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Abstract. We consider the space of continuous functions defined between a locally compact Hausdorff space and the space of
fuzzy numbers endowed with the level convergence topology. We obtain a Stone-Weierstrass type theorem for such space of
functions equipped with the compact open topology.

As a corollary of the above results, we prove that such functions can be approximated by certain fuzzy-number-valued neural
networks and sums of fuzzy-number-valued ridge functions.
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1. Introduction

Fuzzy Analysis has developed based on the notion
of fuzzy number just as much as classical Real Anal-
ysis did based on the concept of real number. Fuzzy-
number-valued functions, that is, functions defined on
a topological space taking values in the space of fuzzy
numbers, play a central role in Fuzzy Analysis as real-
valued functions do in the classical setting. Namely,
fuzzy-number-valued functions have become the main
tool in several fuzzy contexts, such as fuzzy differen-
tial equations ([3]), fuzzy integrals ([27]) or fuzzy op-
timization ([13]). However the primary drawback of
dealing with these functions is the fact that the space
they form is not a linear space; indeed it is not a group
with respect to addition.

The main question in Approximation Theory, a fun-
damental branch of Mathematical Analysis, is whether
a given family of functions from which we plan to ap-
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proximate is dense in the set of functions we wish to
approximate. That is, can we approximate any function
in our set, arbitrarily well, using finite linear combina-
tions of functions from our given family? In the fuzzy
setting, most results in this topic deal with the approx-
imation capabilities of fuzzy neural networks (see e.g.,
[20], [14], [15] and [11]) which turn out to be differ-
ent from the capabilities of classical neural networks
(see Section 4). It is known that neural networks are
particularly useful in many domains, such as finance,
medicine, mechanical engineering, geology, computer
science, etc. Generally speaking, neural networks are
implemented in all situations where forecasting, deci-
sion, classification and control problems arise. Since
nature and human brain are inherently fuzzy in char-
acteristic, it is natural to think that fuzzy neural net-
works have the ability for processing fuzzy informa-
tion thanks to their learning abilities (which are closely
related to their approximation capabilities). Related to
these, the so-called ridge functions are also an impor-
tant tool in Approximation Theory, although they have
not been used in a fuzzy context yet. Indeed the term
"ridge function" appeared after the seminal paper [21]
about an approximation problem in computer tomog-
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raphy. They also arise naturally in several fields such
as partial differential equations and neural networks
([19]).

In this paper we focus on finding dense (with re-
spect to the compact-open topology) subspaces of the
space of continuous (with respect to the level conver-
gence topology) fuzzy-number-valued functions de-
fined on a locally compact Hausdorff. The level con-
vergence topology was introduced in [17] and, thanks
to Goetschel-Voxman’s characterization of fuzzy num-
bers (see Section 2 below), has become a natural al-
ternative to the usual metrics (d∞, dp, sendograph,
...) used in E1. Indeed, the space of level continu-
ous fuzzy-number-valued functions is strictly larger
than the space of d∞-continuous fuzzy-number-valued
functions. Furthermore, as far as the authors are aware,
the use of the compact-open topology is also a novelty
in this context ([2]).

As a corollary of the above results, we provide
fuzzy-number-valued neural networks and sums of
fuzzy-number-valued ridge functions which are dense
in C(Rn,E1).

In the final sections, we provide a numerical exam-
ple to illustrate the technique used in our main result
and describe several possible applications in decision
making and fuzzy optimization problems.

2. Preliminaries

Let F (R) denote the family of all fuzzy subsets on
the real numbers R (see, e.g., [6]). For u ∈ F (R) and
λ ∈ [0, 1], the λ-level set of u is defined by

[u]λ := {x ∈ R : u(x) ≥ λ}, λ ∈]0, 1],

[u]0 := clR{x ∈ R : u(x) > 0}.

The fuzzy number space E1 is the set of elements u
of F (R) satisfying the following properties (see, e.g.,
[6]):

1. u is normal, i.e., there exists an x0 ∈ R with
u(x0) = 1;

2. u is convex, i.e., for all x, y ∈ R, λ ∈ [0, 1],

u(λx+ (1− λ)y) ≥ min {u(x), u(y)} ;

3. u is upper-semicontinuous;

4. [u]0 is a compact set in R.

Notice that if u ∈ E1, then the λ-level set [u]λ of
u is a compact interval for each λ ∈ [0, 1]. We denote
[u]λ = [u−(λ), u+(λ)]. Every real number r can be
considered a fuzzy number since r can be identified
with the fuzzy number r̃ defined as

r̃(t) :=

{
1 if t = r,
0 if t 6= r.

We can now state the characterization of fuzzy num-
bers provided by Goetschel and Voxman ([12]):

Let u ∈ E1 and [u]λ = [u−(λ), u+(λ)], λ ∈ [0, 1].
Then the pair of functions u−(λ) and u+(λ) has the
following properties:

1. u−(λ) is a bounded left continuous nondecreas-
ing function on (0, 1];

2. u+(λ) is a bounded left continuous nonincreas-
ing function on (0, 1];

3. u−(λ) and u+(λ) are right continuous at λ = 0;
4. u−(1) ≤ u+(1).

Conversely, if a pair of functions α(λ) and β(λ) sat-
isfy the above conditions (i)-(iv), then there exists a
unique u ∈ E1 such that [u]λ = [α(λ), β(λ)] for each
λ ∈ [0, 1].

Example 2.1. Let u(x) be a fuzzy number defined
as

u(x)=

0 x /∈ [0, 1],
1 x ∈ [0, 12 ],
1
2 x ∈ ( 12 , 1].

Then, its corresponding u−(λ) and u+(λ) functions
turn out to be

u−(λ) = 0, u+(λ) =
{
1 λ ∈ [0, 12 ],
1
2 λ ∈ ( 12 , 1].

Given u, v ∈ E1 and k ∈ R, we can define
u+ v := [u−(λ), u+(λ)] + [v−(λ), v+(λ)] and ku :=
k[u−(λ), u+(λ)]. It is well-known that E1 endowed
with these two natural operations is not a vector space.
Indeed (E1,+) is not a group ([6]).

The space of fuzzy numbers is usually endowed
with the topology induced by certain metrics, mainly
by the supremum metric d∞; namely, for u, v ∈ E1,
d∞(u, v) := supλ∈[0,1] dH([u]λ, [v]λ), where dH
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stands for the Hausdorff metric. That is, dH([u]λ, [v]λ) =
max{| u−(λ) − v−(λ) |, | u+(λ) − v+(λ) |}. It is
well-known (see, e.g., [6]) that (E1, d∞) is a complete
metric space. In [17], the authors introduced a new
topology on E1 based on the following convergence:

We say that the net {uk}k∈D ⊂ E1 levelly con-
verges to u ∈ E1 if limk dH([uk]

λ, [u]λ) = 0 for any
λ ∈ [0, 1] or, equivalently, if limk u

+
k (λ) = u+(λ) and

limk u
−
k (λ) = u−(λ) for each λ ∈ [0, 1].

Notice that a net {uk}k∈D ⊂ E1 d∞-converges to
u ∈ E1 if and only if limk u

+
k converges uniformly to

u+ and limk u
−
k converges uniformly to u−. Thus, the

d∞-convergence implies the level convergence. The
converse fails to be true (see Example 2.1 in [26]).

In [8], [9] and [10], the authors studied the topology
τ` associated with this level convergence in E1. Thus, it
is known that (E1, τ`) is a Hausdorff, separable, Baire,
first countable topological space. Also a local basis for
u ∈ E1 in τ` is of the form

U(u, {λ1, ..., λn}, ε) := {v ∈ E1 :

max
1≤j≤n

{dH([v]λj , [u]λj )} < ε},

for {λ1, ..., λn} ⊂ [0, 1] and ε > 0.

Let X be a locally compact space. By the above
paragraph, it is apparent that the space of continuous
functions C(X, (E1, τ`)) contains C(X, (E1, d∞));
indeed, by [9, page 429], it is a proper subspace.
In the sequel, we shall endow C(X, (E1, τ`)) with
the compact-open topology. That is, a local basis at
f0 ∈ C(X, (E1, τ`)) is formed by sets of the form

V (f0,K, {λ1, ..., λn}, ε) :=

= {f ∈ C(X, (E1, τ`)) : dH([f0(x)]
λj , [f(x)]λj ) < ε

for all x ∈ K, j = 1, ..., n}

for a compact subsetK ofX , {λ1, ..., λn} ⊂ [0, 1] and
ε > 0.

3. A Stone-Weierstrass type theorem in Fuzzy
Analysis.

Let us first recall the following classical result
known as Uryshon’s Lemma:

Lemma 3.1. Let X be a locally compact Hausdorff
space, and let K,F ⊂ X be two disjoint sets, with K
compact, and F closed. Then there exists a continuous
function f : X −→ [0, 1] such that f ≡ 1 on K and f
vanishes on F .

Given u ∈ E1, we shall write û to denote the func-
tion in C(X,E1) which takes the constant value u.

We can now state and prove a version of the Stone-
Weierstrass theorem for C(X, (E1, τl)) endowed with
the compact-open topology:

Theorem 3.2. LetH be a subspace ofC(X, (E1, τl))
which contains the finite combinations of the form
ψ1û1+ ...+ψmûm, where ψi ∈ C(X, [0, 1]) and ui ∈
E1, i = 1, ...,m. ThenH is dense in C(X, (E1, τl)).

Proof. Fix ε > 0, {λ1, ..., λn} ⊂ [0, 1], a compact
subset K ⊂ X and f0 ∈ C(X, (E1, τl)). For each
x ∈ X and 0 < ε(x) < ε, let us define

N(x) = {t ∈ X : dH([f0(t)]
λj , [f0(x)]

λj ) < ε(x)

< ε, j = 1, ..., n},

which is an open neighborhood of x since f0 ∈
C(X, (E1, τl)). AsX is locally compact, we can find a
relatively compact neighborhood of x, V (x), such that
clV (x) ⊂ N(x). By Uryshon’s Lemma (Lemma 3.1),
there exists a continuous function fx : X −→ [0, 1]
such that fx ≡ 1 on clV (x) and fx vanishes on
X \N(x).

Choose x1 ∈ K. By the compacity of X \N(x1) ∩
K, there is a finite set {x2, . . . , xm} ⊂ X \N(x1)∩K
such that X \ N(x1) ∩ K ⊂ V (x2) ∪ . . . ∪ V (xm).
Define ε′ = max{ε(xi) : 1 ≤ i ≤ m}.

Let us define the functions
ψ2 := fx2

,
ψ3 := (1− fx2

)fx3
,
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...
ψm := (1− fx2

)(1− fx3
) · · · (1− fxm−1

)fxm
.

Next we claim that

ψ2 + . . .+ψj = 1− (1− fx2
)(1− fx3

) · · · (1− fxj
),

j = 2, . . . ,m. Indeed, it is clear that

ψ2+ψ3 = fx2+(1−fx2)fx3 = 1−(1−fx2)·(1−fx3).

We proceed by induction. Assume that the result is true
for a certain j ∈ {4, ...,m− 1} and let us check

ψ2 + . . .+ ψj + ψj+1 = 1− (1− fx2)(1− fx3) · · ·

(1− fxj )(1− fxj+1).

Namely,

ψ2 + . . .+ ψj + ψj+1 = 1− (1− fx2
)(1− fx3

) · · ·

(1− fxj ) + (1− fx2)(1− fx3) · · · (1− fxj )fxj+1 =

= 1− (1− fx2)(1− fx3) · · · (1− fxj )(1− fxj+1),

as was to be checked. Finally, we can define ψ1 :=
(1− fx2

) · · · (1− fxm
). Consequently, we have

ψ1 + ψ2 + . . .+ ψm ≡ 1.

On the other hand, we claim that

ψi(t) = 0 for all t /∈ N(xi), i = 1, . . . ,m. (1)

Indeed, if i ≥ 2, then the claim is clear by construction.
If t /∈ N(x1), then t ∈ V (xj) for some j = 2, . . . ,m.
Hence fxj

(t) = 1 and then

ψ1(t) = (1− fxj (t))
∏
i 6=j

(1− fxi(t)) = 0.

Let us define

g := ψ1f̂0(x1)+ψ2f̂0(x2)+ . . .+ψmf̂0(xm) ∈ H.

(2)

Next, given x0 ∈ K and by the properties of the
Hausdorff metric (see, e.g., [6]), we infer

dH([f0(x0)]
λj , [(ψ1f̂0(x1)+...+ψmf̂0(xm))(x0)]

λj ) =

dH(

[
m∑
i=1

ψi(x0)f0(x0)

]λj

,

[
(ψ1f̂0(x1) + ...+ ψmf̂0(xm))(x0)

]λj

) ≤

m∑
i=1

ψi(x0)dH([f0(x0)]
λj , [f0(xi)]

λj )

for j = 1, ..., n.
Let I = {1 ≤ i ≤ m : x0 ∈ N(xi)} and J = {1 ≤

i ≤ m : x0 /∈ N(xi)}. Then, for all i ∈ I , we have

ψi(x0)dH([f0(x0)]
λj , [f0(xi)]

λj ) ≤ ψi(x0)ε′

for j = 1, ..., n and, for all i ∈ J , (1) yields

ψi(x0)dH([f0(x0)]
λj , [f0(xi)]

λj ) = 0

for j = 1, ..., n. Hence, we deduce

m∑
i=1

ψi(x0)dH([f0(x0)]
λj , [f0(xi)]

λj ) ≤
∑
i∈I

ψi(x0)ε
′ < ε

for j = 1, ..., n. Since x0 is arbitrary in K, we infer
g ∈ V (f0,K, {λ1, ..., λn}, ε).

Remark 3.3. The following example shows that a
subspace of C(X, (E1, τl)) which does not contain all
the finite combinations of the form ψ1û1+...+ψmûm,
where ψi ∈ C(X, [0, 1]) and ui ∈ E1, i = 1, ...,m,
may fail to be dense in C(X, (E1, τl)):

Let X = [0, 1] and let H = span{xnj : 0 =
n0 < n1 < n2 < ...} with

∑
j

1
nj
6= ∞, which is a

subset of C([0, 1], [0, 1]). Let u be the fuzzy number
introduced in Example 2.1 and consider the subspace
H = {fû : f ∈ H} of C([0, 1], (E1, τl)). Let us sup-
pose thatH is dense in C([0, 1], (E1, τl)). In that case,
given any f0 ∈ C([0, 1], [0, 1]) and ε > 0, we could
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find f ∈ H such that dH([f0û(x)]
0.5, [fû(x)]0.5) =

|f0(x)− f(x)|max{|u+(0.5)|, |u−(0.5)|} < ε for all
x ∈ [0, 1]. Since u−(0.5) = 0 and u+(0.5) = 1, we
infer that |f0(x) − f(x)| < ε for all x ∈ [0, 1]. This
would imply that H is dense in C([0, 1], [0, 1]), which
is not true by [22, Section 5].

4. Density of fuzzy-number-valued regular neural
networks and sums of fuzzy-number-valued
ridge functions.

A fuzzy-number-valued four-layer regular neural
network (four-layer RFNN) is defined by

H(x) =

m∑
i=1

ui

(
s∑
l=1

wil · σ(x · al + θl)

)

for each x ∈ Rn, where ui ∈ E1, the coeficients wij
and the thresholds θj are real numbers, the weights
aj ∈ Rn and σ : R → R stands for the activa-
tion function in the hidden layer. That is, H(x) is a
Rn-based fuzzy-number-valued function. In [5] (see
also [20]), the authors proved that, although three-
layer RFNNs cannot (unlike the classical real case) ap-
proximate the set of all d∞-continuous R-based fuzzy-
number-valued functions, four-layer RFNNs can. They
used sigmoidal or bounded continuous nonconstant ac-
tivation functions to achieve such approximation prop-
erty of four-layer RFNNs.

For a fixed activation function σ, we denote the set
of all possible Rn-based fuzzy-number-valued four-
layer RFNNs byH(σ).

We will show, based on the results in the previ-
ous section, that H(σ) is dense in C(Rn, (E1, τl)) en-
dowed with the compact-open topology provided the
activation function σ be a non-polynomial continuous
function.

Theorem 4.1. Assume that σ : R → R is either
a non-polynomial continuous function or a bounded
(not necessarily continuous) sigmoidal function. Then
H(σ) is dense in C(Rn, (E1, τl)).

Proof. Let f0 ∈ C(Rn, (E1, τl)) and take a neigh-
borhood of f0,

V (f0,K, {λ1, ..., λq}, ε).

By Theorem 3.2, there exist finitely many functions
ψi ∈ C(K, [0, 1]) and ui ∈ E1, i = 1, ...,m, such that

dH([f0(x)]
λj , [(ψ1û1 + ...+ ψmûm)(x)]λj ) <

ε

2

for all x ∈ K and for j = 1, ..., q.
On the other hand, by [18] and [16], we know that

for each ψi, i = 1, ...,m, there exist wil, θil ∈ R and
ail ∈ Rn such that∣∣∣∣∣ψi(x)−

si∑
l=1

wil · σ(x · ail + θil)

∣∣∣∣∣ < ε

2m · d∞(ui, 0)
,

for all x ∈ K. Hence

dH(

[(
si∑
l=1

wil · σ(x · ail + θil)

)
ûi(x)

]λj

,

[φi(x) · ûi(x)]λj ) =

=

∣∣∣∣∣φi(x)−
(

si∑
l=1

wil · σ(x · ail + θil)

)∣∣∣∣∣ dH([ui]
λj , 0) ≤

≤

∣∣∣∣∣φi(x)−
(

si∑
l=1

wil · σ(x · ail + θil)

)∣∣∣∣∣ d∞(ui, 0)

<
ε

2m
,

for all x ∈ K, i = 1, ...,m and j = 1, ..., q. As a
consequence,

dH([f0(x)]
λj ,

[
m∑
i=1

ui

(
si∑
l=1

wil · σ(x · ail + θil)

)
(x)

]λj

) < ε

for all x ∈ K and for j = 1, ..., q and we are done.

Let us recall that ridge functions are multivariate
functions of the form g(a1x1 + ... + anxn) where
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g : R → R and (a1, ..., an) ∈ Rn \ {0} is a fixed
direction. For a subset A of Rn \ {0}, we can define

R(A) = span{g(a1x1 + ...+ anxn) :

g ∈ C(R,R), (a1, ..., an) ∈ A}.

We can adapt these functions to the fuzzy setting as
follows: LetR(Rn,E1, A) stand for the sums of fuzzy-
number-valued ridge functions of the form

H(x) =

m∑
i=1

ui

(
si∑
l=1

gil(ail · x)

)

for each x = (x1, ..., xn) ∈ Rn and ail = (a1il, ..., a
n
il) ∈

A, where ui ∈ E1.

Theorem 4.2. Let A be a subset of Rn \ {0}. Then
R(A) and R(Rn,E1, A) are dense in C(Rn,R) and
in C(Rn, (E1, τl)), respectively, if and only if R(A)
contains all polynomials.

Proof. Assume R(A) contains all polynomials. As
in the proof of Theorem 4.1, given f0 ∈ C(Rn, (E1, τl))
and a neighborhood of f0, V (f0,K, {λ1, ..., λq}, ε),
there exist finitely many functions ψi ∈ C(K, [0, 1])
and ui ∈ E1, i = 1, ...,m, such that

dH([f0(x)]
λj , [(ψ1û1 + ...+ ψmûm)(x)]λj ) <

ε

2

for all x ∈ K and for j = 1, ..., q. By [19, Theorem
2.1 and Remark 2.2], we can find, for each ψi, i =
1, ...,m, ail ∈ A and gil ∈ C(R,R) such that∣∣∣∣∣ψi(x)−

si∑
l=1

gil(ail · x)

∣∣∣∣∣ < ε

2m · d∞(ui, 0)
,

for all x ∈ K. Hence

dH

[( si∑
l=1

gil(ail · x)

)
ûi(x)

]λj

, [φi(x) · ûi(x)]λj

 =

=

∣∣∣∣∣φi(x)−
(

si∑
l=1

gil(ail · x)

)∣∣∣∣∣ dH([ui]
λj , 0) ≤

≤

∣∣∣∣∣φi(x)−
(

si∑
l=1

gil(ail · x)

)∣∣∣∣∣ d∞(ui, 0) <
ε

2m
,

for all x ∈ K, i = 1, ...,m and j = 1, ..., q. As a
consequence,

dH

[f0(x)]
λj ,

[
m∑
i=1

ui

(
si∑
l=1

gil(ail · x)

)
(x)

]λj
 < ε

for all x ∈ K and for j = 1, ..., q.

On the other hand, if we assume thatR(A) is dense
in C(Rn,R), then R(A) contains all polynomials by
[19, Theorem 2.1 and Remark 2.2]

Remark 4.3. According to [19, Theorem 2.1 and
Remark 2.2], the expression "R(A) contains all poly-
nomials" can be replaced by "no nonzero homoge-
neous polynomial vanishes on A".

5. Example

In this section, we provide a numerical example to
illustrate the method which we have used in our main
result (Theorem 3.2).

Let X = [0, 1[ and let us define a level-continuous
function f0 : [0, 1[−→ E1 as follows:

f0(0)(x) =

{
0 0 ≤ x < 1
1 x = 1

and f0(t)(x) = x
1
t for 0 ≤ x ≤ 1. Hence, we

deduce that

[f0(0)]
λ =

{
{1} 0 < λ ≤ 1
[0,1] λ = 0

and for t ∈]0, 1[,

[f0(t)]
λ =

{
[λt, 1] 0 < λ ≤ 1
[0,1] λ = 0.

Fix ε = 0.1 and λ1 = 0.5. Hence, if take t ∈]0, 1[,
then

N(t) = {s ∈ X : |0.5t − 0.5s| < 0.1}.
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If we denote ti = 0.1i− 0.05 for i = 1, 2, ..., 10, then
it is apparent that [0, 1[⊂ ∪10i=1N(ti).

Let us define the following trapezoidal functions for
i = 2, ..., 10:

fi(t) =


20t− (2i− 3) 0.1i− 0.15 < t < 0.1i− 0.1
1 0.1i− 0.1 ≤ t ≤ 0.1i
−20t+ (2i+ 1) 0.1i < t < 0.1i+ 0.05
0 otherwise

From these functions we can next construct the follow-
ing ones, which turn out to be trapezoidal too:
ψ2 := fx2

,
ψ3 := (1− fx2

)fx3
,

...
ψ10 := (1− fx2

)(1− fx3
) · · · (1− fx9

)fx10
. Namely,

ψ3(t) =


20t− 4 0.2 < t < 0.25
1 0.25 ≤ t ≤ 0.3
−20t+ 7 0.3 < t < 0.35
0 otherwise

and a routine manipulation shows

ψ2(t) + ψ3(t) =


20t− 1 0.05 < t < 0.1
1 0.1 ≤ t ≤ 0.3
−20t+ 7 0.3 < t < 0.35
0 otherwise

Similarly, we would obtain

ψ2(t)+...+ψ10(t) =

20t− 1 0.05 < t < 0.1
1 0.1 ≤ t < 1
0 otherwise

Finally, let us define ψ1(t) := 1−(ψ2(t)+...+ψ10(t)),
which yields

ψ1 =

1 0 ≤ t < 0.05
−20t+ 2 0.05 ≤ t ≤ 0.1
0 otherwise

It is also apparent that the support of each ψi lies in
N(ti), i = 1, 2, ..., 10. Finally, we define

g := ψ1
̂f0(0.05)+ψ2

̂f0(0.15)+ . . .+ψ10
̂f0(0.95).

(3)

Fix t0 ∈ [0, 1[. Then, since
∑10
i=1 ψi(t0) = 1, we

infer

dH([f0(t0)]
0.5, [(ψ1

̂f0(0.05)+...+ψ10
̂f0(0.95))(t0)]0.5) =

dH(

[
10∑
i=1

ψi(t0)f0(t0)

]0.5
,

[
(ψ1

̂f0(0.05) + ...+ ψ10
̂f0(0.95))(t0)

]0.5
) ≤

ψ1(t0)dH([f0(t0)]
0.5, [f0(0.05)]

0.5) + ...

+ψ10(t0)dH([f0(t0)]
0.5, [f0(0.95)]

0.5) =

= ψ1(t0)|0.5t0 − 0.50.05|+ ...

+ψ10(t0)|0.5t0 − 0.50.95|.

Since t0 belongs to the support of, at most, two func-
tions ψi and we know that such supports lie in their
respective N(ti), we infer that

dH([f0(t0)]
0.5,

[(ψ1
̂f0(0.05) + ...+ ψ10

̂f0(0.95))(t0)]0.5) ≤ 0.1.

As a consequence, since t0 is arbitrary, we deduce g ∈
V (f0, λ1, ε) with ε = 0.1 and λ1 = 0.5.

6. Application

The study on the theory of fuzzy optimization has
been active since the concept of fuzzy decision was
proposed by Bellman and Zadeh ([4]) in 1970. This is a
useful methodology, since it allows us to represent the
underlying uncertainty of the optimization problem.
As indicated by Dubois and Prade ([7]), constrained
fuzzy optimization (also known as fuzzy mathemat-
ical programming) refers to the search for extrema
of a fuzzy-valued utility (or objective) function de-
fine on a bounded domain and, among a large num-
ber of forms, could be described as follows: consider
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a (level-continuous) fuzzy-valued objective function
f : R −→ E1 subject to a constraint set A ⊂ R. ThenMaximize (or minimize) f(x)

subject to x ∈ A

It is known (see [9, Theorem 5.1]) that if A = [a, b],
then there exists the supremum and the infimum of
f(x) on A. Indeed, if u denotes such maximum (simi-
larly for the infimum), then, for each λ ∈ [0, 1],

[u]λ = [ sup
t∈[a,b]

[f(t)]−(λ), sup
t∈[a,b]

[f(t)]+(λ)].

However, such f(x) might not attain either its supre-
mum or its infimum (see [9, Remark 5.3]). Conse-
quently, our unique option is to approximate the supre-
mum (resp. the infimum) and our Theorem 3.2 can
help us by realizing the objective function based on a
finite subset of fuzzy numbers rather than the whole
E1, which will reduce the problem to a classical (crisp)
real-valued optimization problem. In order to illustrate
this technique, we can consider the problem of max-
imizing the function provided in the previous section
subject to x ∈ [0, 1]. Then we can approximate the
solution of such problem as follows: fix, for instance,
ε = 0.1 and λ1 = 0.5, and let ψi(t), i = 1, ..., 10
be as in the previous section. Then we can define the
function

g(t) = ψ1(t) ̂f0(0.05) + ...+ ψ10(t) ̂f0(0.95)

for t ∈ [0, 1] and, consequently,

[g(t)]0.5 = ψ1(t)[0.5
0.05, 1]+...+ψ10(t)[0.5

0.95, 1] =

= [ψ1(t)0.5
0.05 + ...+ ψ10(t)0.5

0.95, 1].

If we denote v = sup{g(t) : t ∈ [0, 1]}, then we get

[v]0.5 = [ sup
t∈[0,1]

(ψ1(t)0.5
0.05+...+ψ10(t)0.5

0.95), 1] =

= [0.50.95, 1]

On the other hand, if u = sup{f(t) : t ∈ [0, 1]}, then
it is apparent that [u]0.5 = [0.5, 1], which yields

dH([u]0.5, [v]0.5) = 0.017632461 < ε = 0.1.

Similarly we can proceed with any λ = [0, 1].

7. Conclusion

In this paper we have studied density problems in
the space of level continuous fuzzy-number-valued
functions defined on a locally compact Hausdorff
space endowed with the compact-open topology, whose
use does not seem to have made its way in the fuzzy
literature so far. We provide a numerical example to
illustrate the techniques we have based on. As a corol-
lary of the above results we find that many fuzzy-
number-valued neural networks (with two hidden lay-
ers) and sums of fuzzy-number-valued ridge functions
are dense in C(Rn,E1). We hope that our techniques,
together with the introduction of ridge functions, will
be helpful for obtaining stronger results and further ap-
plications in environments related to fuzzy approxima-
tion.

One of such fields is decision theory, which com-
prises a broad diversity of approaches to modeling be-
havior of a human decision maker under various in-
formation frameworks in management science, eco-
nomics and other areas. Among the multiple ap-
proaches to decision making in a fuzzy context, the
use of fuzzy-valued utility (or objective) functions as a
quantitative representation of preferences of a decision
maker was proposed in 1970 by Bellman and Zadeh in
their seminal paper, [4], and was concretized in [23]
by showing that their approach reduces to a fuzzy op-
timization problem of fuzzy-valued utility functions
based on λ-level sets. In general, an optimization prob-
lem deals with two elements: a goal or utility function
and a set of feasible domains and, in a fuzzy context,
it consists of finding an x "belonging" to the domain
X of a fuzzy-valued function f : X −→ E1 such that
f(x) can reach a possible "extremum" in a fuzzy sense.
However, how to interpret the terms "belonging" and
"extremum" in this fuzzy environment is not apparent
since E1 is not a linearly ordered space and that is why
we can find a plethora of approaches in the literature
(see [24]). For example, in [1], the authors use fuzzy-
number-valued utility functions which represent lin-
guistic preferences based on the Hausdorff distance of
their images.

In fuzzy optimization it is desirable that all fuzzy
solutions under consideration be attainable, but very
often one may find that maximum covering problems
are computationally complex and not easy to solve. In
these cases the decision maker must usually accept ap-
proximate solutions instead of optimum ones. Thus,
in [5] (see also [25]), Buckley and Hayashi were the
first authors to introduce a technique to solve fuzzy
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optimization problems approximately. Their technique
was based on maximizing the centroids of the fuzzy
number in the range of the utility function.

As shown in the previous section, our results can
contribute to find approximate solutions of constrained
fuzzy optimization problems by realizing utility fuzzy-
valued functions based on a finite subset of fuzzy num-
bers rather than the whole E1, which boils down the
fuzzy problem to a classical (crisp) real-valued opti-
mization problem.
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this manuscript.

References

[1] R. Aliev, W. Pedrycz, B. Fazlollahi, O.H. Huseynov, A.V.
Alizadeh and B.G. Guirimov, Fuzzy logic-based generalized
decision theory with imperfect information, Information Sci-
ences, 189 (2012), 243–246.

[2] A. Aygunoglu, V. Cetkin and H. Aygun, On embedding prob-
lem of fuzzy number valued continuous functions, J. Intell.
Fuzzy Systems, 25 (2013), 243–246.

[3] B. Bede and S. Gal, Generalizations of the differentiability of
fuzzy-number-valued functions with applications to fuzzy dif-
ferential equations, Fuzzy Sets and Systems, 151 (2005), 581–
599.

[4] R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy
environment, Management Science, 17 (1970), 141–164.

[5] J. Buckley and Y. Hayashi, Can fuzzy neural nets approxi-
mate continuous fuzzy functions? Fuzzy Sets and Systems, 61
(1994), 43–51.

[6] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: The-
ory and Applications, World Scientific, Singapore, (1994).

[7] D. Dubois and H. Prade, Decision making under fuzzy con-
straints and fuzzy criteria mathematical programming vs rule-
based system approach, in M. Delgado, et al. Ed. Fuzzy
Optimization-Recent Advances, Physica-Verlag, Heidelberg,
(1994), 21–32.

[8] J-X. Fang and H. Huang, Some properties of the level con-
vergence topology on fuzzy number space En, Fuzzy Sets and
Systems 140 (2003), 509–517.

[9] J-X. Fang and H. Huang, On the level convergence of a se-
quence of fuzzy numbers, Fuzzy Sets and Systems 147 (2004),
417–435.

[10] J.J. Font, A. Miralles and M. Sanchis, On the Fuzzy Number
Space with the Level Convergence Topology, J. Funct. Spaces
Appl., Volume 2012, Article ID 326417, 11 pages.

[11] J.J. Font, D. Sanchis, M. Sanchis, A version of the Stone-
Weierstrass theorem in fuzzy analysis. J. Nonlinear Sci. Appl.
10 (2017), 4275–4283.

[12] R. Goetschel and W. Voxman, Elementary fuzzy calculus,
Fuzzy Sets and Systems, 18 (1986), 31–42.

[13] S. Hai, Z. Gong and H. Li, Generalized differentiability for
n-dimensional fuzzy-number-valued functions and fuzzy opti-
mization, Information Sciences, 374 (2016), 151–163.

[14] H. Huang and C. Wu, Approximation of level fuzzy-valued
functions by multilayer regular fuzzy neural networks, Math.
Comp. Model., 49 (2009), 1311–1318.

[15] H. Huang and C. Wu, Approximation of fuzzy-valued functions
by regular fuzzy neural networks and the accuracy analysis,
Soft Comput., 18 (2014), 2525–2540.

[16] L.K. Jones, Constructive Approximations for Neural Networks
by Sigmoidal Functions, Proc. IEEE, 78 (1990), 1586–1589.

[17] O. Kaleva, S. Seikkla, On fuzzy metric space, Fuzzy Sets and
Systems, 12 (1984), 215-Ű229.
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