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Abstract 

Thermal spraying is widely used for industrial-scale application of ceramic coatings onto metallic 

surfaces. The particular process has implications for occupational health, as the high energy 

process generates high emissions of metal-bearing nanoparticles. Emissions and their impact on 

exposure were characterised during thermal spraying in a work environment, by monitoring size-

resolved number and mass concentrations, lung-deposited surface area, particle morphology and 

chemical composition. Along with exposure quantification, the modal analysis of the emissions 

assisted in distinguishing particles from different sources, while an inhalation model provided 

evidence regarding the potential deposition of particulate matter on human respiratory system. 

High particle number (>106/cm3; 30-40 nm) and mass (60-600 µgPM1/m3) concentrations were 

recorded inside the spraying booths, which impacted exposure in the worker area (104-105/cm3, 

40-65 nm; 44-87 µgPM1/m3). Irregularly-shaped, metal-containing particles (Ni, Cr, W) were 

sampled from the worker area, as single particles and aggregates (5-200 nm). Energy dispersive 

X-ray analysis confirmed the presence of particles originated from the coating material, 
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establishing a direct link between the spraying activity and exposure. In particle number count, 

90% of the particles were between 26-90 nm. Inhaled dose rates, calculated from the exposure 

levels, resulted in particle number rates (!) between 353×106-1024×106/min, with 70% of 

deposition occurring in the alveolar region. The effectiveness of personal protective equipment 

(FPP3 masks) was tested under real working conditions. The proper sealing of the spraying 

booths was identified as a key element for exposure reduction. This study provides high time-

resolved aerosol data which may be valuable for validating indoor aerosol models applied to risk 

assessment. 

 

Keywords: nanoparticles; exposure assessment; inhalation exposure; inhalation model; 

occupational health; modal analysis; process-generated nanoparticles 

 

Introduction 

In numerous industrial sectors such as petroleum (Moskowitz 1993), naval (Baiamonte et al 

2015), automobile (Gérard 2006), or aeronautical and space (Pawlowski 2008a, Strangman 

1985), metal structures and mechanical parts are exposed to highly corrosive environments, and 

subject to mechanical and chemical abrasion. In these cases, protective ceramic coatings are 

widely used to prevent corrosion and wear, as well as to restore damaged surfaces (Lima and 

Marple 2006, Tan et al 1999, Toma et al 2010). Such coatings are frequently applied using thermal 

spraying techniques, where the feedstock (the coating material) is projected at high temperature 

and velocity onto the surface to be protected or repaired. Different types of spraying torches 

(electric arc, plasma, flame) define the types of thermal spraying techniques (Pawlowski 2008b). 

This industrial process has been reported to generate high concentrations of nanoparticles (NP, 

with diameters < 100 nm) at pilot-plant scale (Viana et al 2017), which may result in occupational 

hazards (Hériaud-Kraemer et al 2003). Previous studies of thermal spraying emissions using 

offline measurements focused on the chemical characterisation of particles collected on filters 



3	
	

(Huang et al 2016, Petsas et al 2007), showing also that these sources are associated with high 

particle mass concentrations. Furthermore, high NP number concentrations (> 109/cm3) were 

monitored directly from electric arc guns (Bémer et al 2010). At pilot-plant scale, Viana et al. 

(2017) showed that NP released during atmospheric plasma spraying may impact worker 

exposure significantly. Despite the widespread industrial application of thermal spraying, 

emissions generated under real-world operating conditions are not well studied. Similarly to 

thermal spraying, the emissions of NP from other industrial processes and their impact on worker 

exposure is a growing topic of research (Ding et al 2017, Fonseca et al 2015, 2016, 2018, Fujitani 

et al 2008, Koivisto et al 2018, Koponen et al 2015, Kuhlbusch et al 2004, Losert et al 2014, 

Salmatonidis et al 2018, Viitanen et al 2017), and requires further investigations due to the large 

variety of processes and exposure scenarios. Awareness for nanomaterial release was raised 

(Maynard et al 2006, Poland et al 2008, Seaton et al 2010) since the use of manufactured 

nanomaterials (MNMs) in workplaces started. However, NP emissions can arise from multiple 

processes that neither produce nor use nanomaterials, which are referred as Process Generated 

Nanoparticles (PGNP) (Van Broekhuizen, et al 2012). 

Pope et al (1995) associated air pollution with adverse health effects based on epidemiological 

evidence. Further epidemiological and toxicological studies showed that PM2.5 (particles with 

diameter ≤2.5 µm) is a health hazardous pollutant (Gakidou et al 2017, Landrigan et al 2017, C 

Pope et al 2002, C. Pope and Dockery 2006, WHO 2017). More specifically, aerosol particles 

<100 nm (ultrafine) are linked to adverse health effects mainly due to exposure through inhalation 

(Araujo et al 2008, Hoek et al 2010, Ibald-Mulli et al 2002, Knibbs et al 2011, Landrigan et al 2017, 

Oberdörster 2001). In indoor air and more specifically in industrial settings, PGNPs pose an 

occupational risk, since they are unintentionally generated and released to the worker area, and 

they are potential health hazards (Koivisto et al., 2014). Health risks need to be dealt with by 
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means of both technological and non-technological mitigation strategies (Ganser and Hewett 

2017, Hallé et al 2015, Hewett and Ganser 2017, Shaffer and Rengasamy 2009). 

The aim of this work was to assess NP emissions during thermal spraying of ceramic coatings 

onto metallic surfaces and their impact on inhalation exposure, under actual operating conditions 

in a real-world industrial setting. A near field (NF) / far field (FF) approach as used by Koivisto et 

al.(2015), among others, was applied. Workplace exposure monitoring strategies applied followed 

good practice as described by Asbach et al. (2015) and Brouwer et al. (2014), which were the 

base for internationally-recognised standard procedures (OECD.82, 2017). Modal analysis based 

on time-resolved particle number concentrations was used to quantitatively understand the size 

distribution and modal dependence of the aerosols generated during thermal spraying (Hussein 

et al 2005). Finally, a case study testing the effectiveness of mitigation strategies is presented. 

 

Figure 1. (a): Schematic representation of the thermal spraying section of the investigated facility 
(Extraction*: data not available). (b): instrument deployment in the near field location. (c): booth 

#3, showing the thermal spraying robot and the operator processing one of the work-pieces. 
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Methods and Materials 

Work environment 

Monitoring of thermal spraying was carried out at an industrial-scale precision engineering 

workshop (T.M. Comas) located in the vicinity of Barcelona, Spain. Measurements were carried 

out over a 5-day period in April 2017, and did not interfere with the usual operating conditions in 

the plant. The thermal spraying facilities are schematically depicted in Figure 1 (top). Three 

thermal spraying booths were located in an area of approximately 240 m2 (14 m wide and 17 m 

in length), including also a storage and a central corridor. In all cases the operators of the thermal 

spraying equipment worked inside and outside the booths during spraying, and each booth had 

doors which were not always closed. Two small-scale sand blasting boxes for polishing the final 

pieces were located next to the spraying booths, but they were not operated simultaneously to 

the activities reported in this work. A general ventilation system operated constantly in the central 

area, with three extractors having a flow of 11800 m3/h each (data provided by the company, not 

measured directly in this work). Additionally, in each of the plasma booths individual localised 

extraction systems were available (Figure 1a, Table 1). Information regarding the individual 

extraction air flowrates was only available for booth #3 (6500 m3/h). The operational 

characteristics of each of the spraying activities and booths are summarised in Table 1. Because 

the duration of the individual spraying activities varied according to the parts to be coated, mean 

values of spraying duration and repetitions were different for each booth (Table 1). 

 

Thermal spraying techniques and feedstock 

Two different types of thermal spraying techniques were assessed: 
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- Atmospheric Plasma Spraying (APS), characterised by high temperatures (5000-20000 

ºC) and projection velocities of 200-500 m/s. This technique was applied in plasma booth 

#1 (Figure 1). APS is generally used to project oxides and metals, which in this case of 

our measurements were a TiO2-Al2O3 blend and a Cr-Ni blend (2 different feedstock 

materials that were applied separately). 

- High Velocity Oxy-Fuel coating spraying (HVOF), characterised by high velocities (425-

1500 m/s) and lower temperatures (2900 ºC). This type of spraying was applied in booths 

#2 and #3 (Figure 1b, bottom). Due to the lower temperatures compared to APS, HVOF 

is frequently used to project carbides and metals. During our measurements a WC-Co-Cr-

Ni blend feedstock was used in booth #2, and a WC-CrC-Ni blend in booth #3.  

Additional information about the feedstock powders is provided in Table S1 (Supplementary 

Data). 

 

Particle monitoring and sampling 

Particle number concentration (N), size-segregated mass concentrations (PMx), size distribution, 

mean diameter (Dp) and lung-deposited surface area (LDSA) were monitored at near field (NF) 

and far field (FF) locations. The NF location was inside each of the spraying booths, while the FF 

was next to the storage area in the case of booth #3 and in the middle of the central area in the 

case of booths #2 and #3 (Figure 1a). The monitoring instruments in the FF and their inlets were 

located between 0.7 and 1.5 m above ground and were not placed directly inside the breathing 

zone (Ojima, 2012). The resulting measurements were considered representative of worker 

exposure, by assuming that the concentrations in the NF and FF were well-mixed. The online 

particle monitors deployed were: 
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• A Miniature diffusion size classifier “DiSCmini” (TESTO AG), that can measure particles 

having sizes from 10 to 700 nm, and can report total particle number (N), mean particle 

diameter (Dp) and lung deposited surface area (LDSA) with a 10 s time resolution. This 

instrument was deployed both in the NF and FF locations. 

• A Mini Laser Aerosol Spectrometer “Mini-LAS 11-R” (GRIMM), that was used to measure 

particles in the size range 0.25-32 µm, and report total and size-segregated particle mass 

concentrations in 31 channels with a 6 s time resolution. This instrument was deployed 

both in the NF and FF locations. 

• An Electrical mobility spectrometer “Nanoscan-SMPS” (TSI model 3910), covering 

particles in the size range 10-420 nm, that was used to measure the particle mobility size 

distributions in 13 channels with a 1-min time resolution. This instrument was deployed 

only in the FF location. 

• A Mini Wide Range Aerosol Spectrometer “Mini-WRAS” (GRIMM), that can measure 

particles having sizes from 10 nm to 35 µm, for monitoring the particle mass 

concentrations across 41 channels. This instrument was also deployed in the FF location. 

The mini-LAS units were operated enclosed in a protective case with a vertical stainless steel 

inlet (Figure 1b). Inlet extension tubes were not used for any of the other instruments. The default 

(manufacturer) impactor was used for the DiSCmini (cut-off diameter of 700 nm) and the default 

cyclone (cut-off diameter of 550 nm) was used for the Nanoscan. The DiscMini and MiniWRAS 

instruments were inter-compared prior to the measurements at an air quality monitoring station in 

Barcelona (Spain), using ambient air aerosols. The comparison resulted in R2 coefficients >0.89, 

and as result the instruments were considered comparable for the purpose of our study (Table 

S2). 

In addition to the online measurements described above, samples were collected on electron 

microscopy grids (Agar scientific Quantifoil 200 Mesh Au) for offline morphological and 
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physicochemical particle characterisation. A Leland pump (SKC Inc.) with a flow of 5 L/min was 

connected to a cassette (SKC inlet diameter 1/8 inch and filter support pads that were 25 mm in 

diameter) to which the microscopy grid was attached. The morphology and primary particle size 

of the particles collected were analysed using Transmission Electron Microscopy (TEM; Jeol, JEM 

1220, Tokyo, Japan) and TEM/HRTEM, FEI, Tecnai F20 (200 KV, Eindhoven, Netherlands) 

coupled with an Energy-Dispersive X-ray (EDX) spectrometer, following a similar method as 

Voliotis et al. (2014). 

 

Modal analysis 

While modal analysis has been applied to characterise the size distributions of atmospheric 

aerosols regarding the physicochemical processes they have been involved in (Hussein et al 

2005), this type of analysis is seldom applied to indoor or, more specifically, industrially produced 

aerosols. 

In the present study, NanoScan measurements were expressed as dN/dLogdp distributions to 

apply modal analysis, because this method assumes that particle number concentrations are log-

normally distributed across their size range. Their distribution can be analysed as three modes: 

Mode10-25nm, Mode26-90nm, and Mode91-660nm which includes mainly accumulation mode particles. 

The algorithm for modal analysis uses a non-linear least square fitting, based on the interior-

reflective Newton method (Coleman and Li 1994, 1996). The 3 lognormal fitted curves and their 

parameters (geometric standard deviation, GSDi; geometric mean diameter, GMDi; and mode 

number concentration, Ni) were calculated following the same assumptions and conditions as 

Hussein et al (2005). The modal analysis was performed exclusively on the size-distribution data 

obtained with NanoScan. 
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Inhalation model 

The inhalation dose of deposited particles in the respiratory system was quantified by multiplying 

particle size concentrations on the worker area by the ICRP human respiratory tract model 

deposition probability (Cousins et al 2011). A respiratory volume of 25 L/min was used, which 

corresponds to male respiration during light exercise (Koivisto et al 2012). The regional dose was 

calculated for head airways, tracheobronchial and alveolar regions by using simplified deposition 

fraction equations for the ICRP model as described by Hinds et al.(1999). Particles were assumed 

to preserve their size during inhalation and the calculation was based on the mobility diameter. 

Background aerosol particles were assumed to be spherical and to have a density of 1.5 g/cm3 

(Martins et al 2015). The density of particles emitted during thermal spraying was set equal to the 

density of the feedstock material 4.3 g/cm3, given that the particles released were found by EDX 

analysis to have similar composition with the feedstock (see next section). It should be noted that 

the use of the bulk density of the feedstock material probably overestimates the resulting particle 

concentrations, because particles may have vaporized and condensed to smaller particles. 

Results from the NanoScan and MiniWras instruments were combined to obtain a 10 nm-35 µm 

particle size distribution for the FF (Koivisto et al., 2014). NanoScan size bins between 11.5 - 86.6 

nm were used, whereas bins ranging from 139 nm to 35 µm were taken from the MiniWras. 

Between 86.6 nm and 139 nm a combined channel (108.6 nm) was created. 

The particle active surface area was calculated by applying particle size distribution obtained to 

the equation (1) described by Heitbrink et al. (2009) and Koivisto et al. (2012): 

" = $%&'(
)* '( +      (1) 

where λ is the mean free path for air, 0.066 μm, and δ is the scattering parameter for air, 0.905. 

Db is the mobility diameter and Cc the slip correction factor for the corresponding aerodynamic or 
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mobility particle size. This calculation refers to particles <700nm according to Heitbrink et al. 

(2009) and Keller et al. (2001). The particle mass was calculated by using mobility particle 

diameter and effective density (Koivisto et al 2012): 

, = 	./00 	%1 	23
$     (2) 

where ρeff is the effective density (DeCarlo et al 2004). The effective density used was 1.5 g/cm3 

for background particles and 4.3 g/cm3 for PGNPs. 

 

Figure 2. Particle concentrations monitored inside booth #3 (near field) on 26/04/2017 during spraying of 

feedstock WC/CrC/Ni: (a) particle number concentration and mean diameter; (b) size segregated particle 

mass concentrations. 
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Results and Discussion 

Particle emissions and impact on exposure 

Activities in the thermal spraying facilities were planned by the company for half-day periods. 

While booth #1 was active during 2 half-days, booths #2 and #3 were operational for 4 half-days 

each. The data obtained were analysed considering two phases: a pre-process period 

(background) consisting of the 90-min lunch break when all activity ceased, and the activity 

periods when particle emissions were simultaneously monitored in the NF and in the FF location. 

The activity periods were different for each booth (Table 1): while spraying was longer and less 

repetitive in booth #1 (20-30 min, 3 repetitions/half-day), it had a shorter duration and higher 

frequency in booth #3 (5-10 min, 7-9 repetitions/half-day). In Booth#2 the spraying activity 

duration was highly variable (0.5-10 min) and, due to technical problems, there were deviations 

in the frequency of spraying applications. Hence, the dataset obtained was not representative of 

regular working days in Booth#2. 

In Table 2 average N, Dp, LDSA, and PM1 values for each of the spraying activities and booths 

monitored are shown. A representative time series during the process in booth #3 is depicted in 

Figure 3 (NF) and Figure 4 (FF) during one of the days (26/04/2017), in to order to thoroughly 

analyse the emission patterns and impacts on exposure of the released NP. The time series for 

other days and booths are shown in Supplementary Data (Figures S1-S4). In the case of booth 

#3 each thermal spraying activity lasted for 5-10 minutes (Figure 2); subsequently the worker 

entered the booth and swapped the metal part which was coated with a new one. The process 

was repeated to 7-9 times/half-day. 

In Figure 2 N, Dp, and size segregated mass concentrations (PM1, PM2.5, PM10, alveolar) values 

monitored inside booth #3 (NF) are presented. The start of the spraying activity is evident by the 

rapid increase of N, which exceeded the instrument’s (DiSCMini) monitoring range during all 
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repetitions (maximum N = 4×106/cm3). Particle number emissions were directly correlated with 

decreased Dp, which ranged between 30 and 35 nm during spraying and increased to 45-55 nm 

between repetitions. The patterns observed for the different spraying activities within each half-

day showed good repeatability. N and Dp values during the process (3.8×106 /cm3, 28.6 nm) were 

markedly different from background aerosols (N< 3.0×104/cm3, Dp: 57.5-nm) monitored during the 

inactivity period on that day (Figure 2, Table 2). The same was true for particle mass 

concentrations (Figure 2b), which reached up to 4x103 µg/m3 for the alveolar size fraction 

(approximately similar to PM4) while they remained < 30 µg/m3 during the inactivity period. This 

result may be attributed to the release of fine and coarse particles (> 1 µm), in addition to NPs, 

during thermal spraying. The presence of fine and coarse particles was also confirmed by TEM 

analysis (Figure S5). 

 

 

 

Figure 3. Particles released during spraying of 

W/CrC/Ni feedstock in booth #3 on 26/04/2017, 

analysed by TEM and showing similar chemical 

composition (WC, CrC, Ni) but different 

morphology and size. EDX spectrum confirming 

the origin of the particles (WC/CrC/Ni feedstock). 

The spectrum is representative of particles 

collected on other TEM grids. 
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NP emitted during spraying in booth #3 were analysed by TEM (Figure 3), providing evidence that 

the particles in the collected samples were generated by different mechanisms. Particles collected 

exhibited a diversity of morphological characteristics, varying both in shape (e.g. spherical, fractal 

and star-like aggregates) and size (from ca. 5 to 500 nm). Possible emission mechanisms are: 

mechanical attrition as the feedstock particles crush onto the metal surface with high kinetic 

energy resulting in irregular-shaped particles, but also melting-evaporation-condensation of the 

feedstock material which would result in spherical particles (Fonseca et al 2015, Viana et al 2017). 

EDX analysis of the airborne particles collected on TEM grids confirmed that their chemical 

composition was similar to that of the feedstock (WC, CrC, Ni), demonstrating that particle release 

originated from the feedstock and not from other secondary or confounding sources. The thermal 

spraying processes investigated were not intended to produce nanoparticles. Hence, the NPs 

emitted from the micro-scaled feedstock (Table S1) were PGNP. In the case of fine and coarse 

particles, emissions probably resulted when the feedstock particles projected are in the outer 

plasma stream and do not reach high temperatures, they remain solid and are not deposited 

effectively on the metal surface. 

In the FF location the impact of NP, fine and coarse particle emissions on exposure was assessed 

in terms of size-resolved N and PMx (Figure 4). The same repetitive patterns which were 

monitored inside the spraying booth (Figure 3) were also detected in the worker area, indicating 

the representativeness of the results as well as clear impacts on exposure. The patterns were 

different in the morning and afternoon periods because the door of the booth was kept open while 

spraying during the morning, and closed in the afternoon. N values that reached up to 1.7×106/cm3 

(with the NanoScan instrument), were also outside this instrument’s monitoring range and should 

be considered with high uncertainty. Size-resolved N values were highest in the range 20-85 nm 

(6×104 particles/cm3) during the morning working session, providing evidence that the spraying 

activities substantially impacted worker exposure. The fact that the personal protective equipment 
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(FPP3 mask) was frequently removed by the worker as soon as he exited the spraying booth 

(between repetitions) could further burden the workers’ respiratory system. As in the case of the 

NF, particle concentrations in the FF location were markedly higher during activity than inactivity 

period. In addition, the effectiveness of keeping the booth door closed as a mitigation strategy 

was evident: average N recorded in the worker area decreased by a factor of 0.31 in the afternoon 

when the door was closed, and LDSA concentrations were reduced by a factor of 0.38 (Table 2). 

Hence, the booth´s proper sealing during activity period demonstrated a much larger influence on 

exposure reduction than the total duration of the activity, or its repetition frequency. Similar 

findings on the importance of airtight booths had also been reported by Viana et al. (2017) during 

APS at pilot plant scale. 

 

Figure 4. Size-resolved particle concentrations monitored in the worker area (far field) outside booth #3 

on 26/04/2017 during spraying of feedstock WC/CrC/Ni: (a) particle number concentrations; (b) particle 

mass concentrations 
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In terms of particle mass similar impacts and patterns were observed, although with two particle 

size modes: 50-500 nm and >3 µm. While the first mode corresponds to PGNP emissions, the 

second is attributed to direct feedstock release. Alveolar particle mass concentrations reached > 

300 µg/m3 (1-minute means) during the morning activity period, and 150 µg/m3 in the afternoon. 

As shown in Table 2, inside the NF concentrations ranged 1.8-3.4×106/cm3 and had a clear impact 

on exposure at the FF location, where concentrations in the range of 5.8×104-2.0x105/cm3 were 

monitored, and were significantly higher than the background concentrations (average 3.0×104). 

Concentrations in the FF were above the nano-reference values (NRV, non-regulatory reference 

values for nanomaterials, based on the precautionary approach) 4×104/cm3 (Van Broekhuizen, et 

al 2012), and orders of magnitude higher inside the spraying booths (NF). This impact was 

considered statistically significant following the tiered approach established by Asbach et al. 

(2012), meaning that exposure concentrations were higher than the background plus 3 times the 

standard deviation of the background concentrations. The N, LDSA and PM values measured 

were comparable across the different booths, indicating that NP release is activity-dependent and 

not related to the specific feedstock powders applied. Although different spraying temperatures 

and velocities were applied in the different booths NP release was evident in all cases. This would 

indicate that NP emissions are independent of these parameters or that both of the thermal 

spraying techniques provide the necessary conditions for PGNP emissions. 

However, differences in terms of PM1 ranged from 61 µg/m3 (booth #1) to 100 µg/m3 (booth #2) 

and 640 µg/m3 (booth #3). These can be attributed to the combination of different process 

parameters (spraying velocity, speed) of each spraying technique and the different feedstock 

materials (Cr/Ni and TiO2/Al2O3, Table S1). In the case of booth #1, where two different feedstock 

powders were applied separately, clear differences were observed in terms of PM2.5 (2×102 vs. 

4×102 µg/m3) but not for PM1 (53 vs. 69 µg/m3). The feedstock powders applied in booths #2 and 

#3 were similar (Table S1) resulted in higher PM1 (100-640 µg/m3) than in booth #1 (Table 2). 
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These differences are probably associated with the physical-chemical properties of the feedstock 

materials rather than to the aggregate size, which as shown in Table S1 is larger for the lowest 

emitter. As a result, it may be concluded that PM1emissions were independent of the feedstock 

and thermal spraying conditions applied, while emissions of coarse particles (>2.5 µm) were 

influenced by the feedstock. Further research would be necessary to interpret the different 

behaviour for micron-scaled particle emissions. 

With regard to Dp for NP, similarities were detected across booths with particles ranging between 

30-40nm in the NF and increasing during transport to 40-64 nm in the FF, where workers were 

exposed. Workers from other sectors of the facility frequently entered the central area without 

respiratory protection and were directly exposed to particle concentrations from the spraying 

booths. As expected, mean diameters during the inactivity period were larger and representative 

of urban background ultrafine (46-80 nm) aerosols (Reche et al 2015). 

 

Modal distribution and analysis 

The modal analysis was applied to the same results dataset as in Figure 4, in FF of booth #3. The 

time series of the modal particle number concentrations is plotted in Figure 5 for 3 periods: (a) 

morning activity, (b) midday inactivity period, and (c) afternoon activity. The relative contribution 

from each mode to total particle number concentrations is also shown for each period. 

Modal analysis of particles in the worker area provides information on the size distribution as well 

as on the potential sources of particles. The Mode26-90nm was dominant throughout the day in the 

FF contributing 88-94% of particle number, with the time series of this mode highly resembling 

the one of total number concentration (Figure 4). New particle formation took place inside the 

booth (NF, Figure 2), and particles subsequently grew into the larger-sized mode (Mode26-90nm) 

during their transport from the	 source towards the worker area (FF, Figure 4a). The relative 
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contributions from the	Mode26-90nm were similar during the morning (Figure 5a) and afternoon 

(Figure 5c) spraying activities, despite the differences in total particle number	concentrations 

resulting from the open/closed doors scenarios (Figure 4). Mode10-25nm were minor contributors 

with 2-3% during both activity periods, while Mode91-660nm contributed with 4-9% of relative particle 

number concentrations. 

The lowest contribution of Mode10-25nm (which includes particles formed by nucleation) in terms of 

particle number release was recorded during the inactivity period (Figure 5b) as expected due to 

the absence of activities in the facility. Mode91-660nm showed the highest contribution during the 

morning activity (Figure 5a) due to the influence of the open door. 

 

Figure 5. Particle number concentrations for particles in each of the modes identified by modal analysis 

(top) for booth #3 data for 26/04/2017. Absolute average number concentration and relative contribution 

(%) of each mode (bottom) for time intervals (a) morning, (b) inactivity period, and (c) afternoon. 
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Certain considerations should be taken into account in the application of modal analysis to the 

occupational dataset presented in this work Particles deriving from nucleation can have sizes 

from 1 nm, while very few instruments are able to measure particles in this size range. The 

instrumentation used in this work had a lower cutoff at 10 nm (NanoScan) which results in an 

underestimation of the Mode10-25 contributions. The same is probably true for the Mode91-660nm, 

given that the instruments had an upper cutoff size at 420 nm. The underestimation of the Mode91-

660nm mode was probably lower since the number of particles in the range 420-660 nm emitted 

during thermal spraying is low. 

 

Calculated deposited dose during inhalation  

Inhalation dose rates for particle number, surface area and mass were estimated for booth #3 

(26/04/2017 and 28/04/2017), for each half-day (morning and afternoon) and midday inactivity 

period for the FF location (Table 3), where workers carried out different tasks and the use of 

personal protection equipment was limited. Particle number dose rates (!) were higher during 

activity (353×106 to 1024×106/min) than during inactivity periods (138×106 to 374x106/min). During 

the spraying activity, approximately 70% of the total inhaled particle number concentrations was 

deposited in the alveolar region, 12% in the trachea bronchi and 18% in the head airways. Hence, 

for workers in the FF location 82% of the total inhaled particles sourcing from thermal spraying 

were deposited in the deepest regions of the respiratory tract. 

The same analysis was applied to the calculated active surface area concentrations of the 

particles deposited in the airways (") during activity periods (3.0 – 6.3×106 µm2/min1, Table 3): 

60% was estimated to be deposited in the alveolar region, 9% in the trachea bronchi, and 31% in 

the head airways. Total surface area of the deposited particles during activity was higher than 

during inactivity (1.8×106 µm2/min). The LDSA concentrations in this study (1.2-5.6 ×103 µm2/cm3, 
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FF, Table 2) were mostly higher than others found in the literature, where LDSA concentrations 

were on average 21.6 μm2/cm3 during handling and loading of halloysite nanotubes (Koivisto et 

al., 2018), and <19 μm2/cm3during WC-Co fine powder production (Koivisto et al., 2016). 

Regarding the total deposited mass (,), increases of 1-9.5 ng/min were calculated from inactivity 

to activity periods. These dose rates in terms of mass were higher than those reported by Koivisto 

et al. (2014) (0.03-0.53 ng/min) during a lab-scale exposure assessment to nanodiamonds. 

Koivisto et al (2012), who found comparable results to those in the current work during a high 

energy process (Liquid Flame Spray), concluded that N was the most relevant metric for exposure 

assessment. However, biologically, the most relevant metric considering pulmonary inflammation 

is likely surface area (Schmid and Stoeger 2017). 

 

 

Figure 6. Particle number concentration and mean diameters measured with DiSCMini inside and outside 
an FPP3 personal mask worn by a volunteer-member of the research team. Measurements took place in 
the near field during two activity periods in booth #2 (27-04-2017). 
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Effectiveness of protective personal equipment 

The effectiveness of a personal FPP3 respirator (Moldex Air Plus 3405, half-piece mask) was 

assessed on a case study basis by comparing measurements obtained simultaneously inside and 

outside the respirator, with two DiSCMini units, while the mask was worn by one volunteer-

member of the research team. The respirator assigned protection factor (APF) was 10 as 

specified by the 29 CFR 1910.134 (Occupational Safety and Health Admin. 2006). Programme 

protection factors (PPFs) were studied by Koivisto et al (2015) for loose-fitting respirators. The 

measurements were carried out inside booth #2 (NF) and during two representative activity 

periods. The inlet of one of the instruments was held in the breathing zone (outside the mask), 

and the second was connected to the interior of the mask with Tygon conductive tubing (Asbach 

et al 2016). 

The particle concentrations monitored (Figure 6) show that the mask achieved a reduction of 

worker exposure in terms of number concentration by 87% (from 3×106 to 4×105/cm3) on average 

for both activity periods. This is likely a conservative estimate since the inlet of the instrument 

prevented from achieving a proper fit of the mask and it is highly probable that unfiltered air 

entered in the mask and interfered with the measurements. 

 

Conclusions 

Particle emissions and impacts on exposure were monitored for NPs and micron-scaled particles 

(fine and coarse) in terms of particle number and mass concentrations, LDSA, mean diameter 

and size distributions, during the application of ceramic coatings on metal surfaces by means of 

thermal spraying, at industrial scale. The results obtained are representative of the industrial 

facility under study, which has unique characteristics as most industrial facilities do, which 

highlights the need for additional studies with this kind of focus in the literature. Results may only 
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be generalized once the body of literature regarding industrial thermal spraying emissions and 

the influence of different feedstock materials become available. 

High particle number (>106/cm3) and mass (60-600 µgPM1/m3) concentrations were recorded 

inside the thermal spraying booths (NF), which were transported towards the worker area (FF) 

increasing the FF concentrations by one order of magnitude in terms of N (104-105/cm3) and up 

to a factor of 4 in PM1 (44-100 µg/m3). NPs were generated through different mechanisms 

(mechanical, melting-condensation), resulting in diverse morphologies (irregular, spherical). NPs 

with small diameters were detected inside (31-41 nm) and outside (40-64	 nm) the spraying 

booths. Worker exposure occurred both in the NF and FF locations, given that the workers 

operated equally inside and outside the spraying booths. The inhalation model applied showed 

that particles emitted during thermal spraying were mainly deposited in the alveolar region (70%). 

The high correlation between particle concentrations in the NF and FF suggest that worker 

exposure was strongly impacted by NPs, fine and coarse particles emitted during thermal 

spraying. Whereas similar NP number concentrations were monitored irrespective of the spraying 

technique and feedstock material applied, coarser particle (>2.5 µm) mass concentrations 

showed differences as a function of the feedstock material. Additional research is necessary to 

understand the relationship between coarse particle emissions and feedstock physical-chemical 

properties. 

The advantages and limitations of applying modal analysis to an occupational dataset were 

assessed. This analysis allowed for the identification of a dominant mode (Mode26-90 particles, 

89%), the increased contribution from Mode10-25nm (nucleation) particles during thermal spraying 

periods, and the influence of outdoor urban background aerosols during the inactivity period. In 

spite of the continuously working local extraction systems, the proper sealing of the spraying 

booths was identified as a key element for exposure reduction. Differences in exposure 

concentrations of one order of magnitude (from 105/cm3 to 104/cm3) were recorded when doors 
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were open/closed. Optimising the production routine to prevent the opening of doors during the 

spraying activity as well as a delayed door-opening protocol could reduce NP transport from inside 

the booths and consequently minimise impacts on exposure in the adjacent worker areas. 

Furthermore, worker access in the central area should be restricted during spraying operation, or 

carried out with adequate personal protective equipment (PPE). Finally, the use of FPP3 masks 

(with APF 10) was also advised, given their high potential for reduction of particle number 

concentrations. 
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Table 1. Operational characteristics of each of the spraying booths and locations in the thermal spraying facility. N.A.: not available. 

APS: Atmospheric Plasma Spraying. HVOF: High Velocity Oxy-Fuel coating spraying. 

 

Characteristics Booth #1 Booth #2 Booth #3 Central area 

Thermal spraying technique APS HVOF HVOF None 

Spraying duration 20-30 minutes 5-10 minutes 5-10 minutes None 

Nr. repetitions/half-day 3 2 7-9 None 

Type of parts coated Large, single part Large, single part 
Small, several 

parts 
None 

Door Mostly closed Open Open/closed None 

Volume (ca.,m3) 84 114 68 465 

Local exhaust/ventilation flow N.A. N.A. 6500 m3/h 3×11800 m3/h 

Personal protective equipment 
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Respirators 

Pressurised 

respirator hood, 

FPP3 mask 

FPP3 mask FPP3 mask None 

Cloths Protective jacket None Protective jacket None 

Gloves 
High temperature 

gloves 
None 

High temperature 

gloves 
None 

 

Table 2. Mean particle number (N), particle diameter (Dp), lung deposition surface area (LDSA) from DiSCmini and mass (PM1) 

concentrations during each of the activity periods monitored. Each half-day is labelled as (M) morning, (A) afternoon, or (cs) case study. 

N.A.: data not available. Statistical values: mean, standard deviation (SD), maximum (Max), minimum (Min) of each process calculated 

from non-normalized values for the total activity duration monitored during our studies (24-28/04/2017; DiSCmini). 

	 	 Near	field	(inside	booths)	 Far	field	(worker	area)	 Inactivity	

Date										Feedstock	 N	(cm-

3)	
DP	

(nm)	
LDSA	

(µm2/cm3)	
PM1	

(µg/m3)	
N	(cm-3)	 DP	

(nm)	
LDSA	

(µm2/cm3)	
PM1	

(µg/m3)	
N	(cm-3)	 DP	

(nm)	
LDSA	

(µm2/cm3)	
PM1	

(µg/m3)	

Booth	#1	 	 	 	 	 	 	 	 	 	 	 	 	

27/04	–	M	 Cr/Ni,	 2.0×106	 31.5	 4.0×103	 5.3×101	 N.A.	 N.A.	 N.A.	 N.A.	
2.3×104	 51.6	 6.6×101	 2.8×101	

27/04	–	A	 Al2O3/TiO2	 1.6×106	 36.8	 3.1×103	 6.9×101	 5.8×104	 40.0	 1.2×102	 4.4×101	

Mean	 1.8×106	 34.2	 3.6×103	 6.1×101	 5.8×104	 40.0	 1.2×102	 4.4×101	 2.3×104	 51.6	 6.6×101	 2.8×101	
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SD	 2.0×105	 2.6	 4.3×102	 8.0×100	 1.7×104	 2.9	 2.8×101	 6.6×100	 4.4×103	 1.4	 1.4×101	 8.2×100	

Max	 2.8×106	 63.7	 5.1×103	 2.6×102	 1.1×105	 49.1	 2.0×102	 6.4×101	 3.5×104	 53.4	 1.0×102	 4.8×101	

Min	 5.2×104	 12.1	 4.6×102	 3.0×101	 3.4×104	 33.2	 8.5×101	 3.2×101	 1.7×104	 49.2	 4.9×101	 1.9×101	

Booth	#2	 	 	 	

24/04	–	A	 WC/Cr/Co/Ni	 3.4×106	 37.2	 5.8×103	 1.7×102	 3.5×104	 75.6	 1.5×102	 N.A.	 7.0×103	 86.1	 4.0×101	 2.0×101	

25/04	–	M	 WC/Cr/Co/Ni	 5.3×106	 28.3	 7.6×103	 1.0×102	 5.4×104	 54.3	 1.7×102	 8.3×101	 6.3×103	 123.3	 4.9×101	 2.9×101	

26/04	–	M	 WC/Cr/Co/Ni	 6.0×105	 55.7	 1.9×103	 3.8×101	 N.A.	 N.A.	 N.A.	 N.A.	 3.7×104	 56.8	 6.7×101	 2.9×101	

27/04	–	cs	 WC/Cr/Co/Ni	 1.6×106	 42.3	 3.4×103	 1.1×102	 1.2×105	 61.6	 3.0×102	 9.3×101	 2.3×104	 51.6	 6.6×101	 2.8×101	

Mean	 2.7×106	 40.9	 4.7×103	 1.0×102	 6.9×104	 63.8	 2.1×102	 6.5×101	 1.8×104	 79.5	 5.6×101	 2.5×101	

SD	 1.8×106	 9.9	 2.2×103	 4.7×101	 3.5×104	 8.8	 6.6×101	 3.2×101	 1.3×104	 28.5	 1.1×101	 3.9×100	

Max	 6.3×106	 72.7	 8.9×103	 1.8×103	 3.1×105	 107.8	 6.2×102	 1.6×102	 3.1×105	 141.6	 3.0×102	 4.8×101	

Min	 7.6×104	 19.8	 2.1×102	 3.3×101	 9.3×103	 45.7	 4.3×101	 4.1×101	 2.8×103	 50.5	 2.1×101	 1.9×101	

Booth	#3	 	 	 	

26/04	–	M	 WC/CrC/Ni	 3.8×106	 28.6	 5.7×103	 7.0×102	 3.6×105	 33.2	 5.6×102	 1.0×102	
3.0×104	 57.5	 1.1×102	 2.9×101	

26/04	–	A	 WC/CrC/Ni	 3.8×106	 30.2	 6.1×103	 7.4×102	 1.1×105	 36.6	 2.1×102	 6.3×101	

28/04	–	M	 WC/CrC/Ni	 3.1×106	 31.3	 5.1×103	 5.2×102	 1.7×105	 46.4	 3.9×102	 1.0×102	
5.8×104	 33.9	 1.0×102	 2.4×101	

28/04	–	A	 WC/CrC/Ni	 2.9×106	 32.1	 4.8×103	 5.8×102	 1.5×105	 42.1	 3.2×102	 8.4×101	

Mean	 3.4×106	 30.6	 5.4×103	 6.4×102	 2.0×105	 39.6	 3.7×102	 8.7×101	 4.4×104	 45.7	 1.1×102	 2.7×101	

SD	 4.1×105	 1.3	 5.0×102	 8.7×101	 9.3×104	 5.1	 1.3×102	 1.6×101	 1.4×104	 11.8	 5.1×100	 2.6×100	

Max	 6.3×106	 52.3	 8.9×103	 1.3×103	 1.7×106	 69.4	 2.1×103	 2.7×102	 7.8×104	 60.4	 3.0×102	 4.5×101	
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Min	 1.9×105	 10.0	 2.2×102	 2.1×101	 3.3×104	 18.4	 8.6×101	 1.8×101	 1.5×104	 29.4	 5.0×101	 2.0×101	

 

Table 3. Dose rates in particle number(n), surface area ("), mass (m),and regional deposition to head airways, trachea bronchi and 

alveolar regions, calculated based on particle size-resolved concentration data (measured with NanoScan combined with MiniWRAS). 

Dose rates 
26/04/2017-Booth #3 28/04/2017- Booth #3 

Inactivity Morning Afternoon Inactivity Morning Afternoon 

Mean Size (nm) 76 47 49 51 57 54 

Total: $, . 10) [min -1] 138 1024 353 374 535 483 

Head airways: $, . 10) [min -1] 16.3 163 61.7 40.2 106 91.3 

Trachea bronchi: $, . 10) [min -1] 20.2 130 43.3 65.7 61.6 56.8 

Alveolar: $, . 10) [min -1] 102 730 248 268 367 335 

Total: ", . 10) [μm2 min -1] 1.8 6.3 3 1.8 5.7 4.4 

Head airways: ", . 10) [μm2 min -1] 0.3 2 1.1 0.2 2.2 1.6 

Trachea bronchi: ", . 10) [μm2 min -1] 0.2 0.54 0.3 0.3 0.4 0.3 

Alveolar: ", . 10) [μm2 min -1] 1.2 3.8 1.7 1.3 3.1 2.5 

Total l	*, . [ng min -1] (inactivity ρ=1.5 g cm-

3; Process ρ = 4.3 g cm-3) 
1 9.5 5.5 0.8 8.5 11.5 

Head airways:	*, [ng min -1] 0.9 8.8 5.1 0.7 7.7 11 
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Trachea bronchi:	*, [ng min -1] 0.02 0.2 0.1 0.02 0.2 0.1 

Alveolar: *, [ng min -1] 0.1 0.5 0.3 0.1 0.6 0.4 
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Supplementary Data 

Workplace exposure to nanoparticles during thermal spraying of ceramic 
coatings 
Salmatonidis A., Ribalta C., Sanfélix V., Bezantakos S., Biskos G., Vulpoi A., Simion S., Monfort 

E., Viana M. 

 

 

Figure S1. (a) Particle number concentration and mean diameter and (b) size segregated 

particle mass concentrations, in the near field location for booth #3 (28-04-2017). 
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Figure S2. (a) Particle number concentration and mean diameter and (b) size segregated 

particle mass concentrations, in the far field location for booth #3 (28-04-2017) 
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Figure S3 Particle number concentration and mean diameter and (b) size segregated particle 

mass concentrations, in the near field location for booth #2 (24-04-2017). 
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Figure S4 Particle number concentration and mean diameter and (b) size segregated particle 

mass concentrations, in the near field location for booth #1 (27-04-2017). 
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Table S1. Feedstock material characterisation. Material composition as provided by the 

manufacturer, and aggregate size measured by laser diffraction (Mastersizer-Malvern). 

Booth Feedstock Material Composition (Blend) Aggregate Size (µm) 

Booth #1 ANVAL 50/50 Cr, Ni 76.5 

Booth #1 Amdry 6228 TiO2, Al2O3 36.0 

Booth #2 Woka 3604 WC, Co, Cr, Ni 29.2 

Booth #3 Woka 3702-1 WC, Cr3C2, Ni 34.3 

 

	

Figure S5. Particle > 1 µm emitted from Booth #3 (HVOF) having similar composition as the 
feedstock. Cu signal due to TEM grid. 

 

Table S2. Instrument intercomparison results in terms of R2 coefficients 

Instrument DiSCmini-UB DiSCmini-ITC DiSCmini-Impact miniWRAS 
DiSCmini-UB - R2 = 0.9978 R2 = 0.9966 - 
DiSCmini-ITC R2 = 0.9978 - R2 = 0.9981 - 

DiSCmini-Impact R2 = 0.9966 R2 = 0.9981 - - 
CPC R2 = 0.9461 R2 = 0.9557 R2 = 0.9503 R2 = 0.8969 

 

 


