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Abstract. We study the class of planar polynomial vector fields admitting Darboux
first integrals of the type

∏r
i=1 f

αi
i , where the αi’s are positive real numbers and the

fi’s are polynomials defining curves with only one place at infinity. We show that these
vector fields have an extended reduction procedure and give an algorithm which, from a
part of the extended reduction of the vector field, computes a Darboux first integral for
generic exponents.

1. Introduction

Complex planar polynomial differential systems are being studied since the 19th cen-
tury when Darboux [18], Poincaré [42, 43], Painlevé [40] and Autonne [5] significantly
contributed to this topic. Surprisingly, nowadays, the problem of characterizing inte-
grable differential systems as above remains open. To compute a first integral is a very
interesting issue because this function provides the solution curves of the system within
their domain of definition, determining the phase portrait of the system.

Darboux functions are a remarkable family of multi-valued functions. They have the
following shape:

H :=

p∏
i=1

fλii

q∏
j=1

exp

(
hj
gj

)µj
, (1)

where fi, and gj and hj are bivariate complex polynomials and λi and µj complex numbers.
Following [20], the Darboux theory of integrability states that if a planar differential

system has p invariant algebraic curves whose equations are fi = 0, with cofactors ki,

1 ≤ i ≤ p, and q exponential factors exp
(
hj
gj

)
with cofactors `j , 1 ≤ j ≤ q, such that∑p

i=1 λiki +
∑q

j=1 µj`j = 0 for some complex numbers {λi}pi=1 and {µj}qj=1, not all zero,

then the function H displayed in (1) is a first integral of the system.
A particular and desirable type of Darboux functions are rational functions because

when H = f/g is a first integral, all the invariant curves of the system are algebraic
and are determined from the equations λf + βg = 0, where the pair (λ : β) runs over
the complex projective line. The so-called Poincaré problem arose when Poincaré in [43]
remarked that to decide on the algebraic integrability of a differential equation of the first
order and the first degree, one only needs to obtain an upper bound of the degree of the
integral. Therefore this problem looks for a bound of the degree of the first integral in
terms of the degree of the polynomial system, and it has generated a lot of literature.

2010 Mathematics Subject Classification. 34A34; 34C05; 34C08; 14C21.
Key words and phrases. Planar polynomial vector field, Darboux first integral, reduction of singularities,

curve with only one place at infinity.
Partially supported by the Spanish Government Ministerio de Economı́a, Industria y Competitividad

(MINECO-FEDER), grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, MTM2016-81932-REDT
and MTM2016-77278-P, as well as by Universitat Jaume I grants UJI-B2018-10 and P1-1B2015-16.

1



2 A. FERRAGUT, C. GALINDO AND F. MONSERRAT

Although it is known that this upper bound does not exist in general, in some cases it
can be computed. For instance when the associated vector field has only non-degenerated
[43] or nodal type [15] singularities, or when its reduction uniquely admits a non-invariant
exceptional divisor [27]. Notice also that, when a bound of the degree of the rational first
integral is known, efficient algorithms to compute that integral have been described [25, 8].

Recently in [24], the authors considered a family of planar polynomial differential sys-
tems F formed by those systems admitting a polynomial first integral which factorizes
as a product of bivariate polynomials, each of them defining a curve with only one place
at infinity. These first integrals were called well-behaved at infinity, WAI for short. A
plane curve has only one place at infinity when it meets the line at infinity in a unique
point where it is reduced and unibranched. Abhyankar and Moh [1, 2, 3] introduced these
curves. They have a very good local-global behavior, which makes them useful when
studying some algebraic and geometric problems [11, 12, 21, 22, 26]. In addition, many
interesting (but hard to compute) tools, introduced for improving the knowledge of the
algebraic varieties, are much easier to describe when one considers surfaces having a close
relation with curves with only one place at infinity [45, 28, 39, 29].

Returning to the family F of differential systems, we proved in [24] that when a vector
field, or equivalently a 1-form ω, corresponds to a system S in F , then a bound for the
degree of the polynomial first integral can be computed from the knowledge of a part of
the Seidenberg reduction of ω. Furthermore, from this reduction, we are able to decide
whether S belongs to F or not and, in the positive case, to obtain the corresponding first
integral. This solves the problem of deciding if a system has a polynomial first integral
given by (natural) powers of curves with only one place at infinity.

We want to study whether a similar procedure can be performed for families of polyno-
mial differential systems having a non-polynomial Darboux first integral defined by curves
with only one place at infinity. So, in this paper, we consider a new family D of planar
polynomial differential systems having what we call a Darboux positive well-behaved at
infinity (DPWAI) first integral. This family satisfies D ∩ F = ∅ and roughly speaking
(see Definition 4.1 for the precise concept) a DPWAI function is a (multi-valued) function
H =

∏r
i=1 f

αi
i , where fi, 1 ≤ i ≤ r, are bivariate polynomials defining plane curves Ci

with only one place at infinity and satisfying that each one of them does not belong to
the pencil at infinity defined by any other. In addition, the values αi, 1 ≤ i ≤ r, are
positive real numbers satisfying a certain condition which holds when they are linearly
independent over the rational numbers.

The Darboux theorem shows that if we have enough invariant algebraic curves, then a
(Darboux) first integral is guaranteed (see [18] and an improvement in [16]). In fact the
problem of finding Darboux first integrals is essentially the problem of finding invariant
algebraic curves. Once these invariant algebraic curves are computed, and hence their
cofactors are known, the existence of a Darboux first integral depends on whether or not
there exists a linear combination of these cofactors which vanishes. This is, of course, a
trivial problem.

But the problem of finding these invariant algebraic curves is not solved. There are some
rather efficient algorithms in this direction besides the direct resolution (see for example
[25]). The algorithm that we provide here uses the singularities at infinity to find these
invariant algebraic curves, and therefore combines local behavior (singular points) with
global behavior (invariant curves).

The main result in this paper is an algorithm whose input is a planar differential system
X and whose output is either a first integral of X or “0”. The output is a DPWAI first
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integral when X belongs to D and its first integral has generic exponents (see Definition
4.4); if the output is “0” then either X does not belong to D , or it belongs to D but the
exponents of the first integral are not generic. Vector fields admit a (possibly infinite)
extended reduction of singularities (see Definition 4.3). This extended reduction shows
that simple singularities whose quotient of eigenvalues is a positive irrational number can
be “simplified” by an infinite sequence of point blowing-ups and represented by means of
a proximity graph (see Subsection 2.4 and Section 4). Our algorithm uses a (finite) part of
that extended reduction and, also, when X belongs to D and its first integral has generic
exponents, determines the complete extended reduction over the line at infinity. Notice
that, with this algorithm, we are able to compute much more Darboux first integrals
(which are not rational) than in [24].

The algorithm has two steps. The first one, Algorithm 5.3, uses the mentioned part of
the extended reduction to get candidates to polynomials defining the invariant curves Ci,
and the second one computes the exponents αi by using Darboux theory of integrability
(Theorem 5.1). We think that, in practice, our algorithm works for any system in D ; how-
ever, due to our algebraic techniques, we can only guarantee that it computes a Darboux
first integral when the exponents {αi}ri=1 are generic.

Section 5 provides the mentioned algorithm together with an example showing how
it works. The ingredients we need to develop the paper are given in Section 2. WAI
first integrals are recalled in Section 3 and Section 4 introduces the concept of extended
reduction of a vector field and describes it for vector fields in D (generic exponents).

2. Preliminaires

Let X be a planar complex polynomial differential system defined by

ẋ = p(x, y), ẏ = q(x, y), (2)

where p and q are polynomials with complex coefficients in the indeterminates x, y and
gcd(p, q) = 1. In the sequel X also denotes the corresponding vector field X = p ∂

∂x + q ∂∂y .

Recall that a function H = H(x, y) (may be multi-valued) is a first integral of X if H
is constant along any solution of the system. If H ∈ C1, then the equality

XH = p
∂H

∂x
+ q

∂H

∂y
= 0,

holds whenever H is defined.
In this paper, we will study the family of vector fields X admitting a particular class of

Darboux first integrals. We devote this section to summarize some concepts and properties
we will need.

We have introduced the polynomial differential system (2) by using affine coordinates;
however, in this paper, we will need to consider its complex projectivization. Therefore
we start by studing the complex projectivization X of the vector fields X and their corre-
sponding 1-forms.

2.1. Polynomial vector fields on CP2. Let us consider the complex projective plane
CP2, with homogeneous coordinates X,Y, Z, and homogeneous polynomials of degree d+1
without common factors A1, A2, and A3 in C[X,Y, Z]. The 1-form

Ω = A1dX +A2dY +A3dZ

(of degree d+ 1) is said to be projective if it satisfies the so-called Euler condition:

XA1 + Y A2 + ZA3 = 0. (3)
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This projective 1-form determines (and is determined by), up to addition of a multiple
of the radial vector field X ∂

∂X + Y ∂
∂Y + Z ∂

∂Z , a homogeneous polynomial vector field

X = P1
∂
∂X +P2

∂
∂Y +P3

∂
∂Z , where P1, P2 and P3 are homogeneous polynomials in C[X,Y, Z]

of the same degree d and without common factors (see, for instance, Section 1 of [13]). X
gives a field of directions on CP2 and, by abuse of language, is named vector field on CP2

[41, page 1387]. The number d is the degree of X .
Let F be a homogeneous polynomial with complex coefficients and indeterminates

X,Y, Z. The curve on CP2 defined by the equation F = 0 is invariant by the vector
field X if there exists a homogeneous polynomial K ∈ C[X,Y, Z] of degree d− 1 such that

XF = P1
∂F

∂X
+ P2

∂F

∂Y
+ P3

∂F

∂Z
= KF.

The polynomial K is called the cofactor of F .
The singular points of X are those in the projective plane that satisfy the following

system of equations:

A1(X,Y, Z) = 0, A2(X,Y, Z) = 0, A3(X,Y, Z) = 0.

Considering affine coordinates x = X/Z and y = Y/Z in the affine chart defined by
Z 6= 0, the homogeneous polynomial vector field X restricts to the affine vector field

X = a2(x, y)
∂

∂x
− a1(x, y)

∂

∂y
,

where a1(x, y) = A1(x, y, 1) and a2(x, y) = A2(x, y, 1). X is also defined by the 1-form
ω = a1(x, y)dx+a2(x, y)dy. Taking into account Equality (3), one can recover Ω from the
affine 1-form ω.

To provide the system (2) is equivalent to give the 1-form

p(x, y)dy − q(x, y)dx

and, therefore, a homogeneous polynomial vector field X which is called the complex
projectivization of X.

Recall that an invariant algebraic curve of the vector field X is an affine algebraic
curve with local equation f(x, y) = 0, f ∈ C[x, y], such that Xf = kf , where k ∈ C[x, y]
is called the cofactor of f = 0. Now, if f(x, y) has degree n ∈ N, then F (X,Y, Z) =
Znf(X/Z, Y/Z) = 0 is an invariant algebraic curve of the vector field X with cofactor
K(X,Y, Z) = Zd−1k(X/Z, Y/Z).

Next, we give a short overview of the blow-up technique to reduce the singularities of a
planar vector field, which will be a key element in this paper.

2.2. Reduction of singularities. The singularities of planar vector fields can be reduced
by blowing-up (see [24, Section 4.1] for details). This procedure, due to Seidenberg,
performs algebraic modifications and gives rise to a simpler vector field on a different to
CP2 surface, which makes easier the study of the original vector field [44, 19, 4]. Next we
recall the concepts of singularity and simple singularity.

Definition 2.1. A point O ∈ C2 is called a singularity of a polynomial vector field
X = p(x, y) ∂

∂x + q(x, y) ∂∂y , {x, y} being local coordinates at O, if the multiplicity of X

at O (that is, the minimum of the orders of p = p(x, y) and q = q(x, y) at O) is strictly
positive. The singularity O is simple in case X has multiplicity 1 at O and the matrix
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defined by the first nonzero jet p1dy − q1dx of the differential 1-form pdy − qdx,(
∂p1

∂x
∂p1

∂y
∂q1
∂x

∂q1
∂y

)
,

has eigenvalues λ1, λ2 satisfying either λ1λ2 6= 0 and λ1
λ2
6∈ Q+, or λ1λ2 = 0 and λ2

1+λ2
2 6= 0.

A non-simple singularity is named ordinary.

Seidenberg’s reduction theorem [44] (see also [9]) shows that the singularities of a planar
vector field can be transformed into simple singularities by means of blowing-ups:

Theorem 2.2. Let O ∈ C2 be an isolated singularity of a polynomial vector field X =
p ∂
∂x + q ∂∂y in C2. Then there exists a finite sequence of blowing-ups of closed points of

the successively obtained surfaces which starts blowing-up O, π : Z → CP2, such that the
singularities of the strict transform of the vector field X at the surface Z are simple.

From a global point of view, Seidenberg’s result states that, given an homogeneous
polynomial vector field X on CP2, there exists a set of points (or configuration, according
with a forthcoming definition)

S(X ) = {Q0, Q1, . . . , Qn}

such that Q0 ∈ X0 := CP2, πQi−1 : BlQi−1(Xi−1) → Xi−1 is the blowing-up of Xi−1

centered at Qi−1, Qi ∈ BlQi−1(Xi−1) =: Xi for 1 ≤ i ≤ n, and the composition

π = πQ0 ◦ · · · ◦ πQn : Z := Xn+1 −→ CP2

is such that every singularity of the strict transform X̃ of X in Z is simple. We call
S(X ) the singular configuration of X . For an explicit local description of the reduction of
singularities and the obtention of the singular configuration, including a detailed example,
see Section 4 of [24].

A singularity of a vector field is dicritical if infinitely many solutions pass through it
(see [24, Definition 1] for an equivalent definition that allows us to detect the dicritical
character of a singularity from the reduction process). In this paper, we will denote by
D(X ) the dicritical configuration of X , that is the set of dicritical singularities in S(X )
of the strict transforms along π of the vector field X (see [24, page 360] for the definition
of strict transform of a vector field and the straightforward translation of the concept of
dicritical singularity to these vector fields over surfaces obtained by blowing-up).

In the following two subsections we recall the concepts of configuration of infinitely
near points and its proximity graph, and that of proximity graph defined by a positive
real number.

2.3. Proximity graph of a configuration: singular and dicritical graphs. Con-
sider a point P of a smooth complex projective surface. Blowing-up P , one obtains an
exceptional divisor EP usually called the first infinitesimal neighborhood of P and, for each
i > 0, the ith infinitesimal neighborhood of P is the first infinitesimal neighborhood of
some point belonging to the (i− 1)th infinitesimal neighborhood of P . A point R 6= P in
some infinitesimal neighborhood of P is proximate to P whenever it is in the strict trans-
form of the exceptional divisor EP . Also if R is in the intersection of the strict transforms
of two exceptional divisors (that is, if it is proximate to two points), then we say that R
is satellite. Otherwise R is free.
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The set of points that are infinitely near to P is given by those points belonging to the
ith infinitesimal neighborhood of P , for some i > 0. This set admits a natural ordering:
a point Q precedes another point S if S is infinitely near to Q. Also, for us, a point is
infinitely near to itself.

A configuration of infinitely near points (or, simply, a configuration) of a complex surface
X0 (it could be CP2 ) is a (finite or infinite) set of points

C = {P0, P1, . . .},
such that P0 ∈ X0 and, for all i ≥ 1, Pi belongs to the blow-up Xi of Xi−1 with center at
Pi−1.

The proximity graph of C, ΓC , is a directed graph with labeled edges whose set of vertices
is C and whose edges are given by the pairs (P,Q) such that Q is proximate to P . The edges
(P,Q) have two different labels according to Q belongs, or not, to the first infinitesimal
neighborhood of P . When drawing ΓC , the labels of the first type are represented by a
straight segment and those of the second type by a curved-dotted segment (joining P and
Q in both cases). For convenience, we delete arrows (our segments are always ascendent)
and those curved-dotted edges that can be deduced from others; notice that if P,R,Q are
points in C such that P precedes R, R precedes Q and Q is proximate to P , then R is also
proximate to P .

If X is, as above, a projective vector field on CP2, the proximity graph ΓS(X ) (respec-
tively, ΓD(X )) is called the singular graph (respectively, dicritical graph) of X .

2.4. The proximity graph defined by a positive real number. Let X0 be a complex
surface, P a point in X0 and C a germ of curve on the local ring of X0 at P having only
one analytic branch. Assuming that P is singular, one can determine the configuration of
infinitely near points DC = {P0, P1, . . . , Ps} such that:

(i) P0 = P and, for all i ≥ 1, Pi is the point where the exceptional divisor EPi−1 meets
the strict transform of C.

(ii) The composition of the blowing-ups centered at the points of DC gives rise to a
minimal embedded resolution of the singularity of C at P .

For i ≥ 0, letmi denote the multiplicity at Pi of the strict transform of C. Each one of these
numbers mi satisfies the so-called proximity equalities: mi = 1 if i = s and, otherwise,
mi =

∑
mj , where the sum runs over those indices j such that Pj is proximate to Pi [14].

Notice that the (s + 1)-tuple of multiplicities (m0,m1, . . . ,ms) uniquely determines the
proximity graph of the configuration DC .

If the singularity of C at P has only one Puiseux pair (i.e., the minimal embedded res-
olution is obtained by blowing-up some free points and, afterwards, finitely many satellite
points), then the sequence of multiplicities of C at P has the shape

(r0(c0), r1(c1), . . . , r`(c`) = 1(c`)),

where the subindices (ci)
`
i=0 indicate the number of times that each multiplicity is repeated.

Moreover, the numbers ci come from the continued fraction expansion of the rational
number ∑s

i=0m
2
i

m2
0

= [c0; c1, . . . , c`] := c0 +
1

c1 + 1
c2+... 1

c`

;

r0 = m0 and r1, r2, . . . , r` are the successive remainders appearing when the Euclidean
algorithm is applied to

∑s
i=0m

2
i and m2

0 [14]. Hence, in this case, the proximity graph

of DC is determined by the rational number
∑s
i=0m

2
i

m2
0

. Similarly, the continued fraction
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expansion of any positive rational number β determines a proximity graph, which we will
denote by Prox(β).

Now, let γ be a positive irrational number and consider its (infinite) continued fraction
expansion

γ = [c0; c1, c2, . . .] := c0 +
1

c1 + 1
c2+...

.

For each i ≥ 0 set βi := [c0; c1, . . . , ci]. Each proximity graph Prox(βi+1) can be obtained
from Prox(βi) by adding new vertices and labeled edges; then Prox(βi) can be regarded
as a subgraph of Prox(βi+1). We define the proximity graph given by γ, Prox(γ), as
the (infinite) directed graph with labeled edges whose set of vertices (respectively, edges)
is the union of the sets of vertices (respectively, edges) of the graphs Prox(βi), i ≥ 0,
keeping the labels of the edges.

Remark 2.3. Consider the category C whose objects are the (finite and infinite) directed
graphs with labeled edges (two labels) and whose morphisms are the label-preserving
morphisms of graphs. Let γ and βi, i ≥ 0, be as before. For each pair of indexes
i, j ≥ 0 such that i ≤ j there exists an obvious (inclusion) morphism of labeled graphs
fij : Prox(βi)→ Prox(βj); these morphisms allow us to give a direct system [35, III, §10]

{(Prox(βi))i≥0; (fij)0≤i≤j}
in the category C. From our construction, it is straightforward to check that Prox(γ) is
the direct limit of the above mentioned direct system.

Next, in Figure 1, we show the shape of the proximity graph Prox(γ).

sP0

sP1

...

sPc0−1

sPc0

sPc0+1

...

sPc0+c1−1

sPc0+c1

...

Figure 1. Proximity graph defined by γ.

The relation between elimination of base points of certain linear systems and the reduc-
tion of singularities of planar vector fields having a rational first integral supports some
reasonings in this paper. So we conclude this section with a brief of those concepts close
to linear systems we will use.

2.5. Linear systems and pencils. For any natural number m > 0, let us denote by
Cm[X,Y, Z] the (projective) space of homogeneous polynomials of degree m in the inde-
terminates X,Y, Z. A linear system on CP2 will be the set of algebraic curves defined by
a linear space of polynomials in Cm[X,Y, Z] for some natural number m > 0. Notice that
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a linear system has structure of projective space. A pencil is a linear system of projective
dimension 1.

Next, we recall the definition of cluster of CP2 and other related concepts [14] (see also
[10] and [24]).

Definition 2.4. A (weighted) cluster of infinitely near points (or, simply, a cluster) of
CP2 is a pair (C,m) where C = {Q0, Q1, . . . , Qh} is a configuration of infinitely near points
of CP2 and m = (m0,m1, . . . ,mh) ∈ Nn, N being the set of positive integers.

We desire to consider linear systems determined by clusters. To this purpose, we require
some notations and concepts. For the convenience of the reader, we start by recalling the
concept of virtual transform (respectively, passing virtually) of a curve at (respectively,
through) a point of a cluster.

Fix a cluster K = (C,m), for each Qi ∈ C, we set

`(Qi) := card{Qj ∈ C| Qi is infinitely near to Qj}.
Consider a point Qk ∈ C and an algebraic curve C on CP2.

Assume first that `(Qk) = 1. Pick local coordinates (x, y) at Qk and a local equation
of C, f(x, y) = 0. The virtual transform of C at Qk with respect to the cluster K, CKQk ,

is the (local) curve defined by f(x, y) = 0. The degree of the first non-zero jet of f(x, y)
is named the multiplicity of CKQk at Qk and denoted by mQk(CKQk). Finally the curve C

passes virtually through Qk with respect to K whenever mQk(CKQk) ≥ mk.

Consider now the case where `(Qk) > 1. Set Qj ∈ C such that Qk is in the first infin-
itesimal neighborhood of Qj and suppose (by induction) that C passes virtually through
Qj with respect to K. Pick local coordinates (x, y) at Qj and f(x, y) = 0 a local equa-
tion of CKQj . The point Qk belongs to the surface obtained by blowing-up Qj and thus

Qk = (0, δ) (respectively, Qk = (δ, 0)), δ ∈ C, in local coordinates (x, t = y/x) (respec-
tively, (s = x/y, y)). Then, the virtual transform of C at Qk with respect to K, CKQk ,

is the curve defined by x−mjf (x, x(t+ δ)) = 0 when considering the first coordinates
and that defined by y−mjf ((s+ δ)y, y) = 0 otherwise. As above, the multiplicity of CKQk
at Qk is denoted by mQk(CKQk) and C passes virtually through Qk with respect to K if

mQk(CKQk) ≥ mk. When the curve C passes virtually through Qi with respect to K for all
Qi ∈ K, we say that C passes virtually through K.

Now we define the above mentioned linear systems. Consider a cluster K = (C,m) of
CP2 and a positive integer m.

Definition 2.5. The linear system defined by the pair (m,K), Lm(K), is the linear system
of curves on CP2 passing virtually through K and given by homogeneous polynomials of
degree m.

The following concept will be useful in this paper.

Definition 2.6. Let Z be the complex surface defined by a (finite) configuration of in-
finitely near points of CP2, C, π : Z → CP2 the corresponding blowing-up map and C
an algebraic curve on CP2. The strict transform C̃ of C on Z is the image of C by the
birational map π−1.

Let n be a positive integer and F1, F2, . . . , Fs linearly independent polynomials in
Cn[X,Y, Z] with no common factor. Set L = PV the linear system on CP2 associated to
the linear space over C, V = 〈F1, F2, . . . , Fs〉, generated by the polynomials Fi, 1 ≤ i ≤ s.
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Then there exist linear subspaces Hi ( CPs−1 of CPs−1, 1 ≤ i ≤ t, and a configuration of
infinitely near points of CP2, which we denote by BP(L), such that:

a) The multiplicities at each R ∈ BP(L) of the strict transforms of the curves α1F1 +

α2F2 + · · · + αsFs = 0, where α = (α1, α2, . . . , αs) runs through A := CPs−1 \
⋃t
i=1Hi,

are the same, denoted by multR(L).
b) The virtual transforms of the curves

∑
αiFi = 0, α ∈ A, with respect to the cluster

(BP(L), (multR(L))R∈BP(L))

have no common point; these curves are called generic curves of L.
Observe also that the set

⋃t
i=1Hi is finite in case L is a pencil.

Definition 2.7. With the above notations, the pair (BP(L),m), where

m = (multQ(L))Q∈BP(L) ,

is a cluster of infinitely near points of CP2 called the cluster of base points of L.

3. Reduction of singularities of a vector field with WAI first integral

Plane curves with only one place at infinity were initially considered in [1, 2, 3]. We
begin by stating the definition.

Definition 3.1. An algebraic projective curve C defined by a homogeneous polynomial
F ∈ C[X,Y, Z] has only one place at infinity if C meets the line at infinity Z = 0 at only
one point, where it is reduced and unibranched.

Next we introduce the concept of well-behaved at infinity (WAI) first integral.

Definition 3.2. A complex planar polynomial differential system (or a vector field) X
has a WAI first integral whenever X admits a polynomial

H =

r∏
i=1

fnii ,

as a first integral, r and ni, 1 ≤ i ≤ r, being positive integers and fi, 1 ≤ i ≤ r, complex
bivariate polynomials of degree di ∈ N such that each complex projective curve Ci on CP2

defined by the polynomial Fi(X,Y, Z) = Zdifi(X/Z, Y/Z) has only one place at infinity.
Along this paper we will also assume that, if H is WAI first integral, then

gcd(n1, n2, . . . , nr) = 1, r ≥ 2,

and the following condition is fulfilled:

fi − λfj 6∈ C for all i, j ∈ {1, 2, . . . , r} such that i 6= j and for all λ ∈ C. (4)

For 1 ≤ j 6= i ≤ r, write

ρji :=
∑
Q

(Cj , Ci)Q, (5)

where Q runs through the common points of Cj and Ci outside the line at infinity (defined
by Z = 0), and (Cj , Ci)Q is the intersection multiplicity between Ci and Cj at Q.

We will assume in the remaining of this section that X is a complex planar polyno-
mial vector field (whose complex projectivization to CP2 is X ) which admits a WAI first
integral. By [24, Corollary 1], the dicritical configuration D(X ) coincides with the con-
figuration of the cluster of base points of the pencil PV , where V = 〈

∏r
i=1 F

ni
i , Zd〉 and

d =
∑r

i=1 nidi, di := deg(Fi). Taking advantage of the study of this cluster performed in
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[12], we state the following result, which provides a very specific information about the
dicritical configuration D(X ).

Proposition 3.3. Let X and X be as above. Then

D(X ) =
r⋃
i=1

(BP(Pi) ∪ {Si} ∪ Li) ,

where, for each i = 1, 2, . . . , r:

(a) BP(Pi) is the configuration of base points of the pencil Pi defined by the non-zero
linear combinations of the polynomials Fi and Zdi.

(b) The configuration BP(Pi), ordered by the relation “to be infinitely near to”, has
only one maximal point Qi. Moreover, the strict transform of the curve Ci with
equation Fi = 0 meets the exceptional divisor EQi at a unique point Si. The local
1-form at Si defining the strict transform of X has the shape δiu dt−nit du, where
u, t are coordinates whose vanishing give local equations of the strict transform of
Ci at Si and of the exceptional divisor EQi, and where

δi =

r∑
j=1
j 6=i

njρji.

Furthermore, {Si} ∪ Li is the configuration of base points of the (local) pencil
(at Si) defined by the non-zero linear combinations of uni and tδi.

(c) No value ρji equals zero.
(d) The point Si is free.
(e) If i 6= j then Si is not infinitely near to Sj and Sj is not infinitely near to Si.

Proof. Items (a), (b), and (e) follow from [12, Lemma 1] and its proof. The sequence
of blowing-ups centered at the points in BP(Pi) provides an embedded resolution of the
singularity of Ci at infinity (see [2, 37]) and, as a consequence, the point Si is free. This
proves Item (d).

It remains to prove (c). Reasoning by contradiction, assume that ρji = 0 for some
indexes i, j ∈ {1, 2, . . . , r} such that i 6= j. Blowing-up the points in BP(Pi) we get a

surface Y . Let C̃i and C̃j be the respective strict transforms of Ci and Cj on Y . By (b)

and (e) and our assumption, C̃i and C̃j do not meet, and then C̃i · C̃j = 0. This means,

by the projection formula, that C̃j is contracted by the morphism defined by a basis of

global sections of the sheaf OY (C̃i) [31]. Thus Cj must be a curve of the pencil Pi, and
this contradicts Condition (4), which is assumed for the WAI first integral H. �

Remark 3.4. The configuration
⋃r
i=1 (BP(Pi) ∪ {Si}) is independent of the exponents

n1, n2, . . . , nr appearing in the WAI first integral.

4. Extended reduction of singularities and DPWAI first integrals

An algorithm for deciding whether a system as (2) has a WAI first integral, and com-
puting that integral in the affirmative case, was given in [24]. This algorithm uses a part of
the reduction procedure for the corresponding vector field X . We want to find out whether
there is some close procedure to compute other types of Darboux first integrals involving
curves with only one place at infinity. Next we introduce a set of Darboux functions and
an extended reduction of singularities of vector fields suitable for our purposes.
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Definition 4.1. A Darboux positive well-behaved at infinity (DPWAI, for short) function
is a multi-valued function of the form

H =

r∏
i=1

fαii , r ≥ 2,

where:

(1) The fi’s, i ≤ i ≤ r, are bivariate complex polynomials of degree di ∈ N such that
the projective curve Ci, defined by Fi(X,Y, Z) = Zdifi(X/Z, Y/Z), has only one
place at infinity.

(2) The values αi, i ≤ i ≤ r, are strictly positive real numbers.
(3) The polynomials fi, 1 ≤ i ≤ r, satisfy Condition (4).
(4) For all i ∈ {1, 2, . . . , n}, there is no positive rational number β such that

βαi =
r∑
j=1
j 6=i

ρjiαj ,

where ρji is the value defined in (5).

Remark 4.2. Note that our last condition holds, in particular, when {αi}ri=1 is a linearly
independent set over the field Q.

Now we define the concept of extended reduction of singularities.

Definition 4.3. An extended reduction of singularities of an arbitrary singular polynomial
vector field X on CP2 is a sequence of blowing-ups

· · · → Xi+1 → Xi → · · · → X1 → X0 = CP2 (6)

obtained by performing, first, a reduction of singularities of X and, then, by successively
blowing-up every simple singularity of the transformed vector field whose quotient of
eigenvalues is a positive real number.

This extended reduction can be regarded as a more natural procedure than Seidenberg’s
reduction because we keep blowing-up points while the quotient of eigenvalues is a positive
real number γ. Although we can obtain an infinite sequence of blowing-ups, this sequence
is completely determined by the continued fraction expansion of γ. Seidenberg applies only
this procedure when γ is rational giving rise to a finite sequence of point blowing-ups.

Let us denote by E(X ) the configuration of infinitely near points of CP2 formed by
the centers of the extended reduction of singularities of X . Also, E∞(X ) will denote the
configuration of points in E(X ) whose images on CP2 by the sequence (6) belong to the
line at infinity.

Definition 4.4. We will say that a property P is satisfied for generic exponents {αi}ri=1 if
there exists a finite set of non-zero polynomials {hj(z1, z2, . . . , zr)}j∈J ⊆ C[z1, . . . , zr], J a
set of indexes, fulfilling the following condition: P is satisfied for all r-tuples (α1, α2, . . . , αr)
such that hj(α1, . . . , αr) 6= 0 for all j ∈ J .

Until the end of this section, we will suppose that X is a polynomial vector field (or
differential system) of C2 having a DPWAI first integral

H =
r∏
i=1

fαii .
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Consider the complex projectivization X of X and set ΩX = A1dX + A2dY + A3dZ
a homogeneous reduced 1-form defining X . The following result explains how ΩX writes
for generic exponents. See [36] for the affine version with a polynomial differential system
having a generalized Darboux first integral.

Proposition 4.5. With the above notation it follows that, for generic exponents α1, . . . , αr,
the reduced 1-form ΩX is, up to multiplication by a non-zero constant, equal to r∑

i=1

αiZ
r∏
j=1
j 6=i

Fj
∂Fi
∂X

 dX +

 r∑
i=1

αiZ
r∏
j=1
j 6=i

Fj
∂Fi
∂Y

 dY

+

 r∑
i=1

αiZ
r∏
j=1
j 6=i

Fj
∂Fi
∂Z
− d

r∏
j=1

Fj

 dZ,

where Fi is the projectivization of fi, 1 ≤ i ≤ r, and d =
∑r

i=1 αi deg(Fi).

Proof. It is straightforward to check that
∏r
i=1 f

αi
i is a first integral of the vector field

obtained by the restriction of ΩX to the affine plane. So, it only remains to prove that
ΩX is reduced.

Let X ′ be the map which sends every element β̄ = (β1, β2, . . . , βr) ∈ Rr to the vector
field X ′(β̄) on CP2 defined by the homogeneous 1-form

Ω(β1, β2, . . . , βr) :=

 r∑
i=1

βiZ

r∏
j=1
j 6=i

Fj
∂Fi
∂X

 dX +

 r∑
i=1

βiZ

r∏
j=1
j 6=i

Fj
∂Fi
∂Y

 dY

+

 r∑
i=1

βiZ
r∏
j=1
j 6=i

Fj
∂Fi
∂Z
−

(
r∑
i=1

βi deg(Fi)

)
r∏
j=1

Fj

 dZ.

Denote by Q+ the set of positive rational numbers. It is straightforward to check that,
for each β̄ ∈ (Q+)r, the vector field X ′(β̄) has

∏r
i=1 F

ni
i /Zm as a first integral, where

ni = eβi, 1 ≤ i ≤ r, e is the least common multiple of the denominators of the irreducible
expressions of the rational numbers β1, β2, . . . , βr and m =

∑r
i=1 ni deg(Fi).

By [12, Lemma 1 (iv)], the pencil of curves defined by the equations{
λ1

r∏
i=1

Fnii + λ2Z
m = 0 | (λ1 : λ2) ∈ CP1

}
has exactly two elements which are not integral (reduced and irreducible) curves. These
curves are those with equations

∏r
i=1 F

ni
i = 0 and Zm = 0. We must recall that this result

holds when the curves Fi = 0 have only one place at infinity. Otherwise this number may
be larger [23].

Now, Ω(β̄) is reduced for all β̄ ∈ (Q+)r because, otherwise, the formula relating the
degrees of the pencil and the form, and the factorization of the remarkable curves [30,
Lemma 1.2], does not hold.
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Consider now the function ω(β̄) which maps any element β̄ ∈ Rr to the affine 1-form
ω(β̄) = aβ̄(x, y)dx+ bβ̄(x, y)dy, where

aβ̄(x, y) :=

r∑
i=1

βi

r∏
j=1
j 6=i

fj
∂fi
∂x

and bβ̄(x, y) :=

r∑
i=1

βi

r∏
j=1
j 6=i

fj
∂fi
∂y

.

Regarding aβ̄(x, y) and bβ̄(x, y) as polynomials (with coefficients in a suitable ring) in the

indeterminate x (respectively, y), we can compute the resultant Resx(aβ̄, bβ̄) (respectively,

Resy(aβ̄, bβ̄)). The fact that Ω(β̄) is reduced for vectors β̄ ∈ (Q+)r implies the same fact

for ω(β̄), which proves that Resx(aβ̄, bβ̄) ∈ C[β1, β2, . . . , βr][y] (respectively, Resy(aβ̄, bβ̄) ∈
C[β1, β2, β2, . . . , βr][x]) is a nonzero polynomial. As a consequence, setting R+ the set of
positive real numbers, the 1-form ω(ᾱ) is reduced for all values ᾱ ∈ (R+)r such that
Resx(aᾱ, bᾱ) 6= 0 and Resy(aᾱ, bᾱ) 6= 0. This proves that the 1-form ΩX is reduced for
generic exponents α1, α2, . . . , αr ∈ R+ and concludes the proof. �

Now we state one of our main results, which determines the configuration E∞(X ) cor-
responding to projective vector fields X having a DPWAI first integral with generic expo-
nents.

Theorem 4.6. Assume that X is the complex projectivization of a polynomial vector field
X having a DPWAI first integral as above whose exponents α1, α2, . . . , αr are generic.
Then the following equality of configurations holds:

E∞(X ) =

r⋃
i=1

(BP(Pi) ∪ {Si} ∪ Ji) ,

where, for 1 ≤ i ≤ r, the Si’s are the points defined in Proposition 3.3 and each Ji =
{R1i, R2i, . . .} is an infinite chain of infinitely near points such that R1i (respectively, Rji,
j ≥ 2) is a point that belongs to the exceptional divisor obtained by blowing-up Si (respec-
tively, Rj−1,i). Moreover, the proximity graph of each chain {Si} ∪ Ji is that determined
by the irrational number δi/αi and named Prox(δi/αi), where

δi :=

r∑
j=1
j 6=i

αjρji,

and ρji are the integers
∑

Q(Cj , Ci)Q defined in (5).

Proof. Consider the vector ᾱ = (α1, α2, . . . , αr) ∈ (R+)r given by some generic elements
{αi}ri=1. Let B := Bᾱ = {β̄n = (β1n, β2n, . . . , βrn)}∞n=1 be a sequence of vectors in (Q+)r

such that limn→∞ β̄n = ᾱ and, for each positive integer n, denote by XBn the vector field
on CP2 given by the homogeneous 1-form Ω(β̄n) defined as in the proof of Proposition 4.5.
Notice that each vector field XBn has the following rational first integral:∏n

i=1 F
enβin
i

Zmβ̄n
,

where en is the least common multiple of the denominators of the irreducible expressions
of β1n, β2n, . . . , βrn and

mβ̄n :=

r∑
i=1

enβin deg(Fi).
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Hence, the restriction of XBn to the affine chart given by the complement of the line Z = 0
has a WAI first integral. Notice that the dicritical configurations of the vector fields XBn ,
n ≥ 1, contain the configuration of infinitely near points of CP2:

⋃r
i=1 (BP(Pi) ∪ {Si})

(see Remark 3.4), and also that

D(XBn ) ∩ CP2 = E∞(X ) ∩ CP2

by the proof of Proposition 4.5.
Let PBn be the pencil of curves defined by the equations

λ1

n∏
i=1

F enβini + λ2Z
mβ̄n = 0,

where (λ1 : λ2) ∈ CP1. By Proposition 3.3, the configuration of base points of this pencil,
which coincides with D(XBn ) [24, Corollary 1], is given by

r⋃
i=1

(
BP(Pi) ∪ {Si} ∪ LBin

)
,

where {Si}∪LBin is the configuration of base points of the (local) pencil (at Si) defined by

the non-zero linear combinations of uenβin and tδ
B
in , u, t being coordinates whose vanishing

give local equations of the strict transform of Ci at Si and of the exceptional divisor
containing Si, and where

δBin := en

r∑
j=1
j 6=i

βjnρji.

Notice that, since (u, t) is a regular system of parameters of the local ring at Si [12, Lemma
1], the proximity graph of the configuration {Si} ∪ LBin is

Prox

(
δBin
enβin

)
.

Now consider the configuration of infinitely near points of CP2

B :=

r⋃
i=1

(BP(Pi) ∪ {Si}) .

The reduction of singularities of X shows that B ⊆ E∞(X ) because ᾱ is taken to be generic.
In addition, S1, S2, . . . , Sr are the unique common points of E∞(X ) and the surface V
obtained by blowing-up the points in ∪ri=1BP(Pi). This statement is a consequence of the
forthcoming Lemma 4.7, [24, Lemma 1] (where it is proved that, under our conditions,
blowing-up and taking associated 1-forms are commuting operations) and the fact that
the local equation of the strict transform of X at any point of V is the limit (when n tends
to infinity) of the local equations of the strict transforms of XBn .

To finish our proof, we give a complete description of E∞(X ). Notice that by [24,
Lemma 1] the 1-form

enβint du− δBinu dt, 1 ≤ i ≤ r,
locally defines the strict transform of XBn at Si, where u = 0 is a local equation of the
strict transform of Ci at Si and t = 0 is a local equation of the exceptional divisor. Then,
taking limits, the 1-form

t du− δi
αi

dt
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defines the strict transform of X at Si. From this local expression of the vector field, it is
straightforward to deduce that the configuration of infinitely near points to Si belonging
to E∞(X ) is an infinite chain whose proximity graph is Prox(δi/αi). In fact, this chain
is infinite because Condition (3) in Definition 4.1 implies the irrationality of δi/αi for all
i ∈ {1, 2, . . . , r}. �

We conclude this section by stating and proving the above used Lemma 4.7, which allows
us to prove that, with the notation as in the proof of the above theorem, the surface V
obtained by blowing-up the points in ∪ri=1BP(Pi) has no points in E∞(X ) different from
the Si’s, 1 ≤ i ≤ r.

The proof of Lemma 4.7 will require to use some objects of algebraic geometry which we
briefly summarize for convenience of the reader. We will consider divisors on a surface W
and the Nerón-Severi group of W , NS(W ), which is the group of numerical (equivalently,
linear, in our case) equivalence classes [C] of divisors C on W . Recall that two divisors in
W are linearly equivalent whenever its difference is principal [31]. One can transform this
group into an R-linear space by using tensor product, NS(W ) ⊗ R, and then the cone of
curves of W is defined as

NE(W ) =
{∑

ai[Ci] | Ci is a reduced and irreducible curve on W , ai ∈ R and ai ≥ 0
}
.

The topological closure of NE(W ) in NS(W )⊗ R, NE(W ), is the so-called closed cone

of curves of W . Extremal rays of cones NE(X) of algebraic varieties X are crucial objects
in the model minimal program in algebraic geometry [38, 33, 7].

Lemma 4.7. Keep the notation as in Theorem 4.6 and its proof. Let π : W → CP2 be
the composition of the blowing-ups centered at the points of the dicritical configuration,
D(XBn ), of the vector field on CP2 defined by Ω(β̄n). Consider the set {Q1, Q2, . . . , Qr} of

maximal points of D(XBn ) and the union Γ =
⋃r
i=1 ẼQi of the strict transforms on W of

the exceptional divisors obtained by blowing-up the points Qi, 1 ≤ i ≤ r.
Then, the singularities of the strict transform of XBn on W which belong to the excep-

tional locus of π, but not to Γ, are simple and the local equation of XBn at any of them has
the form

at2dt1 + bt1dt2,

where a, b ∈ Q+ ∪ {0}, a+ b 6= 0 and, t1 = 0 (respectively, t2 = 0) is the local equation, at
the singularity, of the strict transform of an irreducible exceptional divisor (respectively,
the line at infinity Z = 0).

Proof. First of all notice that, by Proposition 3.3, the dicritical configuration of XBn and
the base points configuration of PBn coincide; i.e., D(XBn ) = BP(PBn ).

Let H be an arbitrary irreducible component of a curve of the pencil PBn , different from

Z = 0, and denote by H̃ its strict transform on W . To prove the lemma, it is enough to
show that, outside Γ, H̃ has no singularity on the exceptional part of π.

We can assume H 6= Ci for all i ∈ {1, 2, . . . , r} because π is a common resolution of the
singularities at infinity of these curves (see [12, Lemma 1 (iii)] and [2, 37]).

Notice that the self-intersection of H̃ cannot be negative because, in this case, the class
of H̃ in NS(W ) ⊗ R would generate an extremal ray of the closed cone of curves of W

[34, Lemma 1.22], and this is not possible by [12, Theorem 3]. Hence, H̃2 ≥ 0.
The pencil PBn defines a rational map CP2 · · · → CP1, that is a morphism from an open

set of CP2 to CP1 which cannot be extended to any larger open set. The elimination of
its indeterminacies induces a morphism f : W → CP1 contracting to a point the strict
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transform of any curve in the pencil [6, Theorem II.7]. In particular, it contracts H̃. The
morphism f is defined by the global sections of the invertible sheaf [31] associated to the
divisor D on W given by the strict transform of a general curve of the pencil PBn . Notice
that D2 = 0 because the strict transforms on W of two different general curves of the
pencil do not meet. Then,

D · H̃ = 0

(and H̃2 ≥ 0 by the previous paragraph). Hence H̃ must be linearly equivalent to D [6,
Lemma III.9].

To conclude the proof, we take into account that the exceptional irreducible divisors
which are not contracted by the morphism f are the irreducible components of Γ [12,
Lemma 1 (iii)], and this implies that, if E is the strict transform of an irreducible excep-
tional divisor, then

H̃ · E = D · E > 0

if and only if E is contained in Γ. This proves that H̃ can only have singularities on Γ
and the lemma.

�

5. The algorithm

In this last section we state the previously mentioned algorithm which computes a first
integral of planar polynomial vector fields having a DPWAI first integral with generic
exponents.

In [18], Darboux proved the existence of a first integral for polynomial vector fields with
enough invariant algebraic curves. In this case, he also gave a procedure to compute it.
This result was improved in [17] (see also [16]). Next we state the Darboux theorem.

Theorem 5.1. Let X be the differential system in (2). Suppose that the bivariate complex
polynomials fi := fi(x, y), 1 ≤ i ≤ r, define algebraic curves which are irreducible and
invariant for X. Then

(i) H = fλ1
1 · · · fλrr , where λi ∈ C, 1 ≤ i ≤ r, are not all zero, is a first integral of X

if, and only if, the linear combination
r∑
i=1

λiki(x, y) (7)

vanishes, ki(x, y) being the cofactor of the invariant curve defined by fi(x, y), 1 ≤
i ≤ r.

(ii) There is an identically zero linear combination
r∑
i=1

λiki(x, y) with not all zero co-

efficients λi whenever r =
(
d+1

2

)
+ 1.

As a consequence of the above result, a key fact for obtaining first integrals is the
searching of invariant algebraic curves. Notice that it is a very hard problem.

Next we present Theorem 5.2 which, together with some previous results, allows us to
state our algorithm. This algorithm provides enough invariant curves to apply Theorem
5.1 and determine a Darboux first integral in case the input we supply is a polynomial
vector field having a DPWAI first integral with generic exponents.

The mentioned theorem will use a cluster (K,mK) attached to any finite chain K of
infinitely near points of CP2. Recall that a configuration K = {Q1, Q2, . . . , Qs} is a chain
if Qi, i > 1, belongs to the exceptional divisor created by Qi−1. The sequence of positive
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integers mK := (mQ)Q∈K is defined as follows: mQ = 1 if Q is the maximal point of K
and mQ =

∑
mR otherwise, where the sum runs through the set of points R in K which

are proximate to Q. Also, given an arbitrary configuration C and any point Q ∈ C, we
will denote by CQ the finite chain defined by those points R in C such that Q is infinitely
near to R.

Theorem 5.2. Let X be a projective vector field and α1, α2, . . . , αr real numbers as in
Theorem 4.6. Keep the above notation and consider the clusters Ki := (Ci,mCi), 1 ≤ i ≤ r,
where Ci = {Li0, Li1, . . . , Li`i := Si} := CSi = BP(Pi) ∪ {Si}. Set mCi = (mQ)Q∈Ci. Then
the following equalities hold:

(i) [deg(Ci)]
2 −

∑`i
j=0m

2
Lij

= −1, and

(ii) deg(Ci) =
∑κi

j=0mLij ,

where κi denotes the largest index j such that the strict transform of the line at infinity
passes through Lij. Moreover, Ci is the unique curve in the linear system L∑κi

j=1mLij
(Ki).

Proof. Let U be the surface we get by blowing-up BP(Pi). Consider the line at infinity L
and two different general curves ∆1 and ∆2 of the pencil Pi. Then, their strict transforms
on U , L̃, ∆̃1 and ∆̃2, do not meet. Therefore ∆̃1 · ∆̃2 = 0 and ∆̃1 · L̃ = 0. Both equalities
prove, respectively, the equalities (i) and (ii) after noticing that ∆̃1 and ∆̃2 are linearly
equivalent to the strict transform of Ci.

We conclude the proof by noticing that our last assertion follows from (i) and Bézout
Theorem [6, I.9 (a)]. �

Now we present our algorithm which, applied to a polynomial vector field, computes
candidates to be the polynomials f1, f2, . . . , fr appearing in a DPWAI first integral. The-
orems 4.6 and 5.2 prove that when the input has a DPWAI first integral with generic
exponents, the output will be the mentioned polynomials fi.

We will need the following notation: given an arbitrary configuration C we define, for
each maximal point Q of C, the integer IQ(C) := dQ(C)2 −

∑
P∈CQm

2
P , where mCQ =

(mP )P∈CQ and dQ(C) :=
∑
mP , the sum being taken over the points P in CQ such that

the strict transform of the line at infinity passes through P .

Algorithm 5.3.
• Input: An arbitrary polynomial vector field X.
• Output: Either a finite set {fi(x, y)}ri=1 of polynomials in two indeterminates which

are candidates for applying Theorem 5.1 and obtaining a Darboux first integral,
or 0.

(1) Compute an homogeneous 1-form defining the complex projectivization X of X.
(2) Compute the set Ω′ consisting of the points Q in the singular configuration S(X )

which are infinitely near to a point of the line at infinity.
(3) Let Q1, Q2, . . . , Q` be the maximal points of Ω′. For every i ∈ {1, 2, . . . , `} com-

pute the maximal configuration Ωi of points P infinitely near to Qi satisfying the
following conditions:
(a) P is free,
(b) P ∈ E∞(X ) (that is, P is a simple singularity of the strict transform of the

vector field X whose associated quotient of eigenvalues is a positive irrational
number),

(c) IP (E∞(X )) ≥ −1.
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If Ωi is empty for some i ∈ {1, 2, . . . , `}, then return 0. Else, define Ω := Ω′ ∪Ω1 ∪
· · · ∪ Ω` and go to Step (4).

(4) Let M = {S1, S2, . . . , Sr} be the set of maximal points of Ω. If ISi(E∞(X )) 6= −1
for some i ∈ {1, 2, . . . , r} then return 0. Else go to Step (5).

(5) If the linear systems LdSi (ΩSi ,mΩSi
) have projective dimension 0 for all i ∈

{1, 2, . . . , r} (where dSi := dSi(E∞(X )) ), then return

{F1(x, y, 1), F2(x, y, 1), . . . , Fr(x, y, 1)},
Fi(X,Y, Z) being an homogeneous polynomial defining the unique curve in

LdSi (ΩSi ,mΩSi
).

Else, return 0.

Our procedure to decide about DPWAI integrability of a vector field X has two steps.
First we run Algorithm 5.3 with input X and, when the output is not 0, we get r curves
defined by equations fi = 0, 1 ≤ i ≤ r. These curves aspire to be invariant of X. If yes,
we compute their cofactors

ki =
p∂fi∂x + q ∂fi∂y

fi
,

and then, we test the existence of values λi ∈ R+, 1 ≤ i ≤ r, for which the polynomial
in (7) vanishes. In the positive case, the function H in Theorem 5.1 is a first integral of
X. Notice that the above checking only involves the resolution of a homogeneous linear
system with r variables and

(
d+1

2

)
equations.

When the input X has a DPWAI first integral with generic exponents, we also obtain
its extended resolution of singularities over the line at infinity. Otherwise, X has not a
DPWAI first integral with generic exponents, the output of Algorithm 5.3 could be 0 or
some non necessarily invariant curves by X. However, the output of Algorithm 5.3 could
also provide enough invariant curves and then, we would obtain a DPWAI first integral
by means of Theorem 5.1.

We conclude this paper with an example where we detail our procedure for computing
a Darboux first integral of the mentioned class of polynomial vector fields.

Example 5.4. Consider the polynomial vector field

X = a(x, y)dx+ b(x, y)dy,

where

a(x, y) = (3+4π)x6y2+(3+
√

2+4π)x7+4πx3y3+(
√

2+4π)x4y−3x2y3−(3+
√

2)x3y−
√

2y2

and

b(x, y) = 2
√

2x7y+(1+2
√

2)x4y2 +x5−(2
√

2+π)x3y2−πx4−(1+2
√

2+π)y3−(1+π)xy.

Algorithm 5.3 gives rise to a configuration of infinitely near points of CP2, Ω = {Pi}18
i=1,

which has 3 maximal points:

S1 = P9, S2 = P13 and S3 = P18.

The proximity graph of the configuration is displayed in Figure 2. Moreover, the multi-
plicity sequences are

mΩS1
= (3, 1, 1, 1, 1, 1, 1, 1, 1),

mΩS2
= (2, 1, 1, 1, 1, 1, 1),
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mΩS3
= (1, 1, 1, 1, 1)

and, since the strict transforms of the line at infinity pass through P1 and P2, dS1 = 4,
dS2 = 3, dS3 = 2 and ISi = −1 for all i ∈ {1, 2, 3}. In addition the algorithm allows us to
determine that

Ldi(ΩSi ,mΩSi
) = {Ci},

where C1 (respectively, C2, C3) is the projective curve (having only one place at infinity)
with equation X4 − Y Z3 = 0 (respectively, X3 + Y Z2 = 0, Y 2 + XZ = 0). In fact,
Algorithm 5.3 returns the set {f1, f2, f3}, where f1(x, y) = x4 − y, f2(x, y) = x3 + y and
f3(x, y) = y2 + x.

Now, applying Theorem 5.1, one obtains that fπ1 f2f
√

2
3 is a DPWAI first integral of X.

sP1

sP2

sP3
@@
sP4

@@
sP5
@@
sP6
@@
sP7

@@
sP8

@@
sP9 = S1

sP14

sP15

sP16

sP17

sP18 = S3

��
sP10
��

sP11
��

sP12
��

sP13 = S2

Figure 2. Proximity graph of the configuration obtained applying Algo-
rithm 5.3.

Finally, we notice that, with notations as in Theorem 4.6,

δ1 = 4 + 8
√

2, δ2 = 6
√

2 + 4π and δ3 = 6 + 8π.

Therefore, the proximity graph of the extended reduction of singularities over the line
at infinity, E∞(X ), is obtained from that in Figure 2 by adding three infinite chains J1,
J2 and J3 over S1, S2 and S3 such that the proximity graph of J1 ∪ {S1} (respectively,

J2 ∪ {S2}, J3 ∪ {S3}) is Prox(4+8
√

2
π ) (respectively, Prox(6

√
2 + 4π), Prox

(
6+8π√

2

)
). To

complete our example we show, in Figure 3, the bottom part of the proximity graph of
the chain J1 ∪ {S1}, without labels. A similar procedure provides the remaining chains.
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