Level-of-Detail Triangle Strips for Deforming
Meshes

Francisco Ramos', Miguel Chover®, Jindra Parus? and Ivana Kolingerova?
! Universitat Jaume I, Castellon, Spain
{Francisco.Ramos,chover}@uji.es

2 University of West Bohemia, Pilsen, Czech Republic
{jparus,kolinger}@kiv.zcu.cz

Abstract. Applications such as video games or movies often contain de-
forming meshes. The most-commonly used representation of these types
of meshes consists in dense polygonal models. Such a large amount of
geometry can be efficiently managed by applying level-of-detail tech-
niques and specific solutions have been developed in this field. However,
these solutions do not offer a high performance in real-time applica-
tions. We thus introduce a multiresolution scheme for deforming meshes.
It enables us to obtain different approximations over all the frames of
an animation. Moreover, we provide an efficient connectivity coding by
means of triangle strips as well as a flexible framework adapted to the
GPU pipeline. Our approach enables real-time performance and, at the
same time, provides accurate approximations.

Key words: Multiresolution, Level of Detail, GPU, triangle strips, de-
forming meshes

1 Introduction

Nowadays, deforming surfaces are frequently used in fields such as games, movies
and simulation applications. Due to their availability, simplicity and ease of use,
these surfaces are usually represented by polygonal meshes.

A typical approach to represent these kind of meshes is to represent a dif-
ferent mesh connectivity for every frame of an animation. However, this would
require a high storage cost and the time to process the animation sequence would
be significantly higher than in the case of using a single mesh connectivity for all
frames. Even so, these meshes often include far more geometry than is actually
necessary for rendering purposes. Many methods for polygonal mesh simplifica-
tion have been developed [1-3]. However, these methods are not applicable to
highly deformed meshes. A single simplification sequence for all frames can also
generate unexpected results in those meshes. Hence, multiresolution techniques
for static meshes are not directly applicable to deforming meshes and so we need
to adapt these techniques to this context.

Therefore, our goal consists in creating a multiresolution model for deform-
ing meshes. We specifically design a solution for morphing meshes (see Fig. 1),

2 Ramos et al.

- B o of of

Fig. 1. A deforming mesh: Elephant to horse morph sequence.

although it could be extended to any kind of deforming mesh. Our approach
includes the following contributions:

— Implicit connectivity primitives: we benefit from using optimized rendering
primitives, such as triangle strips. If compared to the triangle primitive,
triangle strips lead us to an important reduction in the rendering and storage
costs.

— A single mesh connectivity: for all the frames we employ the same connec-
tivity information, that is, the same triangle strips. It generally requires less
spatial and temporal cost than using a different mesh for every frame.

— Real-time performance: meshes are stored, processed and rendered entirely
by the GPU. In this way, we obtain greater frame-per-second rates.

— Accurate approximations: we provide high quality approximations in every
frame of an animation.

2 Related Work

2.1 Deforming Meshes: Morphing

A solution to approximate deforming meshes is to employ mesh morphing [4,
5]. Morphing techniques aim at transforming a given source shape into a target
shape, and they involve computations on the geometry as well as the connectivity
of meshes.

In general, two meshes My = (Tp, Vo) and My = (T1,V4) are given, where
To and T represent the connectivity (usually in triangles) and Vp and Vi the
geometric positions of the vertices in R3. The goal is to generate a family of
meshes M (t) = (T,V(t)), t € [0,1], so that the shape represented by the new
connectivity T together with the geometries V(0) and V(1) is identical to the
original shapes. The generation of this family of shapes is typically done in three
subsequent steps: finding a correspondence between the meshes, generating a
new and consistent mesh connectivity 7' together with two geometric positions
V(0), V(1) for each vertex so that the shapes of the original meshes can be
reproduced and finally, creating paths V (¢), t € [0,1], for the vertices.

The traditional approach to generate T is to create a supermesh [5] of the
meshes Ty and 77, which is usually more complex than the input meshes. After

Level-of-Detail Triangle Strips for Deforming Meshes 3

the computation of one mesh connectivity 7" and two mesh geometries repre-
sented by vertex coordinates V(0) and V(1), we must create the paths. The
most-used technique to create them is the linear interpolation [6], see Fig. 1.
Given a transition parameter ¢ the coordinates of an interpolated shape are
computed by:

V()= (1—)V(0) + V(1) (1)

As commented before, connectivity information generated by morphing tech-
niques usually gives rise to more dense and complex information than necessary
for rendering purposes. In this context, we can make use of level-of-detail solu-
tions to approximate such meshes and thus remove unnecessary geometry when
required. We can also represent the connectivity of the mesh in triangle strips,
which reduces in a factor of three the number of vertices to be processed [7].

2.2 Multiresolution

A wide range of papers about multiresolution or level of detail [8-13] that benefit
from using hardware optimized rendering primitives have recently appeared.
However, as they are built from a fixed and static mesh, they usually produce
low quality approximations when applied to a mesh with extreme deformations.

Some methods also provide multiresolution models for deforming meshes [14-
16], but they are based on the triangle primitive and their adaptation to the
GPU pipeline is potentially difficult or does not exploit it maximally. Another
important work introduced by Kircher et al. [17] is a triangle-based solution as
well. This approach obtains accurate approximations over all levels of detail.
However, temporal cost to update its simplification hierarchy is considerable,
and GPU-adaptation is not straightforward.

Recent graphics hardware capabilities have led to great improvements in
rendering. Mesh morphing techniques are also favored when they are employed
directly in the GPU. With the current architecture of GPUs, it is possible to store
the whole geometry in the memory of the GPU and to modify the vertex positions
in real time to morph a supermesh. This would greatly increase performance. In
order to obtain all the intermediate meshes, we can take advantage of the GPU
pipeline to interpolate vertex positions by means of a vertex shader.

A combination of multiresolution techniques and GPU processing for de-
forming meshes can lead us to an approach that offers great improvements in
rendering, providing, at the same time, high quality approximations.

3 Technical Background

Starting from two arbitrary polygonal meshes, My = (T, Vp) and My = (11, V1),
where Vy and V; are sets of vertices and Ty and T are the connectivity to
represent these meshes, our approach is built upon two algorithms: we first
obtain a supermesh (Morphing Builder) and later we build the multiresolution
scheme (Lod Builder). The general construction process is shown in Fig. 2.

4 Ramos et al.

lr| frames

Polygonal mesh M,

(Tor Vo) 0

‘ Morphing (V{0), V(1), 8% C)
Builder
(T1, V1)

Polygonal mesh My Data structures

Fig. 2. General construction process data flow diagram.

3.1 Generating Morphing Sequences

As commented before, linear interpolation is a well-known technique to create
paths for vertices in morphing solutions. Vertex paths defined by this kind of
technique are suitable to be implemented in recent GPUs offering considerable
performance when generating intermediate meshes, M (t). Thus, we first generate
a family of meshes M(t) = (T, V(t)), t € [0,1] by applying the method proposed
by Parus [5]. As paths are linearly interpolated, we only need the geometries V(0)
and V(1) and the connectivity information 7', to reproduce the intermediate
meshes M (t) by applying the equation 1. The FaceToFace morphing sequence
shown in Fig. 6 was generated by using this method [5].

3.2 Construction of the Multiresolution Scheme

A strip-based multiresolution scheme for polygonal models is preferred in this
context as we obtain improvements both in rendering and in spatial cost. Thus,
we perform an adaptation of the LodStrips multiresolution model [13] to de-
forming meshes. This work represents a mesh as a set of multiresolution strips.
Let M the original polygonal surface and M" its multiresolution representation:
M" = (V,S), where V is the set of all the vertices and S the triangle strips used
to represent any resolution or level of detail. S can also be expressed as a tuple
(S0, C), where Sy consists of the set of triangle strips at the lowest level of detail
and C is the set of operations required to extract the approximations. Every
element in C' contains the set of changes to be applied in the multiresolution
strips so that they represent the required level of detail.

Thus, the process to construct the multiresolution scheme performs two fun-
damental tasks. On the one hand, it generates the triangle strips to represent
the connectivity by means of these primitives, S, and, on the other hand, it gen-
erates the simplification sequence which allows us to recover the different levels
of detail, C.

We generate the simplification sequence for each frame that we will con-
sider in the animation. This task is performed by modifying the ¢ factor in the
supermesh. The number of frames to be taken into account is called |r|. The
LOD builder subprocess first computes 5, that is, it converts the supermesh into
triangle strips. Later, it transforms the supermesh thus obtained into the subse-
quent intermediate meshes that we will use in the multiresolution scheme. We

Level-of-Detail Triangle Strips for Deforming Meshes 5

thus store the sequence of modifications required into the triangle strips for each
considered frame.

After the general construction process has finished, we obtain the sets {V(0),
V(1), S° C }, where V(0) and V(1) comes from the Morphing builder, S° is
the supermesh in triangle strips at the lowest level of detail, and C contains the
sequences of simplification operations that enable us to change the resolution of
the supermesh for each frame.

4 Real-time Representation

Once construction has finished, we must build a level-of-detail representation
with morphing during run-time. According to the requirements of the applica-
tions, it involves the extraction of a level of detail at a given frame. In Fig. 3,
we show the main functional areas of the pipeline used in our approach.

The underlying method to extract approximations of the models is based
on the LodStrips work [13]. Among other advantages already commented, this
model offers a low temporal cost when extracting any level of detail for strip-
based meshes. We take advantage of this feature to perform fast updatings when
traversing a supermesh from frame to frame in any level of detail.

Main Memory

LoD
Renderer .
Extraction |gq------ Changes
|
GPT | Commands ‘;
S CPU - GPU Boundary
’
; Vertex Buffer Chjects in Graphics Memory
!
r
Triangle ZItrips I | Vertices Mesh 1 I | Vertices Mesh 2
- - -
L =" -
,’1 ’—_,,_' "_—‘
& - a--"
Input N Vertex N Primicive | ...
bzzenbler Shader Azzembl
Pretransformed Transformed ¥ bssembled
Vertices M1 & Morphed Iy Strips

Vertices

WVertex Index Jtream

Fig. 3. Multiresolution morphing pipeline using the current technology.

Thereby, according to the frame and level of detail required by applications,
the level-of-detail extraction algorithm is responsible for recovering the appro-
priate approximation in the triangle strips by means of the previously computed
simplification sequence. In Fig. 3, we show the general operation of this algo-
rithm. It reads the simplification sequence of the current frame from the data

6 Ramos et al.

structure Changes, and it modifies the triangle strips located in the GPU so that
they always have the geometry corresponding to the level of detail used at the
current time. A more detailed algorithm is shown in Fig. 4.

After extraction, vertices must also be transformed according to the current
frame in such a way that the deforming mesh is correctly rendered. When an
application uses the GPU to compute the interpolation operations, the CPU can
spend time improving its performance rather than continuously blending frames.
Thus, by using the processing ability of the GPU, the CPU takes over the task
of frame blending. Therefore, after extracting the required approximation, we
directly compute the linear interpolations between V(0) and V(1) in the GPU
by means of a vertex shader.

Function ExtractLODFromFrame (Frame,LOD)
if Frame!=CurrentFrame then
CurrentFrame=Frame;
CurrentChanges=Changes [CurrentFrame] ;
ExtractLevelOfDetail (LOD);
else if LOD!=CurrentL0D then
ExtractLevelOfDetail (LOD) ;
end if
end Function

Fig. 4. Extraction algorithm.

Regarding the GPU pipeline, the first stage is the Input Assembler. The
purpose of this stage is to read primitive data, in our case triangle strips, from
the user-filled buffers and assemble the data into primitives that will be used by
the other pipeline stages. As shown in the pipeline-block diagram, once the Input
Assembler stage reads data from memory and assembles the data into primitives,
the data is output to the Verter Shader stage. This stage processes vertices from
the Input Assembler, performing per-vertex morphing operations. Vertex shaders
always operate on a single input vertex and produce a single output vertex. Once
every vertex has been transformed and morphed, the Primitive Assembly stage
provides the assembled triangle strips to the next stage.

5 Results

In the previous section, we described the sets required to represent our approach:
V(0), V(1), S° and C. According to the multiresolution morphing pipeline that
we propose in Fig. 3, our sets are implemented as follows: V' (0), V(1) and S° are
located in the GPU, whereas C is stored in the CPU. In particular, V(0) and
V(1) are stored as vertez array buffers and S° as an element array buffer, which

Level-of-Detail Triangle Strips for Deforming Meshes 7

offers better performance than creating as many buffers as there are triangle
strips.

It is important to notice that we represent the geometry to be rendered by
means of the data structures in the GPU, where the morphing process also takes
place. On the other hand, the simplification sequence for every frame is stored in
the CPU. These data structures are efficiently managed in runtime in order to
obtain different approximations of a model over all the frames of an animation.

Tests and experiments were carried out with a Dell Precision PWS760 Intel
Xeon 3.6 Ghz with 512 Megabytes of RAM, the graphics card was an NVidia
GeForce 7800 GTX 512. Implementation was performed in C++, OpenGL as the
supporting graphics library and Cg as the vertex shader programming language.

The morphing models taken as a reference are shown in Fig. 6 and Fig. 7.
The high quality of the approximations, some of which are reduced (in terms of
number of vertices) by more than a 90%, can be seen.

5.1 Spatial Cost

Spatial costs from the FaceToFace and HorseToMan morphing models are shown
in Table 1. For each model, we specify the number of vertices and triangle strips
that compose them (strips generated by means of the STRIPE algorithm [7]),
the number of approximations or levels of detail available, the number of frames
generated and, finally, the spatial cost per frame in Kilobytes. It is divided into
cost in the GPU (vertices and triangle strips) and cost in the CPU (simplification
sequence). Finally, in the total column, we show the cost per frame, calculated
as the total storage cost divided by the number of frames. As expected, the cost
of storing the simplification sequence of every frame is the most important part
of the spatial cost.

Table 1. Spatial cost.

Cost/Frame

Model |#Verts|#Strips|#LODs|#Frames| GPU CPU Total
FaceToFace | 10,520 | 620 9,467 25 14.2 KB.|472.1 KB.|486.3 KB.
HorseToMan| 17,489 | 890 | 15,738 26 22.4 KB.|848.3 KB.|870.7 KB.

5.2 Temporal Cost

Results shown in this section were obtained under the conditions mentioned
above. Levels of detail were in the interval [0, 1], zero being the highest LOD
and one the lowest. Geometry was rendered by using the glMultiDrawElements
OpenGL extension, which only sends the minimum amount of information that
enables the GPU to correctly interpret data contained in its buffers. With giMul-
tiDrawElements we only need one call per frame to render the whole geometry.

8 Ramos et al.

In Fig. 5a, we show the level-of-detail extracting cost per frame of the FaceTo-
Face morphing sequence. The per-frame time to extract the required level-of-
detail ranges between 6% and 1.4% of the frame time. If we consider the lowest
level of detail as being the input mesh reduced by 90% (see LOD 0.9 in Fig. 5a),
we obtain times around 6% of the frame time, which offers us better perfomance
than other related works such as [17], which employs far more time in changing
and applying the simplification sequence.

We performed another test by extracting one approximation every 24 frames
and, at the same time, we progressively changed the level of detail. This was
carried out to simulate an animation which is switching its LOD as it is further
from the viewer. In Fig. 5b, we show the results of this test. As expected, our
approach is able to extract and render different approximations over all frames
of an animation at considerable frame-per-second rates.

6 Conclusions

We have introduced a multiresolution scheme suitable for deforming meshes such
as those generated by means of morphing techniques. A solution for morphing
sequences was specially designed, although it can be adapted to any kind of de-
formed mesh by storing the vertex positions of every frame within the animation.
We also share the same topology storing the whole geometry in the GPU, thus
saving bandwidth in the typical CPU-GPU bound bottleneck. Morphing is also
computed in the GPU by exploiting its parallelism. We thus obtain real-time
performance at high frame-per-second rates. At the same time, we offer high
quality approximations in every frame of an animation.

Acknowledgments. This work has been supported by the Spanish Ministry of
Science and Technology (Contiene Project: TIN2007-68066-C04-02) and Bancaja
(Geometria Inteligente project: P1 1B2007-56).

References

1. M. DeHaemer and J. Zyda. Simplification of objects rendered by polygonal ap-
proximations. Computer and Graphics, 2(15):175-184, 1991.

2. P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification
methods. Computer and Graphics, 1(22):37-54, 1998.

3. D.P. Luebke. A developer’s survey of polygonal simplification algorithms. IEEE
Computer Graphics and Applications, 3(24):24-35, 2001.

4. L. Aaron, D. Dobkin, W. Sweldens, and P. Schroder. Multiresolution mesh mor-
phing. In SIGGRAPH, pages 343-350, 1999.

5. J. Parus. Morphing of meshes. Technical report, 2005. DCSE/TR-2005-02, Uni-
versity of West Bohemia.

6. T. Kanai, Suzuki H., and F. Kimura. Metamorphosis of arbitrary triangular
meshes. In IEEE Computer Graphics and Applications, volume 20, pages 62—75,
2000.

Level-of-Detail Triangle Strips for Deforming Meshes 9

Frame
2 4 6 8 10 12 14 16 18 20 22 24
FPS ——

0.004

0.0035 LOD 0.37 920

0.003

0.0025 8%

0.002

00015 g/\

0.001

Time (s.)
Frames per second

0.0005

0 740
0 5 10 15 20 25 0 01 02 03 04 05 06 07 08 09 1

Frame Level of detail

(a) Level-of-detail extraction cost per (b) Frame-per-second rates by performing
frame at a constant rate of 24 fps. one extraction every 24 frames.

Fig. 5. Temporal cost. Results obtained by using the FaceToFace morphing model.

7. F. Evans, S. Skiena, and A. Varshney. Optimizing triangle srips for fast rendering.
In IFEFE Visualization, pages 319-326, 1996.

8. J. El-Sana, E. Azanli, and A. Varshney. Skip strips: Maintaining triangle strips for
view-dependent rendering. In Visualization, pages 131-137, 1999.

9. L. Velho, L.H. Figueredo, and J. Gomes. Hierachical generalized triangle strips.
The Visual Computer, 15(1):21-35, 1999.

10. J. Stewart. Tunneling for triangle strips in continuous level-of-detail meshes. In
Graphics Interface, pages 91-100, 2001.

11. M. Shafae and R. Pajarola. Dstrips: Dynamic triangle strips for real-time mesh
simplification and rendering. In Pacific Graphics Conference, pages 271-280, 2003.

12. O. Belmonte, I. Remolar, J. Ribelles, M. Chover, and M. Fernandez. Efficient
use connectivity information between triangles in a mesh for real-time rendering.
Computer Graphics and Geometric Modelling, 20(8):1263-1273, 2004.

13. F. Ramos and M. Chover. Lodstrips: Level of detall strips. In ICCS, volume 3039,
pages 107-114, 2004.

14. A. Mohr and M. Gleicher. Deformation sensitive decimation. In Technical Report,
2003.

15. Shamir A. and Pascucci V. Temporal and spatial levels of detail for dynamic
meshes. In Symposium on Virtual Reality Software and Technology, pages 77-84,
2000.

16. Decoro C. and Rusinkiewicz S. Pose-independent simplification of articulated
meshes. In Symposium on Interactive 8D Graphics, 2005.

17. S. Kircher and M. Garland. Progressive multiresolution meshes for deforming
surfaces. In FEUROGRAPHICS, pages 191-200, 2005.

10 Ramos et al.

A AAA L)
\AAA L)
\AA AL N

Fig. 6. Multiresolution morphing sequence for the FaceToFace model. Rows mean level
of detail, 10,522 (original mesh), 3,000 and 720 vertices, respectively, and columns
morphing adaptation, aproximations were taken with t=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0,
respectively.

o of ot ot =
o of ot 0=
o of ot 0 =

Fig. 7. Multiresolution morphing sequence for the HorseToMan model. Rows mean
level of detail, 17,489 (original mesh), 5,000 and 1,000 vertices, respectively, and
columns morphing adaptation, aproximations were taken with t=0.0, 0.2, 0.4, 0.6,
0.8 and 1.0, respectively.

