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Abstract. Let A and G be finite groups and suppose that A acts coprimely on G via
automorphisms. We study the solvability and supersolvability of G when certain proper
maximal A-invariant subgroups of G have prime index or when they have certain prime
power indices in G.

1. Introduction

Maximal subgroups play an important role in researching the solvability and supersolv-
ability of finite groups. This is a classic theme in finite group theory that is in continuous
developement (see for instance [9] and [10]). Among the known results, an almost straight-
forward result asserts that when all maximal subgroups of a group G have prime index
then G is solvable. A later theorem of B. Huppert claims that such property actually char-
acterizes supersolvable groups [6, VI.9.2 and VI.9.5]. This is also a particular case of a
theorem of P. Hall, which establishes the solvability of G when the indices of the maximal
subgroups are just primes or squares of primes ([6, VI.9.4]). However, seeking solvability
one cannot go further in this direction since, for instance, the maximal subgroups of the
simple group PSL2(7) have exactly index 7 and 8. More precisely, R. Guralnick showed
in [5], by means of the Classification of the Finite Simple Groups, that PSL2(7) is the
unique simple group in which every maximal subgroup has prime power index.

Suppose now that G and A are finite groups of relative coprime orders such that G is
acted on via automorphisms by the group A. Under this coprime action scenario, it is
not difficult to prove that when G is solvable, then every maximal A-invariant subgroup
of G must have prime power index (see for instance [2, Lemma 2.3]). Now, what about
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the converse assertion? Of course, Guralnick’s paper shows that this is not true just by
considering the trivial action. In this note, we investigate what information on the indices
of the maximal A-invariant subgroups of G may provide solvability or supersolvability.
Our first sufficient condition extends Hall’s criterion in a natural way and is the following.

Theorem A. Let G and A be finite groups of coprime orders and assume that A acts on
G by automorphisms. If the index of every maximal A-invariant subgroup of G is prime
or the square of a prime, then G is solvable.

It is easy to see that the condition that every maximal A-invariant subgroup of a group
has prime index is not necessarily satisfied by supersolvable groups, contrary to what
happens in the ordinary situation. For instance, the (supersolvable) quaternion group of
order 8, say Q, has an automorphism of order 3, say α, in such a way that Q possesses
exactly one 〈α〉-invariant proper subgroup, which is obviously maximal invariant of index
4. However, with respect to the converse direction, that is, whether the condition that the
index of every maximal A-invariant subgroup is a prime should imply supersolvability, we
give a positive answer.

Theorem B. Let G and A be finite groups of coprime orders and assume that A acts on
G by automorphisms. If the index of every maximal A-invariant subgroup of G is prime,
then G is supersolvable.

Regarding solvability, it should be noted that the authors have proved in [3] that if the
index of every non-nilpotent maximal A-invariant subgroup of G is a prime, then G is
solvable. In this note, we can take one step more. In fact, the particular case of Theorem
A in which all indices are prime numbers is an immediate consequence of our main result,
in which there is no need to impose every maximal invariant subgroup to have prime
index so as to obtain solvability.

Theorem C. Let G and A be finite groups of coprime orders and assume that A acts
on G by automorphisms. If every proper non-maximal A-invariant subgroup of G lies in
some maximal A-invariant subgroup of G that has prime index in G, then G is solvable.

While the proofs of Theorems A and B are elementary, the approach of the proof of
Theorem C consists in getting a reduction to certain almost simple groups (by using a
Guralnick’s classification theorem, Lemma 2.6) in order to be conducted later a coprime
action analysis on these almost simple groups. All groups are supposed to be finite and
we will use the standard notation appearing in [8].

2. Preliminaries

In this section, we present most of the results that will be needed for our purposes. The
first one is required in the proof of Theorem C for the case in which the action of A on G
is trivial. We use F (G) to denote the Fitting subgroup of G.

Lemma 2.1. [11, Theorem] Given a finite group G whose every proper non-maximal
subgroup lies in some subgroup of prime index, the quotient G/F (G) is supersolvable.

Lemma 2.2. [7, Theorem 8.13] Let G be a finite group. Suppose that p ≥ 5, P ∈ Sylp(G)
and P 6= 1. If NG(P )/CG(P ) is a p-group, then Op(G) < G.
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Lemma 2.3. [6, Theorem V.21.1] Suppose that G is a permutation group of degree p, a
prime. Let P = 〈z〉 be a Sylow p-subgroup of G. Then

(1) NG(P ) = 〈z, x〉, where o(x) | p − 1 and x has only one fixed point. Then NG(P )
is a Frobenius group with kernel P .

(2) |G| = pd(1 + kp), where d | p− 1 and d is a integer.
(3) If d = 1, then G = P .
(4) if d = 2 and p ≡ −1 (mod 4), then G is a dihedral group of order 2p.
(5) If |G| 6= p, then G′ is a simple group, G/G′ is cyclic and |G/G′| divides p− 1.

We also make use of the following renowned Zsigmondy’s property as well as a particular
consequence of it.

Lemma 2.4. [12] Let q be a natural number greater than 1. Then for every natural
number m there exists a prime r such that r | qm−1 but r - qi−1 for every 1 ≤ i ≤ m−1
except for the following cases:

(1) m = 6 and q = 2;
(2) m = 2 and q = 2l − 1 for some natural number l.

Lemma 2.5. [5, (3.3)] Suppose that q = rb, with r prime and b ≥ 1 and that (qn −
1)/(q − 1) = pa, with p prime. Then

(1) n is prime;
(2) r ≡ 1 (mod n) or n = r = 2;
(3) If n = 2 then either q is a Mersenne prime and p = 2; or r is a Fermat prime and

a = 1, or p = 3, a = 2 and q = 8.

The following theorem, which is pointed out in the introduction and is based on the
Classification of the Finite Simple Groups, is essential in our proofs.

Lemma 2.6. [5, Theorem 1] Let G be a non-abelian simple group with H < G and
|G : H| = pa, p prime. One of the following holds.

(a) G = An, and H ∼= An−1, with n = pa.
(b) G = PSLn(q) and H is the stabilizer of a line or hyperplane. Then |G : H| =

(qn − 1)/(q − 1) = pa. (Note that n must be prime).
(c) G = PSL2(11) and H ∼= A5.
(d) G = M23 and H ∼= M22 or G = M11 and H ∼= M10.
(e) G = PSU4(2) ∼= PSp4(3) and H is the parabolic subgroup of index 27.

Regarding coprime action, we just recall the following. Suppose that a finite group
A acts coprimely on a finite group G. Then, for every prime p, there always exist an
A-invariant Sylow p-subgroup in G and any two of them are conjugate by some element
lying the fixed point subgroup C = CG(A). The same happens for p-complements when
G is solvable. Also, every A-invariant subgroup obviously lies in a maximal A-invariant
subgroup of G. We refer the non-familiarized reader to [8, Chapter 8] for a detailed
presentation of the basic properties of coprime action. We only state here the two following
known results.

Lemma 2.7. [8, 8.2.2] Let A be a group that acts on a group G. Let N be an A-
invariant normal subgroup of G. Suppose that the action of A on N is coprime. Then
CG/N(A) = CG(A)N/N .



4 SHAO AND BELTRÁN

Theorem 2.8. [8, 8.4.6, Maschke’s Theorem] Suppose that the action of a group A on a
group V is coprime and that V is an elementary abelian p-group, with p prime. Then the
action of A on V is semisimple.

3. Proofs

Proof of Theorem A. We argue by induction on |G|. Since the hypotheses are clearly
inherited by A-invariant quotients of G, the inductive hypothesis implies that every proper
A-invariant quotient of G is solvable. Let N be a minimal A-invariant normal subgroup
of G. Of course, this includes the case N = G, that is, when G has no non-trivial proper
A-invariant normal subgroup. Then, as G/N is solvable we only have to prove that N
is solvable. Take p to be the largest prime divisor of |N | and let P be an A-invariant
Sylow p-subgroup of N . By the Frattini argument, we have G = NNG(P ). Notice that
if P E G, it certainly follows that G is solvable, so we can assume that the A-invariant
subgroup NG(P ) is contained in some maximal A-invariant subgroup, say U , of G. Then,
by hypothesis, |G : U | = qa, with q prime and a ≤ 2. Observe that G = NU , so
|G : U | = |N : N ∩ U | = qa. Since P ⊆ N ∩ U , then p 6= q, and by the choose of p, we
have q < p. Moreover, as P is a Sylow p-subgroup of N and of N ∩U , by Sylow theorem
we get

|N : NN(P )| ≡ 1 (mod p) and |N ∩ U : NN(P )| ≡ 1 (mod p).

Both congruences imply that |N : N ∩U | ≡ 1 (mod p) and this yields to two possibilities:
q ≡ 1 (mod p) or q2 ≡ 1 (mod p). As q < p, the first possibility cannot occur, whereas
the second forces p to divide q + 1. This implies that p = q + 1, and hence, q = 2 and
p = 3. Consequently, |N : N ∩U | = q2 = 4, so if L = CoreN(N ∩U) we deduce that N/L
can be embedded in the symmetric group S4. In particular, N/L is solvable. Now, we
know that N is characteristically simple, so it is the direct product of isomorphic simple
groups. From these facts we conclude that N is solvable, as required. �

Proof of Theorem B. We induct on |G|. Then all proper A-invariant factors of G are
supersolvable, so if N is a minimal A-invariant normal subgroup of G, we only need to
prove that N has order p. Furthermore, we can assume that N is the only minimal A-
invariant normal subgroup of G. Indeed, if N and M are two of such subgroups, then
G/(N ∩M) ∼= G can be immersed in G/N ×G/M , and hence, G would be supersolvable,
so we have finished the proof.

Let p be the largest prime dividing |G| and let P be an A-invariant Sylow p-subgroup
of G. First wet prove that P is elementary abelian and normal in G. Indeed, if P is
not normal in G, then by hypothesis, there exists a maximal A-invariant subgroup U
containing NG(P ) of prime index q ≡ 1 (mod p). This is not possible by the choice of p.
Therefore, PEG, and in particular, N ⊆ P . On the other hand, if we consider the Frattini
subgroup Φ(G) of G, which trivially is A-invariant, we can assume that Φ(G) = 1. If not,
we know that G/Φ(G) is supersolvable, and since the class of supersolvable groups is a
saturated formation, it follows that G is supersolvable too. Thus, as Φ(P ) ≤ Φ(G) = 1,
we conclude that P is an elementary abelian group, as wanted.

Now, by Theorem A we know that G is solvable, so by coprime action properties we
can take an A-invariant p-complement H of G, and write G = PH. Notice that AH
acts coprimely on the elementary abelian (normal) p-group P , and hence by applying
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Theorem 2.8, the action of AH on P is semisimple. This means that every AH-invariant
subgroup of P has an AH-invariant complement in P . In particular, if N < P , then
N has an AH-invariant complement T in P . Hence, as P is abelian, we deduce that T
is an A-invariant normal subgroup of G, satisfying T ∩ N = 1. This clearly contradicts
the existence of exactly one minimal A-invariant normal subgroup in G, which leads to
N = P . Finally, we take a maximal A-invariant subgroup V such that H ⊆ V , which has
index exactly p by hypothesis. As PV = G, then p = |G : V | = |P : P ∩ V |. However,
P ∩V EV , and also, P ∩V EP because P is abelian, so the minimality of P implies that
P ∩ V = 1. Consequently, |P | = p, and the proof is finished. �

Proof of Theorem C. We argue by counterexample of minimal order. Let us take G and
A satisfying the hypotheses with G non-solvable and |GA| as small as possible, where GA
denotes the semidirect product of G by A. It is immediate to see that the hypotheses
are inherited by A-invariant quotients of G, so for every non-trivial A-invariant normal
subgroup N of G, we have that G/N is solvable. We can assume further that the action
of A on G is non-trivial. Otherwise, the result follows by application of Lemma 2.1.
Moreover, we may assume that A acts faithfully on G. On the contrary, we may consider
A := A/CA(G) acting on G, where CA(G) denotes the kernel of action of A on G. By
minimal counterexample, we also get that G is solvable.

We continue the proof by stating several steps. Take p to be the largest prime divisor of
|G| and let P be an A-invariant Sylow p-subgroup of G. Observe that p ≥ 5 by application
of Burnside’s paqb-theorem.

Step 1. We can assume that P is a non-maximal A-invariant subgroup of G.

Assume that the assertion is false. Then NG(P ) = P or G because NG(P ) is also A-
invariant. If NG(P ) = G, that is, if PEG, as we have claimed in the first paragraph of the
proof, G/P is solvable and thus, G is solvable too, a contradiction. Hence NG(P ) = P .
Now, suppose first that Φ(P ) 6= 1 and we will get a contradiction. It is clear that Φ(P )
is a non-maximal A-invariant subgroup of G. By hypotheses, there exists a maximal
A-invariant subgroup H of G such that Φ(P ) < H and |G : H| = r is a prime. Also,
r ≤ p by our assumption on p. The action of G on the left cosets of HG (the core of H
in G) is faithful, so we can assume that G/HG ≤ Sr. If r 6= p, then P ≤ HG and thus
P ≤ H. By the maximality of P , we have P = HG E G, a contradiction. Therefore,
|G : H| = p. On the other hand, notice that HG 6= 1, otherwise the fact that G ≤ Sp

implies that |P | = p, contradicting Φ(P ) 6= 1 . Then, by minimality, G/HG is solvable
and HG must be non-solvable. Notice that PHG is an A-invariant subgroup of G with
PHG 6= P , so we conclude that G = PHG by the maximality of P . This means that
G/HG is a p-group, and we deduce that |G/HG| = p. It follows that H = HG E G
and G = PH. Let P1 = P ∩ H, which is an A-invariant Sylow p-subgroup of H with
P1 E P . Therefore, NG(P1) = PNH(P1). Since NG(P1) is A-invariant and P ≤ NG(P1),
we have NH(P1) = P1. By Lemma 2.2, Op(H) < H. Let T = Op(H). Then T E G
is A-invariant and G = PT . Let P2 = T ∩ P . We claim that P2 6= 1. Otherwise, T
is a p′-subgroup. Note that PA ≤ GA, and we consider the action of PA on T . By
[8, 8.2.3], we have that T has a PA-invariant Sylow p1-subgroup D for some prime p1
dividing |T | . Hence DP ≤ G is A-invariant. Since T is non-solvable, we have D < T . So,
in particular, we deduce that DP < G. However, by the maximality of P , we also know
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that DP = G, a contradiction. Thus, P2 6= 1, as claimed. Then P2 E P is A-invariant
and NG(P2) ≥ P . Again, the maximality of P implies that NG(P2) = G or P . The first
possibility cannot occur because A-invariant normal subgroups of G cannot be solvable.
Thus, NG(P2) = P and then, in particular, NT (P2) is a p-subgroup. By Lemma 2.2, we
conclude that Op(T ) < T . This certainly contradicts the definition of T .

The above paragraph shows that Φ(P ) = 1, or equivalently, that P is elementary
abelian. Furthermore, we have P = NG(P ) = CG(P ). By [8, Theorem 7.2.1], it is known
that G has a normal p-complement, say K. Since P is A-invariant, we obtain PA ≤ GA.
Now, let us consider the action of PA on K. By applying [8, Theorem 8.2.3], we get that
K has a PA-invariant l-subgroup L of K, where l is some prime divisor of |K|. Hence LP
is A-invariant, so LP = G by the maximality of P . This demonstrates that G is solvable
for being the product of two prime-power order subgroups. This is the final contradiction
of this step.

Step 2. G has a unique minimal A-invariant normal subgroup N < G, which is
non-solvable.

Suppose first that G has no non-trivial proper A-invariant normal subgroup. Then
G is minimal normal subgroup of GA, which implies that G = G1 × · · · × Gs, where
Gi are isomorphic non-abelian simple groups. Let r be the largest prime divisor of |G|
and let R be an A-invariant Sylow r-subgroup of G. By Step 1, there must exist some
maximal A-invariant subgroup M of G such that |G : M | = t with t a prime. This gives
G/MG ≤ St and MG is an A-invariant normal subgroup of G. This forces that MG = 1
and thus, G ≤ St. Note that t < r. This contradiction indicates that G must have a
proper A-invariant normal subgroup.

If G has two different proper minimal A-invariant normal subgroups N1 and N2, then
G/N1 and G/N2 are solvable. Since N1 ∩N2 = 1, then G is isomorphic to a subgroup of
G/N1×G/N2, implying that G is solvable, a contradiction. Hence G has a unique proper
minimal A-invariant normal subgroup, say N , with G/N solvable. This forces that N is
not solvable, so the step is proved.

Step 3. Let q be the largest prime divisor of |N | andQ an A-invariant Sylow q-subgroup
of N . Then NG(Q) is a maximal A-invariant subgroup of G.

Suppose first that NG(Q) = G. Then QEG is an A-invariant subgroup of G and Step
2 gives a contradiction. This shows that NG(Q) is a proper A-invariant subgroup of G.

Assume then that NG(Q) is a non-maximal A-invariant subgroup of G and we will get
a contradiction. By the hypothesis, there is a maximal A-invariant subgroup U such that
NG(Q) < U and |G : U | = p2 is a prime. If UG 6= 1, then N ≤ UG. By the Frattini
argument, it follows that G = NNG(Q) ≤ U , a contradiction. Hence UG = 1. So we have
that the action of G on left cosets of U is faithful, and as a consequence, G ≤ Sp2 . Now,
observe that G = NU , and thus, |G : U | = |N : N ∩ U | = p2, which leads to that p2 is
the largest prime divisor of |G| and p2 | |N |. Therefore, p2 = q. Moreover, |Q| = q and Q
is a Sylow q-subgroup of G. However, |G : U | = q, which is a contradiction.

Step 4. Final contradiction.

Let X = NG(Q) and Y = NN(Q). Then Y E X and clearly Y 6= X. We prove that
Y is not nilpotent; otherwise, NN(Q)/CN(Q) is a q-group, and by Lemma 2.2, we have
Oq(N) < N , a contradiction. Then there exists an A-invariant Sylow s-subgroup S of
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Y such that S 5 Y for some prime s | |Y |. By the Frattini argument, X = YNX(S)
and certainly NX(S) < X. Let T = NX(S), which is A-invariant. Again by the Frattini
argument, we have G = NX = NT . Since T is non-maximal A-invariant in G, then by
hypothesis, there is some maximal A-invariant subgroup M of G such that T < M with
|G : M | = p2 a prime. So we deduce that G = NM . This shows that MG = 1, that is,
the action of G on the left cosets of M is faithful, so we have G ≤ Sp2 . Therefore, p2
is the largest prime divisor of |G|. Note that |G : M | = |N : N ∩M | = p2, so p2 = q
and hence, |Q| = q. Since N is non-solvable, it follows that N is a non-abelian simple
group. By applying Lemma 2.3, we obtain that NG(Q) is a Frobenius group with cyclic
q-complement and G′ is a simple group. As a consequence, G′ = N .

As we have proved that N is a simple group with a subgroup M ∩ N of index q, by
Lemma 2.6, we have that N is one of the following groups:

(1) N ∼= M11, N ∩M ∼= M10, with q = 11; or N ∼= M23, N ∩M ∼= M22 and q = 23;
(2) N ∼= Aq, N ∩M ∼= Aq−1;
(3) N ∼= PSL2(11), N ∩M ∼= A5 with q = 11;
(4) N ∼= PSLn(s), q = sn−1

s−1 > 3, where n is some prime.

It is well-known (see [1] for instance) that M11,M23, Aq with q ≥ 5 and PSL2(11) do
not admit non-trivial coprime automorphisms. This forces A to act trivially on any of
them. We will prove that A also must act trivially on N in the remaining case, that is,
in case (4). Recall that the order of the Singer cycle of PSLn(s) is equal to

sn − 1

(n, s− 1)(s− 1)
=

q

(n, s− 1)
,

and it is an integer. This give rise to two possibilities: (n, s−1) = q or 1. If (n, s−1) = q,
then q divides s − 1, and we next prove that this leads to a contradiction. Indeed, in
this case we trivially have s 6= 2 and n 6= 2, so by Lemma 2.4, there must exist a prime
dividing sn− 1 and not dividing s− 1. Necessarily, this prime must be q, a contradiction
as wanted. Therefore, we may assume that (n, s− 1) = 1. We write s = rd, where r is a
prime and d is a positive integer. By applying Lemma 2.5(2), we have either r ≡ 1 (mod
n) or n = r = 2. The first possibility implies that n divides rd − 1, which contradicts our
assumption. So we can assume that n = r = 2, and hence, again by Lemma 2.5(3), we
get that q = s+ 1 = 2d + 1 is a Fermat prime, that is, d is a power of 2. This means that
N = PSL2(2

d), and in this case, it is known that Out(N) ∼= Cd, with d a power of 2. As
a consequence, N has no non-trivial coprime automorphisms, and so, A acts trivially on
N too, or equivalently N ⊆ C, as we wanted to prove.

Now, by Step 2, it trivially follows that CG(N) = 1, so N ≤ G ≤ Aut(N), that is,
G is an almost simple group with socle N , where N is one of the groups appearing in
the above list. However, in all cases, except case (2), we have that G/N is the trivial
group or a cyclic 2-group. This occurs because the external automorphism groups of
M11 and M23 are both trivial, Out(PSL2(11)) ∼= C2, and Out(PSL2(2

d)) ∼= C2d , with d
a power of 2. Furthermore, cyclic 2-groups do not admit a non-trivial coprime action,
since the automorphism group of a cyclic 2-group is a 2-group too, so in particular,
CG/N(A) = G/N . Then, we can apply Lemma 2.7, and since we have proved that N ⊆ C,
we deduce that G = C, that is, the action of A on G is trivial. Finally, for the remaining
case, N ∼= Aq, it is known that Aut(Aq) = Sq, so we have either G = Aq or G = Sq. But
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none of them admits a non-trivial coprime automorphism, and we conclude that in all
cases the action of A on G is trivial. This is the final contradiction. �
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