 €   -   €   582 €   267 €   163 €   163 €   163 €  
2 // 0 - - -  582 €   119 €   463 €   386 €   282 €   282 €   282 €  

2 // 3.2 6.28 2.94 13.10  390 €   75 €   315 €   534 €   252 €   49 €   344 €  
2 // 6.4 6.42 3.18 13.70  240 €   33 €   206 €   643 €   190 €  -165 €   375 €  

2 // 12.8 8.09 6.44 25.48  205 €   19 €   186 €   663 €   5 €  -136 €   383 €  
3 // 0 - - -  560 €   -   €   560 €   289 €   133 €   133 €   133 €  
3 // 0 - - -  560 €   212 €   348 €   501 €   345 €   345 €   345 €  

3 // 3.2 6.26 2.94 13.14  362 €   164 €   198 €   651 €   316 €   114 €   410 €  
3 // 6.4 6.37 3.21 13.88  202 €   117 €   85 €   764 €   256 €  -91 €   446 €  

3 // 12.8 7.91 6.26 24.91  158 €   98 €   60 €   789 €   67 €  -82 €   453 €  
4 // 0 - - -  548 €   -   €   548 €   301 €   93 €   93 €   93 €  
4 // 0 - - -  548 €   307 €   241 €   608 €   400 €   400 €   400 €  

4 // 3.2 6.24 2.92 13.07  348 €   258 €   89 €   760 €   372 €   169 €   466 €  
4 // 6.4 6.38 3.25 14.18  186 €   209 €  -23 €   872 €   313 €  -24 €   506 €  

4 // 12.8 7.93 6.29 25.13  144 €   191 €  -47 €   896 €   123 €  -24 €   510 €  
 
Table 3. Profitability and batteries lifetime expectancy results for household 3 

PV power 
(kW)  
// ES 

capacity 
(kWh) 

Lifetime 
LFP 

(years) 

Lifetime 
NMC 

cylindrical 
(years) 

Lifetime 
NMC 
pouch 
(years) 

Cost of 
energy 

purchases 
with 

PV+ES 

Energy 
sales 

revenues 
with 

PV+ES 

Operating 
costs with 
PV+ES 

Annual 
gross 

savings 

Annual 
net 

savings 
LFP 

Annual 
net 

savings 
NMC 

cylindric 

Annual 
net 

savings 
NMC 
pouch 

2 // 0 - - -  499 €   -   €   499 €   339 €   235 €   235 €   235 €  
2 // 0 - - -  499 €   101 €   398 €   440 €   336 €   336 €   336 €  

2 // 3.2 6.47 3.29 14.33  324 €   60 €   263 €   574 €   297 €   130 €   392 €  
2 // 6.4 6.62 3.64 15.75  204 €   23 €   180 €   657 €   215 €  -63 €   411 €  

2 // 12.8 8.42 7.36 28.40  181 €   13 €   168 €   669 €   34 €  -44 €   408 €  
3 // 0 - - -  469 €   -   €   469 €   368 €   212 €   212 €   212 €  
3 // 0 - - -  469 €   192 €   278 €   560 €   404 €   404 €   404 €  

3 // 3.2 6.36 3.16 13.77  287 €   147 €   140 €   698 €   366 €   188 €   460 €  
3 // 6.4 6.50 3.56 15.50  160 €   103 €   57 €   781 €   280 €  -5 €   480 €  

3 // 12.8 8.17 6.88 27.36  124 €   86 €   38 €   799 €   95 €  -7 €   480 €  
4 // 0 - - -  455 €   -   €   455 €   383 €   175 €   175 €   175 €  
4 // 0 - - -  455 €   287 €   168 €   670 €   462 €   462 €   462 €  

4 // 3.2 6.28 3.08 13.54  268 €   240 €   28 €   809 €   423 €   238 €   519 €  
4 // 6.4 6.46 3,55 15.47  139 €   193 €  -53 €   891 €   336 €   51 €   538 €  

4 // 12.8 8.10 6,85 27.33  103 €   175 €  -73 €   911 €   150 €   49 €   539 €  
 

Finally, it is equally important to highlight that the profitability of the different installations could be 
further increased if peak shaving possibilities had been quantified in the tables. This would imply, thanks 
to the battery rated power capacity (3.2 kW in this analysis), to decrease the cost of the electricity supply 
associated to the power term of the bill by around 120 € per year, what would favor the introduction of 
batteries even more. 



Table 4. Payback values resulting for the combinations simulated at the three different households. 

PV power (kW) 
// ES capacity 

(kWh) 

PV 
CAPEX 

Battery 
CAPEX 

Payback 
Household 1 

Payback 
Household 2 

Payback 
Household 3 

2 // 0 2,600 0 9.28 9.74 7.67 
2 // 0 2,600 0 6.54 6.73 5.91 

2 // 3.2 2,600 1,120 6.91 6.97 6.48 
2 // 6.4 2,600 2,240 7.68 7.53 7.36 

2 // 12.8 2,600 4,480 10.94 10.68 10.58 
3 // 0 3,900 0 12.56 13.51 10.59 
3 // 0 3,900 0 7.53 7.79 6.96 

3 // 3.2 3,900 1,120 7.62 7.71 7.19 
3 // 6.4 3,900 2,240 8.15 8.04 7.86 

3 // 12.8 3,900 4,480 10.79 10.62 10.48 
4 // 0 5,200 0 15.75 17.27 13.58 
4 // 0 5,200 0 8.25 8.55 7.77 

4 // 3.2 5,200 1,120 8.21 8.32 7.81 
4 // 6.4 5,200 2,240 8.62 8.53 8.35 

4 // 12.8 5,200 4,480 10.93 10.80 10.63 
 

Table 5. Economic metrics resulting with the “NMC pouch” model for the combinations simulated at household 3. 

PV power (kW) // ES  
capacity (kWh) 

PV 
CAPEX 

Battery 
CAPEX 

Net Payback 
NMC pouch 

NPV 
NMC pouch 

2 // 0 2,600 0 11.06 4,915 € 
2 // 0 2,600 0 7.74 7,154 € 

2 // 3.2 2,600 1,120 9.49 9,005 € 
2 // 6.4 2,600 2,240 11.78 9,725 € 

2 // 12.8 2,600 4,480 17.40 7,751 € 
3 // 0 3,900 0 18.40 4,258 € 
3 // 0 3,900 0 9.65 8,515 € 

3 // 3.2 3,900 1,120 10.89 10,454 € 
3 // 6.4 3,900 2,240 12.79 11,174 € 

3 // 12.8 3,900 4,480 17.49 9,333 € 
4 // 0 5,200 0 29.71 3,291 € 
4 // 0 5,200 0 11.26 9,653 € 

4 // 3.2 5,200 1,120 11.20 11,615 € 
4 // 6.4 5,200 2,240 13.83 12,313 € 

4 // 12.8 5,200 4,480 17.96 10,516 € 
 

5.3. Results discussion and sensibility analysis. 

When analyzing all the results presented in Table 1 through Table 5, various interesting conclusions 
can be withdrawn. First, start consulting for instance the first 5 lines in Table 1. These indicate that: the PV 
installation with no compensation for the surplus local production would return 176 € as “Annual net 
savings”, the PV installation being credited 5 c€/kWh for each surplus kWh sold to the grid would return 
293 €, the same PV installation credited 5 c€/kWh for each surplus kWh sold and also with a 3.2 kW / 3.2 
kWh battery would return 354 €, with a 3.2 kW / 6.4 kWh battery would return 377 €, and 3.2 kW / 12.8 
kWh battery would return 359 € as “Annual net savings”. Thus, note how increasing battery capacity is 
positive in economic terms but only up to a given size. Beyond this capacity, usually in the range around 
6.4 kWh, the profitability would be negative, what implies a decreasing interest for investment. 

Second, it is important to review the variability of results among households, Tables 1 to 3. It is clear 
that neither in lifetime expectancy nor in economic profitability the results differ significantly. Economic 
returns are a little bit better for household 3, as its load is more similar to the load model introduced to the 
optimization than that of the other two households. Also, note how household 2 would be a slightly better 
place to introduce the systems under discussion than household 1 because it concentrates a higher load 
during on-peak hours while the morning peak consumption in household 1 is in off-peak hours. In all, 
annual returns differ by as much as 50 € among households, what represents a 15% out of the initial annual 
electricity cost (as indicated, calculated around 840 € for the energy purchase in all of them). So, the 
profitability of PV systems with batteries is not greatly affected by the specific dwelling load distribution. 
This can be also concluded from Table 4 which summarizes the Payback Period, according to (12), for all 
the combinations simulated in Tables 1 to 3 but without taking into account the lifetime expectancy of the 
different batteries considered. Payback periods ranging from 5.91 to 17.27 years are registered.  



Third, note on the contrary how the ageing of the different batteries largely varies as a function of the 
model used to analyze it, what also impacts the economic profitability study. In fact, this could be expected 
from the different backgrounds of the models: two of them published years ago for cylindrical cells 
modeled as isolated systems, while the third one is a recalibration of the NMC model adapted to the 
operational warranty of a currently commercialized battery pack including state-of-art NMC pouch cells. In 
this sense, none of the cases simulated and analyzed for the two first battery models (the “LFP model” or 
the “NMC cylindrical model”) achieves “annual net savings” that outperform the installation of a PV 
system all alone, check results in Tables 1 through 3. Under such ageing conditions, the installation of 
batteries would be not profitable, as indicated by previous studies. However, the “Annual net savings” 
results column obtained for the third model (“NMC pouch”) returns a clear increased profitability when 
batteries are included in the installation, with regard to the cases without them. This is why Table 5 is 
devoted to analyze the 𝑁𝑒𝑡	𝑃𝑎𝑦𝑏𝑎𝑐𝑘	𝑃𝑒𝑟𝑖𝑜𝑑 and the Net Present Value only for the cases considering this 
cell model. Note how the 𝑁𝑒𝑡	𝑃𝑎𝑦𝑏𝑎𝑐𝑘	𝑃𝑒𝑟𝑖𝑜𝑑 is larger than the 𝑃𝑎𝑦𝑏𝑎𝑐𝑘	𝑃𝑒𝑟𝑖𝑜𝑑 calculated in Table 4 
due to the introduction of the batteries amortization in the calculation. Interesting NPV values are obtained 
for these batteries from an economic point of view.  

Still, it is important to point out that increasing the rated power of the PV system from 2 to 4 kW in a 
household presenting a yearly electricity consumption circa 5,000 kWh, regardless of the load distribution 
profile, would increase the profitability of the installation. And this is so for the PV installation all alone 
(both with and without compensation of surplus production) or for any combination with the different sizes 
of batteries analyzed. Note in this sense that introducing the smallest battery would increase the annual 
return by around 50 to 60 €, regardless of the PV rated power.  

Beyond the previous results and discussions, a sensibility analysis has been also conducted to check 
how variations in the CAPEX of both the PV system and the batteries would affect these results. Prices of 
PV installations ranging from 500 €/kW to 2000 €/kW have been considered. Thus, results are similar 
among cases in all the range of PV prices, reducing the profitability of the system as CAPEX gets higher. 
However, when battery prices are varied from 150 €/kWh to 1000 €/kWh, differences in profitability are 
registered. In this sense, while batteries are below 600 €/kWh, it keeps being profitable to introduce them 
in the system. In fact, below 200 €/kWh those with capacities of 12.8 kWh are a better option than smaller 
ones. However, for battery CAPEX beyond 625 €/kWh, results would confirm that introducing the battery 
in the equation would not improve the economics of the installation with regard to the case pf PV 
installation with surplus production economic compensation. 

Finally, it is important to remark that, although batteries start presenting a business case at the 
residential sector for peak shaving and energy arbitrage, their economic profitability could and should be 
enhanced to overcome financial risks by allowing them to take part in remunerated grid services. This is 
not applicable yet in countries such as Spain or Portugal but it is allowed in others such as Germany, UK or 
the USA. Thus, although the PV production is not so significant in some of these countries, the prospects 
to get extended economic profits with batteries are granting the rise of so many residential PV installations 
with ES, and even the emergence of concentrations of them in the form of Virtual Power Plants [48]. 
 

6. Conclusions. 

This work has presented a profitability analysis of Li-ion batteries operated under an MPC strategy for 
residential PV applications. First, the suitability of the different Li-ion families regarding these applications 
has been discussed, being LFP and NMC the resulting candidate technologies. Also, semi-empirical ageing 
models, derived from the literature, have been presented for each of these chemistries.  

Next, an MPC control strategy has been proposed in order to optimally manage the PV system with 
batteries by taking into account at any moment not only the current PV generation and demand, but also 
the expected future evolution of these variables. To do so, suitable prediction models have been used: a 
clustering approach for the PV generation, and government-provided load profiles for the residential sector 
as the demand model. Furthermore, the original non-linear optimization problem has been reformulated 



and shown to be solvable as a linear program. Finally, an adjustment algorithm has been proposed for those 
periods when real PV production and/or demand deviate from their prediction models. 

The proposed strategy has been tested by means of annual simulations of the algorithm with real 
irradiation data from a Mediterranean location, actual consumption data from three households with 
different behavior, and different configurations of the PV installation size and ES capacity.  Results show 
how the installation of batteries is not profitable yet for any of the considered cases when using the two 
first ageing models proposed.  However, for the more recent NMC pouch cells, installation of batteries up 
to a certain capacity increases the annual net savings obtained by the PV system all alone (considering the 
batteries amortization during its expected lifetime). Finally a sensibility analysis has been performed, 
showing that NMC pouch-based batteries would remain profitable with CAPEX up to around 600 €/kWh. 
 

Appendix – Acronyms 
 

PV – Photovoltaic 

ESS – Energy storage system 

MIBEL – Iberian Market of the Electricity  

LCO - Lithium Cobalt Oxide battery 

LMO – Lithium Manganese Oxide battery 

LFP – Lithium Iron Phosphate battery 

NCA – Lithium Nickel Cobalt Aluminium Oxide 

battery 

NMC – Lithium Nickel Manganese Cobalt 

Oxide battery 

LTO – Lithium Titanate battery 

LP – Linear program 

MILP – Mixed integer linear program  

MPC – Model predictive control 

SOC – State of charge 

DOD – Depth of discharge 

RFC – Rainflow counting algorithm 

NC – Number of equivalent reference cycles 

T – Temperature 

t – Time 

V – Average daily voltage 

∅V – Average voltage of the cycle 

Q – Charge throughput 

𝐶4 – Initial capacity of the battery 

𝐶"#$%&'( – Loss of capacity associated to the 

calendar ageing 

𝐶"#$%&>& – Loss of capacity associated to the 

cycling ageing 

𝑃qr – Solar production 

𝑃qr – Prediction for Pno 

𝑃st#$ – Consumption of the load 

𝑃st#$ – Prediction for P¤¦FG 

𝑃hv – Power exchange with the ESS 

𝑃hv,�y� – Lower bound for the power exchange 

with the ESS 

𝑃hv,�#� – Upper bound for the power exchange 

with the ESS 

𝑃��w – Power injected to the ESS 

𝑃$y� – Power extracted from the ESS 

𝑃wxy$ – Power exchange with the grid 

𝑃wxy$,�y� – Lower bound for the power exchange 

with the grid 

𝑃wxy$,�#� – Upper bound for the power exchange 

with the grid 

𝑃��� – Power purchased from the grid 

𝑃�%ss – Power sold to the grid 

𝐸hv – Energy available in the ESS 

𝐸hv,�y� – Minimum energy available in the ESS 

𝐸hv,�#� – Maximum energy available in the ESS 

𝑐hv	 -	 	Cost	given	to	 the	power	exchange	with	

the	ESS	

𝑐wxy$	–	Electricity	price	

𝑐��w	 -	 	 Cost	 given	 to	 the	 energy	 injected	 into	

the	ESS	

𝑐$y�	-		Cost	given	to	the	energy	extracted	from	

the	ESS	

𝑐���	–	Electricity	purchase	cost	

𝑐�%ss	–	Electricity	sell	benefit	

𝜂	–	Battery	efficiency	



𝜂$y�	–	Discharging	efficiency	

𝜂��w	–	Charging		efficiency	

N – Horizon for the optimization strategy 

T – Sampling period 
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