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ABSTRACT

Thermoelectric materials can directly convert waste heat into electricity. Due to the vast amount of energy available 

as waste heat in our society, these materials could contribute to reduce our dependence on fossil fuels and their 

associated environmental problems. However, the heat to electricity conversion efficiency of thermoelectric 

materials is still a limiting factor, and extensive efforts are being undertaken to improve their performance. The 

search for more efficient materials is focused on the optimization of three properties (Seebeck coefficient, electrical 

resistivity, and thermal conductivity). Typically, these are determined as function of temperature through 

independent measurements on two or more instruments, making thermoelectric characterization tedious and time 

consuming, which complicates the attainment of a more efficient heat to electricity energy conversion. Here, it is 

demonstrated for the first time that a complete thermoelectric characterization of a material may be achieved from 

a single electrical measurement performed on one instrument only, by employing the impedance spectroscopy 

method. A skutterudite sample is used for the demonstration, which is sandwiched between two stainless steel 

contacts in a four-probe arrangement and their properties are determined from 50 to 250 ºC. This new approach 

shows good precision and agrees with characterization of the same sample performed with commercial equipment, 

illustrating the power of the technique to facilitate the rapid and efficient evaluation of thermoelectric materials.
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1. INTRODUCTION

Nowadays, more than 60% of the global power is lost as waste heat, which represents ≈15 TW. A 10% recovery 

of this energy will exceed the summation of most current renewable energy sources (solar, wind, geothermal, and 

hydro energy).1 Thermoelectric (TE) materials can directly convert waste heat into electricity. Due to this, they have 

interest in applications such as automobiles and industries, where they can generate energy from the waste heat 

released by exhaust gases and reduce CO2 emissions.2 They can also convert solar warmth into electricity when 

integrated in solar thermoelectric generators.3 In addition, they are also potentially able to power wearable 

electronics and sensors using environmental heat or from human bodies, being a top candidate for self-powering 

sensors from the internet of things, empowering the elimination of batteries, which are toxic and subjected to 

frequent recharging and replacement.4 An efficient heat to electricity energy conversion from these applications 

would help to reduce our dependence on fossil fuels and their associated environmental problems. 

However, the efficiency of current TE materials is still limited. The search for more efficient materials is guided 

by the optimization of three properties, the electrical conductivity σ, the Seebeck coefficient S, and the thermal 

conductivity λ (which is the addition of the lattice thermal conductivity and the electronic thermal conductivity). 

These define a dimensionless figure of merit zT=σS2T/λ, T is the absolute temperature, which is related to the 

materials efficiency.5 zT is typically obtained by the independent measurement as a function of temperature of σ, S, 

and λ. This usually requires at least two different instruments. S and σ can be measured using a single apparatus, 

while the most frequently used method to determine λ is the laser flash technique, which provides the thermal 

diffusivity α. Thus, knowledge of the specific heat Cp and the mass density d is required, since λ=αdCp.6 The 

measurement of the specific heat requires an additional measurement, performed either by using the same laser 

flash equipment or another instrument. For the mass density, an Archimedes balance is frequently employed. The 

significant number of instruments required, each with their own sources of error, and the large number of 

measurements to be performed, makes the task of completely characterization of TE materials quite tedious and 

time consuming. In addition, much of the required equipment is quite expensive, and hence not always readily 

accessible to all researchers. All these disadvantages entail significant obstacles in the search for better TE materials, 

eventually affecting the attainment of a more efficient heat to electricity energy conversion.

Page 2 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

Several techniques have been developed which allow the complete characterization of TE materials.7–11 Here a 

new method is proposed, which unlike the previously reported techniques does not require two identical samples 

nor the creation of a temperature gradient across the sample, the measurement of which can introduce significant 

uncertainty.12 In addition, the determination of the TE properties does not require a series of measurements, as all 

properties can be extracted from a single measurement. To our knowledge, this is the first time that all these 

advantages are offered by a measurement technique. The method is based on the measurement of the impedance 

signal of a TE sample that is sandwiched by a material of known thermal conductivity. Although the application of 

impedance spectroscopy to thermoelectricity dates back from the 2000s,13,14 this approach was proposed by us in 

2014,15 and it has only been demonstrated to date in TE modules.16–18 Here the approach is applied to a skutterudite 

material, for which complete TE characterization is achieved up to 250 ºC (although with some deviations in σ at 

the higher temperatures). The results are compared with the values of the TE properties determined using 

commercially available equipment, and the random and systematic errors are calculated. The fact that the new 

method is based on impedance spectroscopy introduces additional advantages, since it is a widely used technique 

in many fields of research (solar cells,19,20 fuel cells,21 supercapacitors,22 corrosion,23 electroceramics,24 etc.). For 

this reason, highly reliable impedance equipment exists in the market and can be found in many research institutions, 

which makes the method more accessible.

2. EXPERIMENTAL SETUP

The setup employed for the complete characterization of the skutterudite sample is shown in Fig. 1. It is similar 

to the setup employed in our previous work to characterize TE materials of known Seebeck coefficient.25 Unlike 

the previously reported setup, the TE sample (CoSb2.75Sn0.05Te0.20 skutterudite26 of 1.85 mm x 2.13 mm x 6.95 mm) 

is here sandwiched by two stainless steel (AISI 304) contacts of the same cross-sectional area and 2 mm thickness. 

A four-probe arrangement is employed (see inset of Fig. 1), where the current is injected and extracted by two 

sharpened stainless steel screws and the voltage is measured across the sample by inserting very thin (15 µm 

diameter, Alfa Aesar) tungsten wires at the junctions. These wires are used instead of the Cu wires employed in our 

previous study since reactions with the stainless steel were observed for copper at higher temperatures. In order to 
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minimize the electrical and thermal contact resistances, a layer of a liquid metal (GaInSn, Alfa Aesar) is 

homogeneously spread at the junctions (see inset of Fig. 1).

Fig. 1. Photograph of the sample holder employed. A schematic description of how the sample is contacted is provided in the inset.

The two stainless steel screws which drive the current are held by nuts at holed ceramics (Macor, Corning) 

which provide electrical insulation, as shown in Fig. 1. These screws are connected to thick copper wires insulated 

by ceramic beads. Stainless steel screws were chosen due to their low thermal conductivity (≈14 W/K-1m-1), which 

reduces heat losses by conduction. They were also sharpened for the same purpose. The very thin tungsten wires 

that measure the potential difference are clamped at the sample holder by two nuts screwed with stainless steel 

screws, which are held by the ceramic plates (see Fig. 1). These screws are also connected to thick copper wires 

insulated by ceramic beads. The bottom holed ceramic disc is fixed at four threaded studs by nuts, while the top 

ceramic is free to move to be able to allocate samples of different lengths, and additionally provide pressure to the 

contacts. A stainless steel base is also held by nuts at the studs. This base is used to hold a band heater (Ref. 
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MB2E2JN1-B12, Watlow) which surrounds the sample holder and is used to provide different ambient 

temperatures. The ambient temperature is measured by a K-type thermocouple (RS) placed close to the TE sample 

(see Fig. 1), whose temperature is controlled by a temperature controller (Watlow EZ Zone PM) which powers the 

heater.

All the impedance measurements were performed inside a stainless-steel vacuum chamber at pressure values 

<10-4 mbar in order to eliminate convection heat losses. In addition, the metallic vacuum chamber also serves as a 

Faraday cage, which reduces electromagnetic noise during the measurements. The TE sample used in this study 

was an isotropic n-type skutterudite (CoSb2.75Sn0.05Te0.20), which was cut with a diamond saw of 0.3 mm diameter 

from an original disc shape. A careful and suitable cutting is important to obtain a crack free sample of highly 

uniform cross-sectional area. The skutterudite sample was characterized using commercial equipment in its disc 

shape before performing the impedance measurements. A Linseis LSR-3 equipment was used to determine the 

electrical resistivity and the Seebeck coefficient. For the thermal conductivity a Netzsch LFA 447 laser flash 

apparatus was employed. The specific heat of the sample was determined using the same equipment via a 

comparative method using a Pyroceram reference sample. The density of the sample, which is also required for the 

determination of the thermal conductivity by the laser flash method, was measured using an Archimedes balance.

A PGSTAT30 potentiostat (Metrohm Autolab B.V.) equipped with a FRA2 impedance module and a 

BOOSTER10A, was used to perform the impedance spectroscopy measurements. The potentiostat was controlled 

by the Nova 1.11 software. At each temperature the impedance measurement was conducted in 40 logarithmically 

distributed frequency steps between 5 mHz and 500 Hz. The measurements were performed using a maximum 

integration time of 10 s and 2 minimum integration cycles. The fitting to the impedance spectra were performed 

using Zview software. In our previous paper it was discussed the use of the current booster to reduce a systematic 

jump in the real impedance produced due to a change in the gain of the equipment, which occurs at frequencies 

around 25 Hz. Although this jump can be significantly reduced if measurements are performed in the largest possible 

current range, it distorts the spectra and due to this the fittings are performed discarding the points of frequencies 

higher than that of the discontinuity.
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3. RESULTS AND DISCUSSION

3.1. The equivalent circuit

To obtain all the TE properties from the impedance data obtained in this work , the experimental spectra were 

fitted using the equivalent circuit corresponding to a TE material sandwiched between two metallic contacts.15 This 

equivalent circuit consists of an ohmic resistance RΩ connected in series with the parallel combination of a constant 

temperature Warburg ZWCT and an adiabatic Warburg ZWa. Each of these elements are given by,

𝑅Ω =
𝜌𝑇𝐸𝐿𝑇𝐸

𝐴 , (1)

𝑍𝑊𝐶𝑇 = 𝑅𝑇𝐸( 𝑗𝜔
𝜔𝑇𝐸) ―0.5

𝑡𝑎𝑛ℎ [( 𝑗𝜔
𝜔𝑇𝐸)0.5], (2)

𝑍𝑊𝑎 = 𝑅𝐶(𝑗𝜔
𝜔𝐶) ―0.5

𝑐𝑜𝑡ℎ [(𝑗𝜔
𝜔𝐶)0.5], (3)

where ρTE, LTE, and A are the electrical resistivity, length, and cross-sectional area of the TE material, 

respectively, j2=-1, ω is the angular frequency, and ωTE and ωC are the characteristic angular frequencies of thermal 

diffusion in the TE sample (ωTE=αTE/(LTE/2)2; αTE denoting the thermal diffusivity of the TE material) and in the 

contact (ωC=αC/(LC)2; αC denoting the thermal diffusivity of the contact). RTE is the TE resistance,27 and RC is a TE 

resistance induced by the contact. They are given by,

𝑅𝑇𝐸 =
𝑆2𝑇𝐿𝑇𝐸

𝜆𝑇𝐸𝐴 , (4)

𝑅𝐶 = 2
𝑆2𝑇𝐿𝐶

𝜆𝐶𝐴 , (5)

where λTE and λC are the thermal conductivity of the TE material and the stainless steel contact, respectively, 

and LC the length of the latter.
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From the curve fits, RΩ, RTE, RC, ωTE, and ωC can be obtained. Hence, using Eq. (1), the electrical resistivity can 

be determined as,

𝜌𝑇𝐸 =
𝑅𝛺𝐴
𝐿𝑇𝐸

. (6)

From Eq. (5), the Seebeck coefficient can be obtained as,

𝑆 =
𝑅𝐶𝜆𝐶𝐴
2𝑇𝐿𝐶

. (7)

It should be noted that in order to determine S in Eq. (7), the thermal conductivity of the stainless steel contact 

is required, for which literature values may be used.28 Combining Eq. (1) and Eq. (4),

𝑧𝑇 =
𝑅𝑇𝐸

𝑅𝛺
. (8)

3.2. Characterization by the impedance method

Five cycles were performed on the skutterudite sample, each cycle comprising a set of five impedance 

measurements at different temperatures (50, 100, 150, 200 and 250 ºC). Before the beginning of each cycle, the 

sample was newly assembled with fresh contacts. In order to obtain accurate impedance results, it is important to 

establish a suitable current amplitude for the measurements (the lowest amplitude possible with non-noisy 

measurements). This is to minimize the influence of non-linear effects such as the Joule heating and the variation 

of the TE properties with temperature, as discussed in our previous papers.25,29 Hence, before performing the cycles, 

impedance spectroscopy measurements at different current amplitudes (40, 60, 80, 100 and 120 mA) were 

performed at each temperature in order to identify their optimal values. Fig. 2 shows the experimental impedance 

spectra and the corresponding fits for one of the five cycles measured. Fitting errors below 0.1, 0.5, and 12% were 

obtained for RΩ, RTE, and RC, respectively. It can be observed that even for the spectrum at 50 ºC, where the 

skutterudite shows lower performance and the impedance values are very small, the impedance response is clearly 

observed. In any case, the measured points differ in just few tenths of µΩ at high frequencies (bottom left part), and 
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a powerful impedance analyzer (with high resolution and accuracy) is required in order to obtain sensitive 

measurements.

Fig. 2. Impedance spectroscopy measurements at different temperatures from one of the five measurement cycles performed. The dots 
represent the experimental values and the lines represent the fit to these data. The inset shows the magnification of the high frequency part.

The TE properties were obtained from Eq. (6) to Eq. (9) using the average values of RΩ, RTE, and RC from the 

five measurements at each temperature. The thermal conductivity of the contact λC (stainless steel AISI 304), which 

was needed for the Seebeck coefficient determination, was obtained from,28

𝜆𝐶 = 10.33 + 15.4 × 10 ―3𝑇 ― 7.0 × 10 ―7𝑇2. (9)

The validity of Eq. (9) was verified by performing measurements of the stainless steel AISI 304 thermal 

conductivity by a laser flash apparatus (LFA 467 HT from Netzsch) up to 150 ºC. The deviations found with respect 

to the equation were lower than 2.7%. It is important in order to clearly discern the 45º straight line feature at high 

frequencies (see bottom part of the inset of Fig. 2) that λC is around an order of magnitude higher than λTE, otherwise 

this feature will overlap with the semicircle part.
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Fig. 3 shows the TE properties obtained by the impedance spectroscopy method compared with results from 

commercial equipment. All the properties show a good agreement with the commercial equipment measurements, 

except the electrical resistivity [Fig. 3(a)], which shows slightly higher values (around 6%), which is due to the 

contribution from the contact resistance, which is not completely suppressed since the W wires are inserted at the 

junctions. It is known that GaInSn liquid metal can have nm-length native oxide layers at its surface, which can 

impact its wetting behavior and electrical resistivity. This might contribute to the higher electrical resistivity values 

found.30 It can be also observed for this property that as the temperature increases the error bars become larger and 

the trend slightly deviates from the behavior found with the commercial equipment. This is related to the fact that 

the GaInSn liquid metal tends to react with the TE sample at around 250 ºC. This is the limiting constraint on the 

maximum temperature of operation, since the rest of the elements of the setup can stand far higher temperature 

values. Hence, if a suitable solder or liquid metal for the sample to be measured were found, this method could 

increase its capability at higher temperatures. These aspects mentioned for the electrical resistivity also influence 

the zT [Fig. 3(d)] due to Eq. (8), which exhibits larger errors and deviations at the highest temperatures.

Page 9 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

Fig. 3. (a) Electrical resistivity, (b) Seebeck coefficient, (c) thermal conductivity, and (d) zT values extracted from the impedance method 
and compared with results from different commercial equipment. The error bars account for the total combined random errors (uc), excluding 
the contribution from the specific heat for the laser flash case. The confidence interval is 1σ.

3.3. Precision and accuracy evaluation

In order to quantify the precision and accuracy of the impedance method, random and systematic errors, 

respectively, were calculated for all the determined TE properties. The total combined random errors uc of each 

property were obtained using,31

𝑢2
𝑐 =

𝑁

∑
𝑖 = 1

(∂𝑓
∂𝑥𝑖)

2

𝑢2(𝑥𝑖), (10)

being f each of the TE properties (S, λTE, ρTE, or zT), and xi each of the parameters with an associated error u. 

The random errors for the Seebeck coefficient were calculated taking into account (i) the standard deviation of the 
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five measurements at each temperature to obtain the average value of RC, (ii) the mean fitting error of the five RC 

measurements at each temperature, (iii) the uncertainty in the area of the sample, (iv) the uncertainty of the 

thermocouple (u(T)=1 ºC), and (v) the uncertainty in the length of the contacts, which was measured using a caliper 

(u(LC)=0.005 mm). The contribution of the thermal conductivity of the contact was neglected. From all the above 

contributions, (i) and (ii) were the most significant compared to the others, which can be considered negligible.

The random errors for the thermal conductivity were calculated taking into account (i) the uncertainty of the 

Seebeck coefficient (uc(S)), (ii) the uncertainty of the thermocouple (u(T)=1 ºC), (iii) the uncertainty in the length 

of the sample (u(LTE)=0.005 mm), (iv) the uncertainty in the area of the sample, and (v) the standard deviation of 

the five measurements at each temperature to obtain the average value of RTE. The contribution from the fitting 

errors in RTE (which were <0.5%) was discarded since it was negligible in comparison with the standard deviation. 

From all the contributions considered, the uncertainty in the Seebeck coefficient and the standard deviation of RTE 

are the most significant, the Seebeck contribution being an order of magnitude higher. Hence, the precision in the 

thermal conductivity determination is strongly influenced by the precision in the Seebeck coefficient measurement.

The random errors for the electrical resistivity were calculated taking into account (i) the uncertainty in the 

length of the sample, (ii) the uncertainty in the cross-sectional area, and (iii) the standard deviation from the five 

measurements at each temperature to obtain the average RΩ. It should be noticed that the latter contribution is the 

most significant, since it is around two orders of magnitude larger than the others. As occurred for RTE, the 

contribution of the fitting errors for RΩ (<0.1%) was neglected. Finally, the random errors for zT were calculated 

from the contributions of the standard deviations of both RΩ and RTE. The error bars shown in Fig. 3 correspond to 

the calculated random errors for each property, which are also shown in Table 1. Most of the random errors are 

≈5.5%, <13%, <2.5%, and between 4 and 7% for S, λTE, ρTE, and zT, respectively, which demonstrates the good 

precision of the method, although the thermal conductivity is less precise due to the quadratic dependence on the 

Seebeck coefficient [see Eq. (7)]. At 50 ºC higher values are found for S and λTE due to a lower degree of repeatability 

at this temperature in one of the 5 cycles performed.
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Table 1. Average values with their associated random, systematic and total errors of the thermoelectric properties of the skutterudite sample 
obtained by the impedance spectroscopy method.

Temperature 
(ºC) Mean value Systematic error 

(%)
Random error 

(%) Total error (%)

50 -145.8 µVK-1 1.08 9.51 9.57

100 -152.6 µVK-1 1.89 5.11 5.45

150 -165.5 µVK-1 1.13 5.48 5.60

200 -173.9 µVK-1 2.34 5.51 5.99

Seebeck 
coefficient (S)

250 -183.9 µVK-1 2.03 5.51 5.87

50 4.35 WK-1m-1 2.00 20.26 20.36

100 3.86 WK-1m-1 5.28 10.93 12.14

150 3.90 WK-1m-1 0.99 11.54 11.58

200 3.64 WK-1m-1 5.05 12.71 13.68

Thermal 
conductivity (λTE)

250 3.76 WK-1m-1 0.34 11.40 11.41

50 0.896 mΩcm 5.06 1.24 5.21

100 0.933 mΩcm 5.53 1.31 5.68

150 0.972 mΩcm 6.07 1.43 6.24

200 1.018 mΩcm 7.43 2.47 7.83

Electrical 
resistivity (ρTE)

250 1.068 mΩcm 9.06 4.41 10.08

50 0.176 6.69 7.07 9.73

100 0.241 0.04 4.07 4.07

150 0.306 4.78 3.85 6.13

200 0.386 1.97 6.77 7.05

Dimensionless 
figure of merit 

(zT)

250 0.440 8.62 5.29 10.12

Systematic errors us were calculated for the TE properties considering as true values the results obtained from 

the commercial equipment. They are also included in Table 1. Systematic errors are <2.5%, <5.5%, between 5 and 

9%, and <9% for the S, λTE, ρTE, and zT, respectively, demonstrating a good agreement with the characterization 

performed with commercial equipment.

Finally, the total uncertainty of the method uT is obtained for each property as uT=(uc
2+us

2)0.5 and also shown in 

Table 1. For S and λTE the total errors are predominantly <6% and <14%, respectively. For these two parameters, it 

is evident that the principal contribution to the total error comes from the random error, which is higher than the 

systematic contribution. For ρTE and zT, total errors are approximately from 5 to 10%, and from 4 to 10%, 

respectively. In this case the random and systematic contributions do not show the large differences as in the case 

of S and λTE and more equally contribute to the total error.
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4. CONCLUSIONS

In summary, the ability to perform a complete characterization of all TE properties of a bulk material as a 

function of temperature, from a single electrical impedance spectroscopy measurement, using one apparatus is 

demonstrated for a low-performance TE material (skutterudite sample) of modest properties up to 250 ºC. The TE 

properties were determined from fittings performed to the experimental impedance spectra employing a suitable 

equivalent circuit. Random errors were calculated by performing five measurements at each temperature remaking 

contacts, showing a good precision of the method (≈5.5%, <13%, <2.5%, and between 4 and 7% for the S, λTE, ρTE, 

and zT, respectively). The random errors in the determination of thermal conductivity are higher due to the quadratic 

dependence of this property with the Seebeck coefficient. Systematic errors were also calculated by comparison 

with characterization results from commercial equipment obtained from the same sample, resulting in errors <2.5%, 

<5.5%, between 5 and 9%, and <9% for the S, λTE, ρTE, and zT, respectively, which illustrates the accuracy of the 

method. These results demonstrate the potential of the method as a powerful tool to significantly facilitate the task 

of characterization of bulk TE materials and thus the search for a more efficient heat to electricity energy conversion.
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