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ABSTRACT 

Can resting-state functional connectivity (rs-FC) detect the impact of learning on the 

brain in the short-term? To test this possibility, we have combined task functional 

connectivity (task-FC) and rs-FC tested before and after a 30-minute visual search 

training. Forty-two healthy adults (20 men) divided into no-contact control and trained 

groups completed the study. We studied the connectivity between four different regions 

of the brain involved in visual search: the primary visual area, the right posterior 

parietal cortex (rPPC), the right dorsolateral prefrontal cortex (rDLPFC), and the dorsal 

anterior cingulate cortex (dACC). Task-FC showed increased connectivity between the 

rPPC and rDLPFC and between the dACC and rDLPFC from pre-training to post-

training for both the control group and the trained group, suggesting that connectivity 

between these areas increased with task repetition. In rs-FC, we found enhanced 

connectivity between these regions in the trained group after training, especially in 

those with better learning. Whole brain independent component analyses (ICA) did not 

reveal any change in main networks after training. These results imply that rs-FC may 

not only predict individual differences in task performance, but rs-FC might also serve 

to monitor the impact of learning on the brain after short periods of cognitive training, 

localizing them in brain areas specifically involved in training.  
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MAIN DOCUMENT 

1. INTRODUCTION  

Resting-state functional connectivity (rs-FC) is a current topic in fMRI studies. This 

method makes it possible to study the neural activity patterns of regions that are 

functionally correlated but anatomically distant (Buckner and Vincent, 2007; Greicius et 

al., 2003; Gusnard and Raichle, 2001). Brain connectivity patterns at rest have largely 

been studied through fMRI from the observation of temporally correlated, low-

frequency, spontaneous fluctuations of blood oxygen level-dependent (BOLD) signals 

(Biswal et al., 1995; Raichle et al. 2001).  

Some authors have argued that functional correlations between regions seem to 

reflect our lifetime learning experiences (Buckner and Vincent, 2007; Harmelech and 

Malach, 2013; Miall and Robertson, 2006). Resting-state networks have been associated 

with memory consolidation processes and the stabilization of neural activity for present 

or future actions (Buckner and Vincent, 2007; Harmelech and Malach, 2013; Miall and 

Robertson, 2006). Moreover, the Spontaneous Trait Reactivation (STR) hypothesis 

proposes that these network relations capture personal experiences and, thus, reflect 

individual cognitive differences (Harmelech and Malach, 2013). For example, the 

Human Connectome Project data (Van Essen et al. 2013) is allowing researchers to 

describe the relation between brain connectivity and several individual behavioral and 

demographic measures (e.g., Smith et al. 2015). Indeed, the study of brain-behavior 

relations broadens our understanding of cognitive training benefits such as 

improvements in cognitive abilities and their relationship with functional connectivity 

(FC). In this regard, the modulation of rs-FC networks has been observed after sensory, 

motor, or cognitive training programs that produced changes in the connectivity 



4 
 

between brain regions (e.g., Albert et al., 2009; Powers et al., 2012; Takeuchi et al., 

2013; Thompson et al., 2016; Taubert et al. 2011; Ventura-Campos et al., 2013).  

Despite resting-state networks development is associated with learning through 

lifetime, connectivity is also susceptible to being modified by either recent or current 

experiences (Buckner et al., 2013; Guerra-Carrillo et al., 2014). Surprisingly, there is 

little evidence supporting this hypothesis. One example is found in Albert et al., (2009), 

which showed an enhanced pattern of connectivity in the left fronto-parietal network 

after 11 minutes of training to acquire a novel motor skill. The authors interpreted the 

changes in terms of short-term memory formation that was later going to be 

consolidated over time. In this study, there was a lack of correlation between brain and 

behavior changes, but it indicated that short-term cognitive training might lead to 

neuroplasticity in FC.  

Therefore, the main goal of this study was to investigate the effects of short-term 

cognitive training in visual search on human brain FC patterns. Functional MRI data 

during resting-state and from the visual search task were collected to investigate brain 

network plasticity. Additionally, the ability of the resting-state to predict individual 

differences in learning was studied. The main expected result was that task automaticity 

after cognitive training would result in increased cognitive efficiency in trained 

participants at the functional network level. We understand that task automaticity is 

reached when significantly improved speed response is observed without compromising 

accuracy in trained participants compared to controls (Bueichekú et al., 2016; Posner 

and Snyder 1975; Posner, 1978; Schneider and Shiffrin, 1977; Shiffrin and Schneider, 

1977). Our first hypothesis is that the trained group, compared to the control group, will 

have increased rs-FC after training between regions that also display increased task-FC. 

The increased task-FC indicates the regions that are involved in task learning. Secondly, 
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we expected that the trained participants with better connectivity before training will 

perform the task better after training. Specifically, we expect that rs-FC will be able to 

make predictions about individual differences in task learning.  

 

2. MATERIALS AND METHODS 

2.1. Participants 

Functional MRI data were collected from 42 healthy undergraduate students from the 

Universitat Jaume I. All the participants were right-handed (Oldfield, 1971), had normal 

or corrected-to-normal vision, and reported no neurological or psychiatric history or 

past or current use of any drugs. Participants were randomly assigned to a trained group 

(N = 21; 11 men; age: M = 20.95 SD = 1.43) or to a control group (N = 21; 9 men; age: 

M = 20.62, SD = 1.83). A between-groups t-test was used to determine that the 

experimental groups did not differ in age (t(40) = 0.65 p = 0.51). Intellectual level was 

evaluated with the Matrix Reasoning Test (WAIS-III-R) (Trained group: M = 21.29 SD 

= 2.26; Control group: M = 21.19 SD = 2.12). A between-groups t-test was used to 

determine that the experimental groups did not differ in intellectual level (t(40) = 0.14 p 

= 0.89). All the participants provided written informed consent prior to scanning. The 

study was approved by the Ethics Committee of the Universitat Jaume I. Participants 

were paid for testing and training.  

 

2.2. Experimental design 

A letter-based consistent mapping visual search paradigm was adapted to a block 

design. All the participants completed two identical MRI sessions, which always 

occurred 45 minutes apart. The experimental task details, as well as the task-fMRI data 
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analysis results, have previously been reported in Bueichekú et al., (2016). In addition, 

please find Supplementary Figure 1, which explains the experiment and task details, in 

the Supplementary Materials. 

2.2.1. Stimuli 

In visual search conditions, there were two sets of target stimuli: B C D F G H and L M 

N P Q R. Distractors were always J K Ñ S T V W X Y Z. Each search frame consisted of 

the presentation of either six distractors or five distractors and one target. Stimulus 

locations were randomized in all the conditions, and no stimulus appeared twice in a 

row in the same location. In addition, a control condition was included in the 

experimental paradigm to measure a baseline response time and a baseline cerebral 

response. The control condition matched the visual array used in the visual search 

conditions. There were only two types of frames in the control condition: a six A-letter 

array and a six X-letter array.  

2.2.2. Task 

The task consisted of 42 active blocks and 42 passive blocks. The active blocks 

consisted of: 14 control task blocks, 14 search blocks that corresponded to targets B C D 

F G H, and 14 search blocks that corresponded to targets L M N P Q R. The blocks were 

counterbalanced throughout the experiment. In all the blocks, 50% of the trials 

constituted a target-present frame. Each block had 12 trials, which consisted of 300 ms 

of a fixation point, 1500 ms of a search frame, and 200 ms of a blank screen. Each block 

started by presenting the instruction display, which remained on the screen for 3000 ms. 

All the passive blocks consisted of periods of 8000 ms when the screen remained 

completely blank.  
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There were no restrictions to eye movement. Participants had to give manual responses 

with their right hand. Positive answers were given with their right thumb, and negative 

ones with their right forefinger. Participants had to give positive answers when they 

detected a target (either the A’s on the control task or the letters defined as targets in the 

visual search conditions) and negative answers when there were no targets. Participants 

were asked to answer as quickly as possible, but without compromising accuracy. 

Stimulus presentation was controlled by the E-Prime software (Schneider et al., 2002), 

professional version 2.0, which was installed in a Hewlett–Packard portable workstation 

(screen-resolution 800 × 600, refresh rate of 60 Hz). Participants watched the laptop 

screen through MRI-compatible goggles (VisuaStim, Resonance Technology, Inc., 

Northridge, CA, USA), and their responses were collected by MRI compatible 

response-grips (NordicNeuroLab, Bergen, Norway). The E-Prime's logfile saved several 

measures, including stimulus presentation timing (i.e., stimuli onset) and duration, along 

with participants' accuracy and reaction times (RTs) to each stimulus. 

2.2.3. Experiment procedure and timing  

Before the pre-training MRI session, participants performed a practice task with the 

visual search task that lasted 7 minutes. Participants had to obtain 80% correct 

responses on the practice task in order to participate in the fMRI experiment. All the 

participants included in this study reached this criterion (percentage of hits: Trained 

group: M = 85.57 SD = 3.99; Control group: M = 85.91 SD = 4.42). No between-groups 

differences were observed on the practice task, as assessed with a between-groups t-test 

analysis (t(40) = -0.26 p = 0.80). All the participants completed two identical MRI 

sessions, which always occurred 45 minutes apart. The in-scanner task lasted 25 

minutes. Outside the scanner and in-between the MRI sessions, the trained participants 

completed the training task (840 trials distributed in 20 blocks) in around 30 minutes 
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(M: 28.51 minutes SD: 2.71; minimum: 24.38 minutes, maximum: 32.22 minutes). 

Training on the visual search task was intensive, and, as in the case of the MRI task, it 

was presented as a block design. Randomly, half the participants from the trained group 

were trained in searching for targets B C D F G H, whereas the other half were trained 

in searching for targets L M N P Q R. Therefore, after training, the trained group 

experienced two types of search conditions: 1) trained search; and 2) untrained search. 

Thus, searching for either of the two groups of targets would not represent any 

difference for the control group. It was noteworthy that the control group participants 

did not perform any training or cognitive tasks between scans, but they stayed outside 

the scanner for 45 minutes, just as the trained participants did. Apart from the training 

session, trained participants and control participants did not have different experiences 

between scans and all received the same instructions about what they were/were not 

allowed to do. Participants were not allowed to engage in any cognitive activity (e.g., 

video gaming, reading, etc.), they remained in the waiting area were experimenters 

could see them all the time, and they were not allowed to eat/drink any stimulant 

substance (e.g., coffee).  

 

2.3. MRI acquisition procedure 

The fMRI data were acquired in a 1.5 T Siemens Avanto scanner (Erlangen, Germany). 

The same protocol was used during the pre- and post-training sessions. All the 

participants were placed in the scanner in the supine position. Fixation cushions were 

used to reduce head motion. First, one high-resolution T1-weighted magnetization 

prepared rapid gradient echo imaging (MPRAGE) anatomical image was obtained per 

participant (TR = 2200 ms, TE = 3.8 ms, 256 x 256 x 160 matrix, 1 x 1 x 1 mm in-plane 

voxel size). Then, a gradient-echo T2*-weighted echo-planar MRI sequence was used to 
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obtain 270 volumes for the rs-fMRI acquisition (24 interleaved ascending slices, 3.5 x 

3.5 mm in-plane voxel size, slice thickness 4 mm, interslice gap 0.8 mm, repetition time 

(TR) = 2000 ms, echo time (TE) = 48 ms, flip angle 90º, 64 x 64 matrix). Finally, for 

the task-fMRI, a gradient-echo T2*-weighted echo-planar MRI sequence was also used 

to obtain 602 volumes (29 interleaved ascending slices, 3.5 x 3.5 mm in-plane voxel 

size, slice thickness 3.6 mm, interslice gap 0.4 mm, TR = 2500 ms, TE = 50 ms, flip 

angle 90 º,  64 x 64 matrix). All the scanner acquisitions were performed in parallel to 

the anterior commissure-posterior commissure plane (AC-PC), and they covered the 

entire brain.  

 

2.4. Behavioral analysis 

To assess the behavioral improvement in the performance on the visual search task, 

accuracy and RT data were separately processed with the IBM SPSS Statistics software 

(Version 23 Armonk, New York, USA). Only data from correct trials were used in all 

the behavioral analyses. For each experimental condition, a repeated-measures 2x2 

ANOVA was conducted, with the Experimental Group (Trained group vs. Control 

group) as the between-subjects factor and Session (Pre-training session vs. Post-training 

session) as the within-subjects factor. In addition, the change in response speed during 

cognitive training was assessed by means of a repeated measures t-test (first vs. last 

block of the training task). 

 

2.5. Image preprocessing for FC and ICA 

The first step of image processing was done using Statistical Parametrical Mapping 

(SPM 12; Wellcome Department of Imaging Neuroscience, London, England). It 
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involved each subject’s task-fMRI and rs-fMRI data set alignment to the AC-PC plane 

by using its own anatomical image. Then, the Data Processing Assistant for Resting-

State fMRI (DPARSF v4.1) (Chao-Gan and Yu-Feng, 2010) was used for standard 

image data preprocessing. Most of the following steps were common in the 

preprocessing for ICA and FC analysis, and the steps exclusively used in FC are 

specified.  

i) Correction of the slice timing acquisition differences for interleaved ascending 

acquisitions. The 24
th

 acquired slice was used as the reference in rs-fMRI, and the 

29
th

 acquired slice was used in task-fMRI.  

ii) Correction of head motion during acquisition using the two-pass procedure in 

realignment: first registration to the first image, and then registration to the mean 

image. In task-fMRI analysis, three participants per group were removed from the 

analysis due to excessive movement. After that, no head motions that had more 

than 2.0 mm of maximum displacement in any direction or 2.0° of any angular 

motion while the scan lasted were found in any participant's data. In order to 

control the movement effect throughout the experiment, the Root Mean Squared 

movement values (RMS movement, of translation and rotation parameters) were 

used to conduct a repeated-measures 2×2 ANOVA with the Experimental Group 

(Trained group vs. Control group) as the between-subjects factor and Session (Pre-

training session vs. Post-training session) as the within-subjects factor. This 

analysis was conducted separately for the rs-fMRI and the task-fMRI data. The 

ANOVA analysis results for the rs-fMRI data indicated that there were no 

statistically significant main effects of the Experimental Group (F(1,40) = 1.48 

p=0.230), or the Session (F(1,40) = 1.51 p = 0.699),or the Group x Session 

interaction (F(1,40) = 1.23 p=0.274). In relation to the task-fMRI data, no 
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statistically significant main effects were found for the Experimental Group 

(F(1,34) = 0.025 p=0.875), or the Session (F(1,34) = 0.065 p=0.801), or the Group 

x Session interaction (F(1,34) = 0.588 p = 0.449). 

iii) Individual overlay of the anatomical image and the mean image of the rs-fMRI data 

or the task-fMRI data by using T1 co-register to functional images. 

iv) For FC analysis: reduction in nuisance on the BOLD signal (e.g., respiratory and 

cardiac effects, motion effects, etc.) by using the nuisance covariates’ regression 

step. First, the polynomial regression trend was set to regress the constant, linear, 

and quadratic trends out of the functional time series. Then, six-parameter, rigid-

body transformation variables (i.e., three rotations and three translations) from the 

head motion correction step were set as regressors as well. The framewise 

displacement (FD) of time series was calculated according to Jenkinson et al., 

(2002). The FD threshold was set to 0.2 for motion censoring (i.e., scrubbing). Each 

time point above that threshold was identified as a “bad time point” and regressed 

out, along with one time point before it and two time points after each bad time 

point. Finally, the regression model included three parameters corresponding to the 

global mean signal, the white matter signal, and the cerebrospinal fluid signal.  

v) Spatial normalization by using the echo-planar image (EPI) template provided by 

SPM and voxel size resampling to 3 mm
3
 to the Montreal Neurological Institute 

(MNI) space.  

vi) Spatial smoothing with a 6-mm full-width-at-half-maximum (FWHM) Gaussian 

kernel. 

vii) For FC analysis: band-pass temporal filtering (0.01 – 0.08 Hz) to remove low and 

high frequency drift effects. 
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2.6. Post-processing analysis for FC 

2.6.1. Definition of the ROIs 

The definition of the regions of interest (ROIs) was carried out using SPM Wake Forest 

University PickAtlas software (Maldjian et al., 2003). We centered the FC analyses in 

brain areas that have been signaled as involved in the dorsal stream pathway during 

visual attention processing (Deco and Rolls, 2005). Thus, we selected areas within the 

early visual cortex (V1/V2), the posterior parietal cortex, and the dorsolateral prefrontal 

cortex. We extracted the ROI coordinates from our previous visual search task-fMRI 

training study (see Figure 3 Bueichekú et al., (2016)), specifically from the whole-brain 

task contrast that tested which brain regions are generally involved in visual search task 

performance (all participants, pre-training session: visual search conditions > control 

condition). The results of the task contrast had a voxel-wise threshold of p < 0.001 

uncorrected and a threshold of p < 0.05 Family Wise Error (FWE)-corrected for 

multiple comparisons at the cluster level; the cluster level was determined by Monte 

Carlo simulations using the AlphaSim method, with a cluster criterion of k = 116 voxels 

(see Bueichekú et al., 2016). All the coordinates corresponded to peak maximum 

cortical activations within the abovementioned dorsal stream pathway.   

The same regions were used in task-fMRI data (8-mm radius spheres) and in rs-fMRI 

data (6-mm radius spheres). Slightly bigger spheres were used for the FC analysis of the 

task-data than for the resting-state data. The main reason for this decision is that task 

activation maps for visual search tasks are usually characterized by medium-to-large 

activations in terms of spatial extension (see Bueichekú et al., 2016). We matched the 

sphere size criterion to the spatial smoothing criterion, which was 6-mm
3
. However, we 

were aware that the visual search task generates large brain activations; therefore, a 

small size criterion could be unrepresentative of task-data. In short, we wanted to use a 
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representative sphere size for the task data that did not differ too much from the 

desirable size; thus, we ended up using 8-mm
3
 for task data and 6-mm

3
 for resting-state 

data.   

Four spheres were defined (onwards seed regions) corresponding to: the right calcarine 

sulcus (rVisual, MNI: 15, -70, 13), right posterior parietal cortex (rPPC, MNI: 27, -64, 

46), right dorsolateral prefrontal cortex (rDLPFC, MNI: 42, 38, 22; Brodmann area 46), 

and dorsal anterior cingulate cortex (dACC, MNI: 6, 23, 49) (see Figure 1A). To clarify, 

the region identified as right calcarine sulcus was mainly assigned to V1 (probability for 

V1 = 63% and for V2 = 27%) by means of the SPM Anatomy Toolbox (“Overlap 

between structure and function” toolkit) (Eickhoff et al., 2005; Eickhoff et al., 2006; 

Eickhoff et al., 2007). 

2.6.2. Pairwise seed-based FC analysis 

Separately for the task-fMRI and for the rs-fMRI data, pairwise seed-based FC analyses 

were conducted with DPARSF Advanced software. The DPARSF toolbox extracts the 

mean time course for all of the voxels from each seed region and for each session and 

subject. Then, the toolbox calculates pairwise linear Pearson’s correlations, obtaining 

the r-values and p-values for each pair of seed regions. Afterwards, individuals’ r-

values were normalized to z-values using Fisher’s z-transformation. The z-values were 

stored in a SPSS database and used to study the training effects on task-FC and rs-FC 

(see Figure 1B), and to study the rs-FC’s ability to predict task learning after training.  

2.6.3. Cross-sectional analysis in task-FC and in rs-FC  

We used IBM SPSS Statistics software in cross-sectional analysis. We conducted 

between-groups, two-sample t-tests with pre-training session task-FC or rs-FC z-values 

to verify that the brain responses yielded by the groups were equal before the training 
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session. If they were, we would attribute the brain changes to the visual search task 

training.  

2.6.4. Training effects in task-FC  

To study the training effects in task-FC, we performed an interaction analysis with the 

individuals’ z-values. For each seed region pair, we conducted a 2x2 ANOVA with the 

Experimental Group (Trained group vs. Control group) as the between-subjects factor, 

and Session (Pre-training session vs. Post-training session) as the within-subjects factor, 

using the IBM SPSS Statistics software. This analysis allowed us to study the 

differences in FC between the pre-training and post-training sessions, while controlling 

for repetition effects using between-subjects controls (i.e., control group data).  

2.6.5. Training effects in rs-FC  

To study the visual search training effects in resting-state networks, we performed 

planned comparisons after a 2x2 ANOVA, defined in the same way as the task-FC 

analysis, with IBM SPSS Statistics software. Planned comparisons were made based on 

our hypothesis, which was that the effect of training would result in increased rs-FC in 

trained participants compared to controls, if increased task-FC was also observed. 

Therefore, first, the difference in rs-FC z-values between sessions was calculated for 

each participant (post-training session > pre-training session), and then this variable 

was used to conduct a between-groups, two-sample t-test for each seed region pair.  

2.6.6. A priori learning prediction 

To study the rs-FC’s ability to predict behavioral improvements in task performance, we 

planned to conduct a correlation analysis with each seed region pair that showed 

statistically significant changes from the pre-training to post-training session and the 

behavioral data from the post-training session. We used IBM SPSS Statistics software 
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to conduct linear bivariate Pearson’s correlation analysis between the pre-training 

session rs-FC z-values of each participant and the visual search RT values from the 

post-training session that corresponded to the trained condition (trained condition > 

control condition) for each group separately (N = 21 in each group). If the brain-

behavior correlation result was found to be statistically significant, and additional 

correlation analysis was performed for the visual search RT values that corresponded to 

the untrained condition (untrained condition > control condition), then it was used as a 

control measure.   

2.6.7. Complimentary analyses 

In relation to the study of the training effects in rs-FC and the learning prediction, 

complimentary analyses with our original ROIs or with additional control ROIs have 

been done. The purpose of these analyses was to add reliability to the main rs-FC 

analyses.  

Firstly, the possible differences in signal-to-noise ratio (SNR) were studied because low 

amplitudes of activity can be masked by noise and lead to apparent changes in FC. 

Therefore, the level of activity during task or resting-state was evaluated extracting the 

temporal variance of the signal in each ROI. Then, the following comparisons were 

made: 1) between group comparisons for each experimental session for which FC was 

calculated; and 2) within group comparisons for the pre-training session and the post-

training session. Please see section 2.1.Analysis of the differences in signal-to-noise 

ratio (SNR) between groups and across sessions for resting-state FC data and task-FC 

data in Supplementary Materials. Secondly, the variability of the resting-state FC 

patterns was analysed by means of F-tests with the standard deviation values of rs-FC 

data of each pair of seeds to ensure that resting-state patterns did not influence the 

subsequent brain activity during visual search task. Please see section 2.2.Additional 
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analysis on the variability of the resting-state FC patterns in Supplementary Materials. 

Thirdly, in relation to the learning prediction we performed three new Pearson’s 

correlation analysis for: 1) baseline rs-FC and post-training session RT values for the 

seed pairs that did not show increased connectivity after learning; 2) baseline rs-FC and 

pre-training session RT values for all the pairs; and 3) baseline rs-FC and difference in 

RT across sessions for all the pairs. Please see section 2.3. Additional analysis 

supporting the resting-state FC prediction analysis in Supplementary Materials. In 

relation to the main rs-FC analyses, we studied whether rs-FC between the originally 

selected ROIs and new control ROIs changed as a result of time or training. Please see 

section 2.4. Pairwise seed-based resting-state FC analyses between independent control 

seed regions (primary auditory cortex or primary motor cortex) and visual search task 

key regions in Supplementary Materials. 

 

2.7. Post-processing analysis for ICA 

2.7.1. Group spatial ICA  

In order to obtain the functional brain networks that underlie the rs-fMRI data, group 

spatial ICA was performed (Calhoun et al., 2001). The first step involved the estimation 

of the optimal number of components, which resulted in 19 independent components 

using minimum description length criterion (Li et al., 2007). Then, group ICA was 

performed using the Gift toolbox (http://icatb.sourceforge.net) and the Infomax 

algorithm (Bell and Sejnowski, 1995). In addition, and to ensure the stability of the 

results, 20 iterations of the ICA were conducted using ICASSO software 

(http://www.cis.hut.fi/projects/ica/icasso) (Himberg et al., 2004). The best estimated 

component for each independent component was used in subsequent analyses. This 

refers to the use of the centrotype of the cluster, or the average of the estimates 
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belonging to a single cluster, by means of ICASSO software. According to Himberg et 

al., (2004), the use of the centrotype of the cluster is more reliable than the use of an 

estimate from a single run of ICA. Then, the group ICA-3 back-reconstruction approach 

was used to calculate the individual maps for each independent component and its time 

courses (Calhoun et al., 2001; Calhoun et al., 2002; Erhardt et al., 2001). The voxel 

values for the individual maps represent their contribution to the component time 

course. Usually the voxel values are scaled using z-scores in order to determine which 

voxels contribute significantly to a particular component map. These spatial maps are 

then used to study the brain between groups and/or across sessions. The aggregate 

independent component maps were matched to resting-state networks (Ventura-

Campos, 2013, Damoiseaux et al., 2006) by visually inspecting the group maps, 

discarding the maps that corresponded to physiological noise or motion, and taking into 

account the average power spectra (Lowe et al., 1998).  

2.7.2. Cross-sectional analysis in ICA networks  

To test that there were no differences in baseline resting-state response, we conducted a 

between-groups two-sample t-test with the pre-training session maps for each identified 

network in SPM 12. The presence of equal brain responses by the groups before training 

was a necessary condition to later discuss training effects.  

2.7.3. Training effects in ICA networks 

To study the training effects in the ICA networks, we performed interaction analyses 

with the individuals’ maps in SPM 12. Interaction analyses were conducted at the 

voxel-wise level, and the voxel values of the individual map represented the 

contribution of each voxel to the component time course. The aim of the analysis was to 

study the brain differences due to training at the whole-network level. In this analysis, 
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we included the control group data and compared the resting-state networks across time 

(pre-training vs. post-training session). Therefore, for each network, we conducted a 2x2 

ANOVA with the Experimental Group (Trained group vs. Control group) as the 

between-subjects factor, and Session (Pre-training session vs. Post-training session) as 

the within-subjects factor, using the SPM 12 software.  

2.7.4. Brain and behavioral correlation in ICA networks 

 For each network, a multiple regression analysis with the RT values was performed in 

SPM 12. This analysis was conducted separately for each group (N=21 per group). On 

the one hand, we used the individual maps from the pre-training session (i.e., the 

voxels’ contribution to the component’s time course), and so the data would predict the 

individual differences in behavioral improvement. On the other hand, we introduced the 

RT values as a variable that measured behavioral improvement. The RTs were defined 

as Trained condition > control condition in post-training session, as in the 

abovementioned rs-FC brain-behavior correlation analysis.  

 

3. RESULTS 

3.1. Behavioral analyses results 

In order to assess the effects of training on the performance of the visual search task, 

group comparison behavioral analyses were performed with RTs and accuracy scores 

collected during the task-fMRI sessions. For each experimental condition, a repeated-

measures 2x2 ANOVA was conducted, with the Experimental Group (Trained group vs. 

Control group) as the between-subjects factor and Session (Pre-training session vs. Post-

training session) as the within-subjects factor. Additionally, the change in response 

speed during cognitive training was assessed by means of a repeated-measures t-test. 
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With regard to the performance change during cognitive training, we found steadily 

decreasing RT values as trials were completed. When comparing the RTs from the first 

block (M=746.23 SD=211.88) to the last one (M=622.67 SD=182.94), a statistically 

significant difference was found in response speed (t(20)= 3.57 p = 0.001, paired t-test, 

one-tailed). 

In relation to the RT values (see Figure 2), a main effect of Session was found in the 

trained condition data (F(1,40) = 226.27 p < 0.001) and in the untrained condition data 

(F(1,40) = 70.84 p < 0.001). These main effects were driven by statistically significant 

Group x Session interactions, found in both the trained condition data (F(1,40) = 34.29 

p < 0.001) and the untrained condition data (F(1,40) = 5.70 p = 0.022).  These 

interactions indicate that trained participants performed the search conditions faster than 

control participants in the post-training session compared to the pre-training session. 

Finally, in the control condition, a main effect of Session (F(1,40) = 19.60 p < 0.001) 

was found, indicating that all the participants were faster in the post-training session 

than in the pre-training session, but no significant Group x Session interaction was 

found (F(1,40) = 0.106 p = 0.746).  

With regard to the accuracy values (see Table I), a main effect of Session was found in 

the trained condition data (F(1,40) = 21.05 p < 0.001) and in the untrained condition 

data (F(1,40) = 6.80 p = 0.013), but no Session effect was found in the control condition 

data. No significant interactions were found. The accuracy data indicate that both 

groups gave more accurate responses in the post-training session than in the pre-training 

session in the search conditions. 

In summary, both groups of participants improved their performance as they gained 

experience on the task. However, it is noteworthy that only trained participants 

performed the task significantly faster in the post-training session, which must be the 
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result of cognitive training. The effects of training were observable for both the trained 

and untrained targets. Further analyses revealed that training must be quite specific 

because response speeds were faster for the trained targets (M = 603 ms, SD = 122.68) 

than for the untrained targets (M = 692 ms, SD = 181.25), with a between-conditions 

difference that approached statistical significance (t(20) = -2.05 p = 0.054, paired t-test, 

two-tailed). 

 

3.2. Task-FC analyses results  

3.2.1. Cross-sectional analyses in task-FC 

A between-groups, two-sample t-test with pre-training session task-FC z-values was 

conducted for each seed region pair to discard any possible baseline differences in 

connectivity. Cross-sectional analysis results yielded no significant group differences in 

the pre-training session; therefore, the connectivity differences from pre- to post-

training were associated with training effects. 

3.2.2. Training effect analysis results 

Training effects on task-FC were studied by means of 2x2 ANOVAs using z-values 

between seeds as a dependent variable, with Experimental Group (Trained group vs. 

Control group) as the between-subjects factor, and Session (Pre-training session vs. 

Post-training session) as the within-subjects factor (see Figure 3). A significant main 

effect of Session (F(1,34) = 5.25 p = 0.028) was found when studying the training 

effects between rPPC and dACC (see Figure 3A), indicating that in general participants 

had more synchronous functional activity between these regions in the post-training 

session than in the pre-training session. This main effect was driven by a Group x 

Session interaction approaching significance (F(1,34) = 3.685 p = 0.063), indicating that 
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the control participants (M = 0.26 SD = 0.22) had a more coupled pattern of 

connectivity between rPPC and dACC in the post-training session than the trained 

participants (M = 0.18 SD = 0.19). Here, we interpreted this pattern of results as 

showing that task-FC rapidly increased when repeating the task, but this effect 

disappeared with training.  

A significant main effect of Session (F(1,34) = 4.75 p = 0.036) was found when 

studying the training effects between dACC and rDLPFC (see Figure 3B), and also 

between rPPC and rDLPFC, with a main effect of Session approaching significance 

(F(1,34) = 3.37 p = 0.075) (see Figure 3C). These results indicated that in general all the 

participants had more synchronous functional activity between these regions in the post-

training session than in the pre-training session, suggesting that task-FC between areas 

increased from the beginning of the training (i.e., control group) to the end (i.e., trained 

group). No other significant main effects or significant interactions were found for the 

task-FC data. 

 

3.3. Rs-FC analysis results  

3.3.1. Cross-sectional analyses in rs-FC 

A between-groups, two-sample t-test with pre-training session rs-FC z-values was 

conducted for each seed region pair to discard any possible baseline differences in 

connectivity. Cross-sectional analysis results yielded no significant group differences in 

the pre-training session; therefore, the connectivity differences from pre- to post-

training were associated with training effects. 

3.3.2. Training effects analysis results 
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Training effects in rs-FC were studied by means of planned comparisons according to 

our initial hypothesis, which was that the trained group would have increased rs-FC 

after training compared to controls in those pairs of seeds that showed increased task-

FC. Thus, between-groups, two-sample t-tests with the difference in the rs-FC z-values 

from pre-training to post-training were conducted for each seed region pair. Compared 

to controls, the trained participants showed increased rs-FC after training in rPPC and 

rDLPFC (t(40) = 2.67 p = 0.006, one-tailed) (see Figure 4A and Figure 4B). In addition 

a between-groups difference approaching significance was found in dACC and rDLPFC 

(t(40) = 1.49 p = 0.073, one-tailed). The 2x2 repeated-measures ANOVAs conducted to 

investigate rs-FC in other pairs did not yield any significant effects or interactions. 

3.3.3. Task learning prediction analysis results 

Linear bivariate Pearson correlation analyses were used to study the rs-FC’s ability to 

predict task performance improvement. Therefore, this analysis was performed with the 

regions that showed changes from the pre-training session to the post-training session, 

which were the rPCC and rDLPFC and the dACC and rDLPFC. We found a significant 

correlation (p < 0.05) between the pre-training session rs-FC of rPPC and rDLPFC and 

the trained condition RTs from the post-training session (trained condition > control 

condition) for trained participants (r = -0.512 p = 0.018 N = 21), but not for control 

participants (r = -0.042 p = 0.856 N = 21) (see Figure 4C). The difference between these 

two correlation coefficients was statistically significant (Trained group > control group, 

z = -1.57 p = 0.05, one-tailed). This means that the rs-FC between rPPC and rDLPFC is 

able to predict which participants will benefit more from training. In this case, having 

better connectivity between these two specific areas implies being able to find the 

trained targets faster. It is worth noting that the correlation result found for the trained 

targets was unique and contrasted with the result found for the untrained targets 
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(untrained condition > control condition) (trained group: r = -0.120 p = 0.603 N = 21). 

The difference between the correlations was statistically significant (Trained group: 

trained targets > untrained targets, z = -2.06 p = 0.02, one-tailed), which highlights the 

specificity and accuracy of the study of neural connectivity in predicting human 

behavior. Finally, the rs-FC of dACC and rDLPFC failed to predict task performance 

improvement, as we did not find a significant correlation between pre-training session 

connectivity and trained condition RTs in the post-training session (trained group: r = 

0.049 p = 0.833 N = 21; control group: r = 0.342 p = 0.129 N = 21). The difference 

between the correlations was not significant (Trained group > control group, z = -0.92 

p = 0.18, one-tailed).  

 

3.4. Resting-state ICA results  

3.4.1. ICA maps and resting-state networks 

Group spatial ICA was performed to obtain the functional brain networks that underlie 

rs- fMRI, and then study the connectivity differences due to training. Please find the 

Supplementary Figure 2, which includes a representative example of the maps, in the 

Supplementary Materials.   

3.4.2. Cross-sectional analyses in ICA networks 

A between-groups, two-sample t-test with pre-training session data was conducted for 

each network to discard any possible baseline differences in connectivity. Cross-

sectional analysis results yielded no significant differences.  

3.4.3. Training effect analysis results 
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We used interaction analysis (i.e., ANOVA) to test whether or not there were any 

connectivity differences in each network due to training. It should be noted that the 

individual maps associated with known resting-state networks are composed of voxels 

whose values represent their contribution to the component’s time course. For each 

network, a 2x2 ANOVA was conducted, with the Experimental Group (Trained group 

vs. Control group) as the between-subjects factor, and Session (Pre-training session vs. 

Post-training session) as the within-subjects factor. The results yielded no significant 

differences in any possible direction at the pre-established threshold (p = 0.001).  

3.4.4. Brain and behavioral correlations in ICA networks 

We used multiple regression analysis to study whether individual differences in 

behavioral improvements were predicted by the resting-state at the whole-network level. 

No correlation results were found to be significant in the variable introduced in the 

models (Trained condition > control condition in post-training session). 

 

4. DISCUSSION 

The aim of this fMRI study was to investigate the changes in brain FC after a short-

term visual search training. We expected that the trained group would have increased rs-

FC after training, compared to controls, in those brain regions that had increased task-

FC. During the task, the main results showed, in all the participants, an increased task-

FC between dACC and rDLPFC also between dACC and rPPC, and a trend toward an 

increase between rPPC and rDLPFC in the post-training session, which reflect a time 

effect and must be related to task repetition. Some of these brain areas showed increased 

rs-FC in trained participants after training. Additionally, we found that the rs-FC 

between the rPPC and rDLPFC predicted learning. However, when studying the effects 
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of training at the whole-network level by means of ICA, we did not observe any 

differences between groups across sessions. According to our results, rs-FC identifies 

the specific regions involved in improved functioning and predicts task learning after a 

short training, indicating that it could be used to monitor the changes in the brain 

produced by experience.  

A general performance improvement across time was observed in all the participants, 

which could indicate task adaptation. We observed that trained participants improved in 

both search conditions, which may be related to slight specific transfer effects (Noak et 

al., 2014). With regard to the trained condition, the changes in search speed could be 

associated with a gradual change from controlled to automatic information processing 

(Neisser, 1963; Neisser et al., 1963; Prinz, 1979; Rabbit et al., 1979; Schneider and 

Shiffrin, 1977; Shiffrin and Schneider, 1977), especially after participants had 

completed a significant number of training trials (i.e., 840 training trials). Previous 

behavioral studies have demonstrated that 600 training trials in constant search 

conditions should be sufficient to observe changes in information processing (Shiffrin 

and Schneider, 1977). The slight improvement in response speed in control participants 

could be related to task adaptation and retest effects (Garavan et al., 2000; Schneiders et 

al., 2011). 

Parallel to the behavioral changes, we observed brain FC changes due to training. 

Some authors have indicated that current or recent experiences are able to modify FC 

involving memory consolidation processes and information processing of present or 

future actions. Thus, short-term training could lead to enhanced connectivity (Albert et 

al., 2009; Buckner et al., 2013). Although long-term rs-FC studies are abundant, less 

attention has been paid to short-term or immediate changes. As far as we know, there 

are no previous rs-FC studies after short-term cognitive training (i.e., less than an hour 
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and/or same day pre-post studies) on a visual search task, and few studies have focused 

on other systems, such as the motor system (Albert et al., 2009). In this study, trained 

participants completed around 30 minutes of visual search task training. We observed 

an increase in task-FC after training between dACC and rPCC or rDLPFC when the 

trained participants were compared to the controls. These results indicate that task-FC 

increases when participants start to gain experience, until asymptotic performance is 

achieved. In the pre-training session, both groups had low performance on task, but in 

the post-training session, the control participants performed the task as a group that was 

starting to gain experience, and the trained group had high performance because they 

had completed 840 trials of specific training. The enhancement of task-FC reveals that 

the cognitive systems involved in the task improved their functioning due to task 

repetition, which possibly included an improvement in the efficiency of the information 

processing system and memory consolidation processes (Buckner and Vincent, 2007; 

Miall et al., 2006).  

The rs-FC detected the specific neuroplasticity changes that occurred due to training. 

It was more sensitive than the ICA, which showed no changes in whole-brain resting-

state networks. This lack of differences in ICA is consistent with a recent investigation 

conducted by Gratton et al. (2018) focused on the variability of functional brain 

networks. The authors found that functional networks are ruled by common 

organization patterns, like genetics and structural connections, as well as, stable 

individual features, like long-term histories of co-activation. In addition, there was 

found a subtle modulation of functional networks by task-states and individual 

performance, including brain-behavior interactions; and this modulation was largely 

associated with individual-specific effects. Despite that, Gratton et al. (2018) found that 

task-state and day-to-day variability is modest. On the other hand, we observed 
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enhanced rs-FC after training in trained participants between rPPC and rDLPFC. The 

enhanced rs-FC possibly reflects better communication between these areas, either 

because the system has learned that these areas are likely to be co-activated (Fair et al., 

2009; Lewis et al., 2009), or, based on the environmental demands, the system is 

anticipating and predicting that these areas are going to work together on present or 

future tasks (Bar, 2007; Raichle, 2010). In summary, it is possible to say, that training 

strengthened the connectivity of two brain regions that typically work together. It is 

well known that the brain regions that usually co-work have synchronized patterns of 

activity and form a functional network during rest (van den Heuvel and Hulshoff Pol, 

2010). In this sense, the idea that rs-FC is originated as a neural phenomenon is 

supported because of the overlap in neuroanatomy and function of brain regions that 

form networks, thus, functional networks at rest reflect the co-activation of brain areas 

that are anatomically separated. In our study, the pre-existing connectivity patterns of 

rPPC and rDLPFC were rapidly modified by a specific but individual experience, the 

training, and these modifications were observable especially at rest. It is thought that 

daily variability has a minor contribution to functional networks (Gratton et al. 2018), 

but the evidence found here and in previous works (e.g., Lewis et al. 2009) support that 

experience-based variability has an effect on functional brain connectivity, which might 

be due to the specificity and the intensity of the training session. In agreement with 

Gratton et al. (2018), these changes are specific and different for each individual; 

moreover, their effects are likely to affect higher-order processing and control areas 

(i.e., frontoparietal areas). As said, training was an individual experience that modified 

the brain networks; this gives support to the STR hypothesis, which proposes that rs-FC 

reflects individual cognitive differences derived from lifetime experiences (Harmelech 

and Malach, 2013). Here, we showed that a learning experience changed the 
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connectivity between rPPC and rDLPFC, and that rs-FC was able to predict cognitive 

individuality.  

Different perceptual learning investigations have been devoted to explore how 

functional networks change by using rs-FC (e.g., Lewis et al. 2009; Guidotti et al. 

2015). In general lines, there is a good alignment between our results and previous 

research, in which it is consistently found a relationship between resting-state and 

behavioral improvement after training (Lewis, et al. 2009; Guidotti et al. 2015). 

Evidence supports that resting-state captures and reflects individual differences in 

sensorial and cognitive tasks, and these differences are associated with experience. For 

example, in Lewis et al. (2009), the authors concluded that the regions involved during 

a shape-discrimination task led to modifications of the same brain regions during rs-FC. 

In this line, we found that task-FC increases between areas implicated in task 

performance as participants gain experience in task execution. Another example is 

found when using multivariate pattern analysis; Guidotti et al. (2015) found that after 

learning, the resting-state networks reflected the processes and features that were learnt 

during training. As in our study, task data sets were useful to locate the areas that 

functionally support the task execution. Then, resting-state data was used to study the 

specific brain-behavior relations after training. On the other hand, one main difference 

between previous studies and the present investigation is the difference in training 

duration; so far, it was usually required that participants trained during several days 

(Lewis et al. 2009; Guidotti et al. 2015), our training lasted 30 minutes approximately. 

Additionally, their perceptual learning training was limited to one visual field (i.e., left 

lower visual quadrant) and used a shape-discrimination task, which is slightly different 

from using a visual search task. More importantly, and as a novelty, in our study it was 
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found that cognitive training led to changes in task-FC that had a close relationship and 

were in the same direction that the specific rs-FC changes. 

In general, our results agree with the hypothesis of cognitive efficiency, as the brain 

changes its network organization in order to become more efficient in information 

processing and, thus, adapt its functioning to the current demands (Buckner and 

Vincent, 2007; Miall et al., 2006; Bullmore and Sporns, 2012). The three regions that 

changed – the PPC, the DLPFC, and the dACC – have been related to visual search task 

and attentional control (Corbetta and Shulman, 2002; Dosenbach, et al., 2006; 

Dosenbach, et al., 2007; Power and Petersen, 2013; Seeley et al., 2007). Not so many 

investigations have been done with the same objective as this one. A general possible 

explanation is that increased FC represents greater attentional control dedicated to 

perform better a task that has been training, in this case, visual search. Right now, the 

observable changes in the brain connectivity of different brain regions can be described 

at the macroscopic level and associated with their different roles. One of the PPC’s 

main functions is to link top-down, bottom-up, and motor information, and control the 

attention focus using priority maps during visual attention tasks, through which the 

evaluation of visual objects and the selection of relevant items are carried out (Bisley et 

al., 2010; Corbetta and Shulman, 2002; Hopfinger et al., 2000; Kastner and Ungerleider, 

2000; Petersen and Posner, 2012; Ptak, 2012). The PPC seems to be crucial during 

visual information processing because it holds the visual templates for both the dorsal 

and ventral stream pathways (Peelen and Kastner, 2014). The DLPFC has been related 

to initiating and adjusting control on cognitive attention-demanding tasks, and to 

exerting top-down influence on the information stream pathways (Dosenbach, et al., 

2006; Dosenbach, et al., 2007; Noudoost et al., 2010). In our opinion, the increased 

connectivity between rPPC and rDLPFC indicates a better interplay between these 
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areas, as abovementioned, the increased connectivity possibly indicates a strengthened 

connection, which means a better synchronization of the activation of both areas. The 

synchronization of brain activity might be interpreted as a facilitation of the role that 

different brain areas perform jointly. Previous research has found that the neural 

response of the DLPFC is enhanced when attention shifts occur toward relevant stimuli 

and this area influences the information processing pathways, including the PPC’s 

activity (Garavan et al., 2000; Dosenbach et al., 2008). Furthermore, we found that 

enhanced connectivity between the PPC and DLPFC predicted the development of 

automaticity. In other words, the participants with higher connectivity between these 

areas before training were able to search for the trained targets faster in the post-training 

session, and they produced more similar responses to these items and control targets in 

terms of response speed. This result agrees with neurocomputational models where both 

posterior and frontal brain association areas have important roles in the top-down 

control of attention (Deco and Rolls, 2005). Overall, the connectivity of the dorsal 

system improved through training, but having an enhanced fronto-parietal connection 

by default, or at least prior to cognitive training, is beneficial in performing visual 

attention tasks. Finally, the dACC activity has been associated with the role of 

supervisory attentional control, and it participates in inhibitory and control processes 

(Dosenbach, et al., 2006; Seeley et al., 2007; Power et al., 2011; Cieslik et al., 2015). 

The visual search task requires a great degree of control, like many cognitive tasks. 

Whereas the DLPFC has a specific top-down role in visual search tasks, the 

connectivity with dACC could be more general and related to inhibitory processes. This 

may explain why no brain-behavior predictive correlations were found with the rs-FC of 

these areas (dACC and rDLPFC).     
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Some limitations of our study are the use of a passive control group and the absence 

of follow-up sessions to test the stability of the behavior and brain modifications. It was 

challenging to find a control training task similar enough to our task that did not 

produce similar or identical brain effects. Previous studies focusing on the visual search 

domain did not include a control group or, at the most, used a passive control group 

(Jansma et al., 2001; Kübler et al., 2006).  

 

5. CONCLUSIONS  

This fMRI study combined task and resting-state measures to investigate the 

neuroplasticity changes that occur after completing a 30-minute visual search training. 

We found that task-FC between some of the regions involved in visual search task 

showed increased connectivity in all participants (e.g., rDLPFC, rPCC or dACC), which 

might be due to repetition effects. On the other hand, rs-FC showed increased 

connectivity after the training period (e.g., rPPC and rDLPFC) only in training 

participants, detecting the specific effects of training in the short-term. Positive brain-

behavior correlations predicted the neuroplasticity changes, as the fastest trained 

participants in the post-training session had the highest connectivity between rPPC and 

rDLPFC before training. In conclusion, rs-FC detected the impact of learning on brain 

connectivity in the short-term and predicted which learners would benefit more from 

training.  
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FIGURE LEGENDS 

 

Figure 1. Seed regions for rs-FC analysis and correlation matrices. (A) ROIs 

selected for the task-FC and rs-FC analysis depicted in sagittal and axial slices 

(coordinates are in the MNI space) (B) Rs-FC (above) and task-FC (below) correlation 

matrices for each experimental group and session (matrices represent the mean pairwise 

FC z-values). Abbreviations: R = right; rVisual = right calcarine sulcus; rPPC = right 

posterior parietal cortex; rDPLFC = right dorsolateral prefrontal cortex (BA 46); dACC 

= dorsal anterior cingulate cortex; Pre = pre-training session; Post = post-training 

session. 

 

Figure 2. Trained participants improved their response speed on a visual search 

task due to training. RT analysis results are presented for (A) control condition (B) 

trained condition and (C) untrained condition. Compared to controls, the trained 

participants were faster during the post-training session than during the pre-training 

session in both the trained and untrained conditions. Values express the averaged 

median RTs for each condition and session. * p = 0.05, ** p < 0.001. 

 

Figure 3. Task functional connectivity changes.  In relation to (A) rPPC and dACC, 

we found that, all participants had more connectivity in post-training session than in 

pre-training session, but the control group had more connectivity than the trained group 

in the post-training session, indicating that FC increased with task repetition and then 

returned to the pre-training state with training. In relation to (B) rDLPFC and dACC and 

(C) rPPC and rDLPFC, in general, all the participants, in the trained or control groups, 
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had more connectivity in the post-training session than in the pre-training session. To 

note that all the cross-sectional analysis results yielded no significant group differences 

in pre-training session. * p < 0.05. Abbreviations: rPPC= right posterior parietal cortex; 

rDPLFC= right dorsolateral prefrontal cortex (BA 46); dACC = dorsal anterior 

cingulate cortex; Pre = pre-training session; Post = post-training session.  

 

Figure 4. Resting-state functional connectivity changes and learning prediction. 

(A) The rPPC and the rDLPFC were the regions associated with the visual search task 

training. (B) The trained participants had more rs-FC between rPPC and rDLPFC in the 

post-training session than the control participants and compared to the pre-training 

session connectivity values. (C) In addition, results showed that the trained participants 

with better performance after training, e.g. fast and accurate responses, initially had 

more synchronous FC between these areas. This correlation was found only for trained 

participants but not for controls (see Task learning prediction results). In (C), 

connectivity values correspond to rs-FC mean z-values between rPPC and rDLPFC in 

the pre-training session. RT values represent the response speed during the post-training 

session (trained search > control condition). * p = 0.05. Abbreviations: rPPC= right 

posterior parietal cortex; rDPLFC= right dorsolateral prefrontal cortex (BA 46); Pre = 

pre-training session; Post = post-training session. 
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TABLES  

Table I. Accuracy values. The table summarizes the accuracy values and their SD 

throughout the experiment. The values express the averaged correct responses per 

condition and session (maximum score = 12), and the SD appears in parentheses.  

 

 

PRE-TRAINING SESSION POST-TRAINING SESSION 

 

Control 

Condition 

Trained 

search 

Untrained 

search 

Control 

condition 

Trained 

search 

Untrained 

search 

Trained 

group 

11.95 (0.21) 10.71 (0.64) 10.85 (0.47) 11.86 (0.36) 11.29 (064) 11.06 (0.74) 

Control 

group 

12.00 (0.00) 11.00 (0.71) 10.85 (0.63) 11.95 (0.23) 11.38 (0.67) 11.21 (0.52) 
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Figure 3 
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SUPPLEMENTARY MATERIALS 

 

This document contains the following sections:   

1. Supplementary figures 

1.1. Schematic representation of the experimental procedure 

1.2. Group ICA estimated resting-state networks 

 

2. Complementary analysis 

2.1. Analysis of the differences in signal-to-noise ratio (SNR) between groups and across 

sessions for resting-state FC data and task-FC data.  

2.2. Additional analysis on the variability of the resting-state FC patterns. 

2.3. Additional analysis supporting the resting-state FC prediction analysis.  

2.4. Pairwise seed-based resting-state FC analyses between independent control seed 

regions (primary auditory cortex or primary motor cortex) and visual search task key 

regions.  
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1. SUPPLEMENTARY FIGURES 

 

1.1. Supplementary Figure 1. Schematic representation of the experimental procedure.  

At the top part of the figure, the experiment hypotheses have been summarized according to the 

experiment. The central part of the figure is dedicated to the organization of the experiment. The 

experiment was conducted in one day, and, as can be observed, each participant completed two 

fMRI sessions that took place 45 minutes apart. The trained participants are represented in blue 

(dots and lines), and the control participants in red (dots and lines). Note that only the trained 

group did the training session between the fMRI scans, but both experimental groups had 45 

minutes between scanning sessions.  The control group participants did nothing but rest (i.e., no 

cognitive or mental tasks). At the bottom part of the figure, the organization of the visual search 

task (VST) is displayed.  The experimental design consisted of 42 active blocks and 42 passive 

blocks. The active blocks consisted of: 14 control task blocks, 14 search blocks that 

corresponded to targets B C D F G H, and 14 search blocks that corresponded to targets L M N 

P Q R. The image has been adapted with permission from Bueichekú et al., 2016, NeuroImage 

135, 204–213. 
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1.2. Supplementary Figure 2. Group ICA estimated resting-state networks. Spatial 

maps of six independent components were identified as resting-state networks for both the 

control group and the training group in (A) the pre-training session and (B) the post-training 

session. No statically significant differences were found between groups or across time. 
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2. COMPLEMENTARY ANALYSES 

 

2.1. Analysis of the differences in signal-to-noise ratio (SNR) between groups and 

across sessions for resting-state FC data and task-FC data.  

Differences in signal-to-noise ratio (SNR) may affect FC because low amplitudes of activity 

can be masked by noise, leading to an apparent reduced FC. In order to discard this possibility, 

the level of activity in each ROI was evaluated between the groups and across the sessions. The 

temporal variance in each ROI was extracted in either task data or resting-state data and the 

following comparisons were made: 1) between group comparisons for each experimental 

session for which FC was calculated (Supplementary table 1 and Supplementary table 2); 

and 2) within group comparisons for the pre-training session and the post-training session 

(Supplementary table 3). The analysis results are present below. The lack of differences in any 

of the comparisons support that training effects are not due to an influence of SNR over the FC. 

Results 

Supplementary table 1. Task-FC data: between group comparisons analysis results (trained 

group vs. control group) 

  Pre-training Post-training 

 Df F p F p 

rVisual 1 0.173 0.680 2.000 0.186 

rPPC 1 0.240 0.628 3.416 0.073 

rDLPFC 1 0.051 0.822 1.196 0.282 

dACC 1 0.419 0.522 1.727 0.198 

 

Supplementary table 2. Resting-state FC data: between group comparisons analysis results 

(trained group vs. control group) 

  Pre-training Post-training 

 Df F p F P 

rVisual 1 0.139 0.711 1.845 0.182 

rPPC 1 0.445 0.509 0.303 0.585 

rDLPFC 1 2.599 0.115 0.407 0.527 

dACC 1 0.073 0.789 0.663 0.420 

 

Supplementary table 3. Resting-state FC data: Within group comparisons analysis results  

   Pre-training vs. Post-training 

  Df F p 

rVisual 
Trained  1 0.001 0.926 

Control 1 2.144 0.159 

rPPC 
Trained  1 1.491 0.236 

Control 1 0.045 0.833 

rDLPFC 
Trained  1 0.410 0.529 
Control 1 0.005 0.945 

dACC 
Trained  1 0.923 0.348 

Control 1 0.135 0.717 

 

2.2. Additional analysis on the variability of the resting-state FC patterns. 
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The variability of FC during resting-sate was analyzed between groups and across sessions to 

ensure that resting-state FC patterns did not influence the subsequent brain activity during visual 

search task. In Supplementary table 4, the mean and standard deviation (SD) values of rs-FC 

data of each pair of seeds is presented by a function of group and session. In Supplementary 

table 5, the results of F-tests are presented. No statistically significant differences were found, 

therefore, the variability of rs-FC patterns was equal across groups and sessions.  

Results 

Supplementary table 4. Resting-state mean SDs values for each pair of seeds across 

groups and sessions 

   Pre-training  Post-training 

  N Mean SD Mean SD 

rVisual and rPPC 
Trained group 21 0.629 0.19 -0.014 0.15 

Control group 21 0.479 0.18 -0.016 0.17 

rVisual and rDLPFC 
Trained group 21 -0.993 0.12 -0.091 0.15 

Control group 21 -0.029 0.14 -0.090 0.18 

rVisual and dACC 
Trained group 21 -0.117 0.14 -0.115 0.14 

Control group 21 -0.079 0.16 -0.089 0.19 

rPPC and rDLPFC 
Trained group 21 0.188 0.22 0.343 0.27 

Control group 21 0.213 0.26 0.201 0.23 

rPPC and dACC 
Trained group 21 0.025 0.26 0.142 0.31 

Control group 21 0.088 0.22 0.197 0.20 

rDLPFC and dACC 
Trained group 21 0.454 0.22 0.541 0.25 

Control group 21 0.407 0.16 0.405 0.24 

 

Supplementary table 5. Resting-state F-test for equality of variance analysis results 

  Pre-training Post-training 

 df F p F p 

rVisual and rPPC 1 0.067 0.797 0.001 0.979 

rVisual and rDLPFC 1 2.805 0.102 0.000 0.989 

rVisual and dACC 1 0.659 0.422 0.240 0.627 

rPPC and rDLPFC 1 0.118 0.732 3.288 0.097 

rPPC and dACC 1 0.722 0.401 0.467 0.498 

rDLPFC and dACC 1 0.641 0.428 3.157 0.083 

 

 

2.3. Additional analysis supporting the resting-state FC prediction analysis.  

The second hypothesis of the present study was to test whether pre-training resting-state FC 

was able to predict improvement in behavioral performance after training. We planned to 

conduct a correlation analysis with each seed region pair that showed statistically significant 

changes from the pre-training session to the post-training session and the behavioral data from 
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the post-training session. We found a significant correlation (p < 0.05) between the pre-training 

session rs-FC of rPPC and rDLPFC and the trained condition RTs from the post-training session 

(trained condition > control condition) for trained participants (r = -0.512 p = 0.018 N = 21), 

but not for control participants (r = -0.042 p = 0.856 N = 21).  

The specificity of the training is robust and unique. As we predicted, it only affected one 

pair that showed FC changes after training (only affected to rPPC-rDLPFC), but 

Supplementary table 7 shows that it did not affect other brain regions. Moreover, 

Supplementary table 7 also shows that this correlation was not statistically significant for the 

post-training session RT values of untrained targets. Supplementary table 8 corresponds to the 

results of the Pearson Correlation analysis between pre-training session RT values and all the 

pairs; no statistically significant correlations were found for the trained targets or for the 

untrained targets. Finally, Supplementary table 9 corresponds to the results of the Pearson 

Correlation analysis between pre-training session rs-FC and the difference in RT values across 

sessions. The correlation analysis results for the rPPC – DLPFC pair approached statistical 

significance for the trained targets (trained group: r=0.422, p=0.056; control group: r=-0.04, 

p=0.85). This result indicates that participants with greater reductions in RT values from the 

pre-training to post-training sessions (faster performance after training) had more connectivity 

before training. This result is consistent with the result reported originally. 

Results 

Supplementary table 7. Pearson’s correlation analysis results between pre-training session rs-

FC and post-training session RT values.  

 Post-training session RT values 

 Trained condition > control condition Untrained condition > control condition 

Pre-training session rs-FC  

(pairwise seed-based rs-FC) 

Trained group 

(N=21) 

Control group 

(N=21) 

Trained group 

(N=21) 

Control group 

(N=21) 

rVisual - rPPC 
r = 0.125 

p =0.588 

r = 0.348 

p = 0.123 

r = 0.202 

p = 0.380 

r = -0.244 

p = 0.287 

rVisual - rDLPFC 
r = -0.090 

p =0.698 

r = -0.079 

p =0.733 

r = -0.318 

p =0.161 

r = -0.106 

p =0.647 

rVisual - dACC 
r = -0.138 

p =0.551 

r = -0.122 

p =0.600 

r = -0.044 

p =0.849 

r = -0.136 

p =0.558 

rPPC – rDLPFC 
r = -0.512  

p = 0.018 

r = -0.042 

p =0.856 

r = -0.120 

p =0.603 

r = 0.002 

p =0.992 

rPPC – dACC 
r = -0.232 

p =0.313 

r = -0.258 

p =0.259 

r = -0.472 

p =0.031 

r = -0.167 

p =0.470 

rDLPFC - dACC 
r = 0.049 

p =0.833 

r = 0.342 

p =0.129 

r = -0.455 

p =0.038 

r = 0.222 

p =0.333 

Supplementary table 8. Pearson’s correlation analysis results between pre-training session rs-

FC and pre-training session RT values. 



56 

 

 Pre-training session RT values 

 Trained condition > control condition Untrained condition > control condition 

Pre-training session rs-FC  

(pairwise seed-based rs-FC) 

Trained group 

(N=21) 

Control group 

(N=21) 

Trained group 

(N=21) 

Control group 

(N=21) 

rVisual - rPPC 
r = 0.005 

p =0.984 

r = 0.406 

p =0.068 

r = 0.193 

p =0.401 

r = -0.081 

p =0.727 

rVisual - rDLPFC 
r = -0.530 

p =0.013 

r = -0.041 

p =0.860 

r = -0.358 

p =0.111 

r = -0.206 

p =0.370 

rVisual - dACC 
r = -0.269 

p =0.238 

r = 0.084 

p =0.717 

r = -0.172 

p =0.456 

r = 0.145 

p =0.531 

rPPC – rDLPFC 
r = -0.350 

p = 0.120 

r = -0.303 

p = 0.182 

r = -0.201 

p = 0.383 

r = -0.148 

p = 0.522 

rPPC – dACC 
r = -0.430 

p =0.052 

r = -0.534 

p =0.013 

r = -0.549 

p =0.010 

r = -0.292 

p =0.198 

rDLPFC - dACC 
r = -0.073 

p =0.755 

r = 0.249 

p =0.277 

r = -0.384 

p =0.086 

r = -0.073 

p =0.754 

 

Supplementary table 9. Pearson’s correlation analysis results between pre-training session rs-

FC and the difference in RT values across sessions (pre-training session > post-training session 

RT). 

 Pre-training session > Post-training session RT values 

 Trained condition > control condition Untrained condition > control condition 

Pre-training session rs-FC  

(pairwise seed-based rs-FC) 

Trained group 

(N=21) 

Control group 

(N=21) 

Trained group 

(N=21) 

Control group 

(N=21) 

rVisual - rPPC 
r = -0.148 

p =0.522 

r = -0.034 

p =0.884 

r = -0.134 

p =0.562 

r = 0.215 

p =0.350 

rVisual - rDLPFC 
r = -0.398 

p =0.074 

r = -0.130 

p =0.576 

r = 0.161 

p =0.486 

r = -0.254 

p =0.266 

rVisual - dACC 
r = -0.158 

p =0.495 

r = -0.119 

p =0.607 

r = -0.061 

p =0.794 

r = -0.014 

p =0.951 

rPPC – rDLPFC 
r = 0.422 

p = 0.056 

r = -0.043 

p = 0.853 

r = 0.240 

p = 0.295 

r = 0.152 

p = 0.510 

rPPC – dACC 
r = 0.090 

p =0.696 

r = -0.280 

p =0.220 

r = 0.405 

p =0.068 

r = 0.049 

p =0.833 

rDLPFC - dACC 
r = -0.13 

p =0.954 

r = -0.007 

p =0.975 

r = 0.332 

p =0.141 

r = -0.299 

p =0.189 
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2.4. Resting state FC analysis with independent seed brain regions 

Seed based rs-FC analyses with primary auditory or motor cortex have been conducted to 

add reliability to the main FC results. Seed based rs-FC analyses were conducted between our 

original four ROIs (right V1, right PPC, dACC and right DLPFC) and two different control 

ROIs (primary auditory cortex and primary motor cortex). We found no statistically significant 

differences from pre-training to post-training session in rs-FC as a result of time or training. 

Please find below more details of this analysis (Supplementary table 10 and Supplementary 

table 11).  

The control seed regions were placed at the primary auditory cortex (MNI: 46, -18, 8) and 

at the primary motor cortex (MNI: 32, -10, 50). The seeds were defined as 6-mm radius spheres. 

In the picture below, both seed regions have been overlaid along with the visual search task 

general activation. The task activation results (visual search > control task) have been extracted 

from a previous visual search task study that used the exact same task (Bueichekú et al., 2016, 

NeuroImage 135, 204–213, please see Figure 3). None of the control seed regions overlap with 

the brain activation generated by the visual search task. For each control seed region and task 

region pair (i.e., primary motor cortex seed – PPC seed) we conducted a 2x2 ANOVA with the 

Experimental Group (Trained group vs. Control group) as the between-subjects factor, and 

Session (Pre-training session vs. Post-training session) as the within-subjects factor, using the 

IBM SPSS Statistics software. Results are presented below.  

 

 

In this image the auditory cortex seed and the motor cortex seed have been 

represented in blue, and the brain activation associated with the visual search task is 

represented in warm gradient. The color bar represents t-values. Results are p<0.05 

FWE cluster corrected (cluster size criterion k = 116 voxels). L = left. R = right. 

Coordinates are in the MNI space. 
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Results  

Supplementary table 10. Primary auditory cortex seed (rAud) 

Pair  Session Session x Group 

rAud – rVisual F =2.362 p =0.132 F =0.242 p =0.625 

rAud – rPPC F = 2.211 p = 0.145 F = 0.415 p = 0.523 

rAud – rDLPFC F = 0.000 p = 0.996 F = 0.110 p = 0.742 

rAud – dACC  F = 3.168 p = 0.083 F = 0.451 p = 0.506 

 

Supplementary table 11. Primary motor cortex seed (rMot) 

Pair Session Session x Group 

rMot – rVisual F =0.151 p = 0.700 F = 0.024 p = 0.878 

rMot – rPPC F = 1.045 p = 0.313 F = 0.143 p = 0.708 

rMot – rDLPFC F =  0.012 p = 0.913 F = 0.059 p = 0.809 

rMot – dACC  F = 0.772 p = 0.385 F = 0.001 p = 0.971 

 

 




