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Smart specialization policy in the European Union: relatedness,
knowledge complexity and regional diversification
Pierre-Alexandre Ballanda , Ron Boschmab, Joan Crespoc and David L. Rigbyd

ABSTRACT
The operationalization of smart specialization policy has been rather limited because a coherent set of analytical tools to
guide the policy directives remains elusive. We propose a policy framework around the concepts of relatedness and
knowledge complexity. We show that diversifying into more complex technologies is attractive but difficult for European
Union regions to accomplish. Regions can overcome this diversification dilemma by developing new complex
technologies that build on local related capabilities. We use these findings to construct a policy framework for smart
specialization that highlights the potential risks and rewards for regions of adopting competing diversification strategies.
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INTRODUCTION

In a market economy, the rapidity of technological change
forces continuous adaptation as innovation and economic
crises reshuffle the competitive standing of firms and
regions alike. Within this environment, the capacity to
develop new ideas, to recombine existing knowledge assets
and blaze new technological trajectories is imagined to offer
at least temporary respite to the relentless pressure of falling
costs. Facing a variety of technological possibilities and an
uncertain future, however, few economic agents are in a
position to identify the best way forward. It was against
this backdrop that the European Union (EU) forged the
ambitious growth strategy called Europe 2020.

At the core of this development strategy is smart
specialization, a vision of regional growth possibilities
built around existing place-based capabilities (Barca,
2009; Foray, David, & Hall, 2009, 2011; McCann &
Ortega-Argilés, 2015). The goal of smart specialization is
not to make the economic structure of regions more

specialized (i.e., less diversified), but instead to leverage
existing strengths, to identify hidden opportunities and to
generate novel platforms upon which regions can build
competitive advantage in high value-added activities.
Smart specialization emanated from the idea that regions
across the EU have different economic and institutional
structures that shape possibilities for their future develop-
ment (Kroll, 2015). The result was a clear denunciation
of the top-down ‘one-size-fits-all’ policy that had led the
EU to fund nation-states rather than individual regions,
and fashionable sectoral targets rather than realistic indus-
trial foundations (Asheim, Grillitsch, & Trippl, 2016;
Tödtling & Trippl, 2005).

The question remained: how does one identify the tar-
gets of place-based development policy? An answer was
readily available in the recommendations of the Knowledge
for Growth Expert Group (Foray et al., 2009). Their call
for smart specialization focused on building competitive
advantage in research domains and sectors where regions
possessed strengths and leveraging those capabilities
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through diversification into related activities (Foray et al.,
2012). In important ways, this work built a series of policy
prescriptions around the concept of heterogeneity in
regional knowledge bases and path dependence in their
evolution (Rigby & Essletzbichler, 1997) and the related
variety concept (Frenken, Van Oort, & Verburg, 2007).
However, the operationalization of smart specialization
has been criticized as a ‘perfect example of policy running
ahead of theory’ (Foray, David, & Hall, 2011, p. 1), lacking
an ‘evidence base’ (Morgan, 2015; Unterlass et al., 2015),
and building on ‘anecdotal evidence rather than the appli-
cation of theoretically grounded methodologies’ (Iacobucci
& Guzzini, 2016, p. 1511; see also Santoalha, 2016).

This paper aims to contribute to this debate in three
ways. First, it provides a theoretical framework for smart
specialization around the concepts of relatedness (Hidalgo,
Klinger, Barabassi, & Hausmann, 2007; Neffke, Henning,
& Boschma, 2011) and knowledge complexity (Balland &
Rigby, 2017; Hidalgo & Hausmann, 2009). Second, it
assesses this policy framework empirically and provides
new evidence on how EU regions develop new technologi-
cal fields. To achieve this goal, we identify existing knowl-
edge bases of EU regions, develop a measure of relatedness
between technological categories using data from the Euro-
pean Patent Office (EPO) and calculate a knowledge com-
plexity measure of technology classes using network-based
techniques. Third, it combines the relatedness and com-
plexity measures in a smart specialization policy tool that
assesses the costs and benefits of alternative technological
trajectories in each region.

The paper is organized as follows. The next section pre-
sents the theoretical concepts of relatedness and knowledge
complexity as key building blocks of smart specialization
policy. The third section shows how these may be operatio-
nalized using patent documents and network-based tech-
niques. The fourth section presents new econometric
evidence on how relatedness and knowledge complexity
have shaped diversification patterns in European regions
between 1990 and 2009. The fifth section combines the
relatedness and complexity measures in a smart specializ-
ation policy framework. The sixth section applies this fra-
mework to examine diversification prospects across a
series of EU regions. The seventh section provides a brief
conclusion and discusses some remaining questions related
to smart specialization policy.

BUILDING BLOCKS OF SMART
SPECIALIZATION

This section connects the smart specialization literature
(Foray et al., 2009, 2011) with the regional diversification
(Hidalgo et al., 2007; Neffke et al., 2011) and economic
complexity literature (Hidalgo & Hausmann, 2009). We
argue that relatedness and knowledge complexity are key
building blocks of smart specialization, which we envisage
as a place-based policy in which regions aim at renewing
and upgrading their economic structure by building on
their existing capabilities (Boschma, 2014).

Technological relatedness and regional
diversification
Competition in today’s global economy rests heavily on
innovation as many of the standard price-based forms of
economic advantage have been flattened. As the overall
stock of knowledge has expanded, a division of labour dis-
tributed its parts widely across agents and different regions.
Thus, regional economies are increasingly understood as
localized communities of practice that reflect place-bound
sets of technological capabilities, routines and institutional
arrangements (Storper, 1997).With knowledge production
increasingly conceived as a process of recombining existing
ideas (Weitzman, 1998), so regional economies are ima-
gined to move along place-based technological trajectories,
where processes of search and exploration are guided by
existing knowledge capabilities and well-established rou-
tines (Dosi, 1982; Rigby & Essletzbichler, 1997). This is
not to argue that knowledge spillovers and other forms of
knowledge sharing are always localized (Bathelt, Malm-
berg, & Maskell, 2004). However, the tacit nature of
much knowledge means that geography continues to play
a critical role in the emergence and evolution of technology,
especially that which is complex and more valuable, for
many kinds of knowledge do not travel well (Balland &
Rigby, 2017; Maskell & Malmberg, 1999; Sorenson, Riv-
kin, & Fleming, 2006).

The idea that new technology is born of existing ideas
has rekindled the debate on the costs and benefits of regional
diversity (Balland et al. 2015; Essletzbichler, 2015). Fren-
ken et al. (2007) suggest that more important than the over-
all variety of sectors found in different regions is the extent
to which elements of that variety are related. The relatedness
concept rests on the idea that knowledge has an architecture
that is based upon similarities and differences in the way that
different types of knowledge can be used. When knowledge
subsets are close substitutes for one another, or when they
demand similar sets of cognitive capabilities and skills for
their use, we think of them as being related or proximate
to one another in some form of ‘knowledge space’ (Breschi,
Lissoni, & Malerba, 2003). Organizations compete
through extending their knowledge domains and their
capacity to use more components of the knowledge space.
They do this by search and exploration of different parts
of that space. Search costs rise rapidly around the boundaries
of existing expertise and thus the cost of diversification
hinges critically on the distance between knowledge com-
ponents that are known and those that remain as yet
unknown (Atkinson & Stiglitz, 1969; Chatterjee & Wer-
nerfelt, 1991; Webber, Sheppard, & Rigby, 1992).

For Frenken and Boschma (2007), diversification is
imagined as a branching process that gives rise to new
activities within regions. Related diversification of cities
and regions is depicted as a higher-order reflection of
micro-level dynamics in which individuals and organiz-
ations extend the scope of their activities around the tech-
nological competencies and the behavioural routines that
they accumulate over time (Balland, 2016). Thus, the
emergence of new technologies and new sectors within
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regions is not random, rather it reflects the existing collec-
tive capacity of agents that produce regions with distinctive
technological and industrial profiles. A large and expanding
volume of empirical studies provides supporting evidence
(Boschma, 2017). Hidalgo et al. (2007) explored how
countries expand their mix of exports around the products
in which they already established a comparative advantage.
Neffke et al. (2011) used product portfolios of manufactur-
ing plants to understand sectoral relatedness and exploited
this methodology to examine industrial diversification in
Swedish regions. Along similar lines, Rigby (2015) and
Boschma, Balland, and Kogler (2015) used measures of
relatedness between patent classes to predict the evolution
of technological change within US cities. At a more global
scale, Petralia, Balland, and Morrison (2017) analyzed
technological branching using patent applications by
inventors in 65 countries.

Based on this discussion, we formulate two hypotheses
on relatedness that will be tested for European regions, and
which will be used in the fifth section to formulate a smart
specialization policy framework in which relatedness
reflects the difficulty or cost of moving from one technol-
ogy to another.

Hypothesis 1: Regions are more likely to develop new specializ-

ations in technological activities that are related to their knowl-

edge bases.

Hypothesis 2: Regions are more likely to experience technological

growth in technological activities that are related to their knowl-

edge bases.

Knowledge complexity and regional
diversification
Knowledge bases of regions vary in terms not only of their
technological composition but also of their value. The value
of knowledge types or technologies, like most goods,
reflects a balance of supply and demand. Technologies
that are simple to copy, and which can be moved easily
over space, tend to be of little value and thus do not provide
a source of long-run rents. Technologies that are more
complex and difficult to imitate are more sticky in space:
they hold promise as sources of competitive advantage for
the firms and regions in which they are generated. A stan-
dard distinction separates forms of knowledge that are
codified from that which is tacit (Maskell & Malmberg,
1999). Because tacit knowledge is built around interperso-
nal contact and collections of routines embodied in individ-
ual firms and localized networks, it tends to be rooted in
place. Tacit knowledge is viewed as a primary source of
competitive advantage for firms (Kogut & Zander, 1992)
and regions (Asheim & Gertler, 2005; Lawson & Lorenz,
1999). Though competition renders much that is tacit
codifiable over time, continuous learning and recombinant
innovation provide sustained economic advantage to more
technologically dynamic regions.

Which regions hold the most valuable knowledge,
especially that which is tacit and therefore difficult to access?

So far it has proven difficult to answer this question, at least
in part because there are no readily available measures of tacit
knowledge, let alone its spatial distribution. Kogut and Zan-
der (1993) argue that complexity is a critical dimension of
what makes some knowledge tacit. After Simon (1962),
the complexity of a technology, a subset of knowledge, is
understood as a function of the number of components out
of which it is constructed and the interdependence of those
components (Fleming & Sorenson, 2001). Hidalgo and
Hausmann (2009) developed an idea of product and place
complexity based on the product-level diversity of national
economies and the ubiquity (or range) of countries across
which individual products are produced. They argue that
countries develop different core competences: countries that
amass larger sets of capabilities tend to produce more special-
ized products that are hard to copy or imitate by others. The
complexity of an economy is embodied in the wide range of
knowledge or capabilities that are combined to make pro-
ducts: less ubiquitous products are more likely to require a
greater variety of capabilities. These specialized (complex)
goods tend to be produced by relatively few national econom-
ies and form the basis for long-run competitive advantage.
Complex goods also tend to be in their early stages of devel-
opment, which enhances further their growth potential. Bal-
land and Rigby (2017) report wide variations in the
complexity of knowledge produced across US cities that cor-
relate highly with longer-run patterns of economic perform-
ance, with only a fewmetropolitan areas capable of producing
the most complex technologies.

It should be clear that regions benefit from building
comparative advantage in complex technologies. Regions
that are early innovators lock in growth around new tech-
nologies based on cumulative technological advantages
and quasi-monopolistic rents. However, complex technol-
ogies are relatively scarce and it is therefore difficult for
agents that comprise regional economies to develop com-
petences in these fields. These two tendencies give rise to
a ‘diversification dilemma’. On the one hand, the search
for technological rents pushes regional actors to seek out
complex knowledge possibilities. On the other hand, com-
plex technologies remain out of reach for most because they
lack the diversity of capabilities out of which complex tech-
nologies are derived. The general solution to the ‘diversifi-
cation dilemma’ is for regional economies to develop their
existing knowledge cores and to expand their technological
repertoires along related trajectories that lead toward more
complex technologies.

Based on this discussion, we formulate four hypotheses
on complexity that will be tested for European regions, and
which will be used in the fifth section to formulate a smart
specialization policy framework in which complexity is
associated with the benefits of moving from one technology
to another:

Hypothesis 3: Regions are less likely to develop new specializ-

ations in complex technological activities.

Hypothesis 4: Regions are more likely to experience technological

growth in complex technological activities.
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Hypothesis 5: Regions are more likely to develop new specializ-

ations in complex technological activities when related to their

knowledge bases.

Hypothesis 6: Regions are more likely to experience technological

growth in complex technological activities when related to their

knowledge bases.

DATA AND METHODS

A key challenge for smart specialization policy is to develop
a framework to identify systematically technological oppor-
tunities in regions. We define technological opportunity as
the potential to develop critical capacity in a technology
that (1) draws on the specific knowledge bases of the region
and (2) leads to technological upgrading. Technological
opportunities can be identified as those technologies in
which a region does not yet possess critical capacity but
that have a high degree of relatedness with the region’s
existing knowledge base, and which will enhance the
knowledge complexity of the region. We use patent data
to measure relatedness between different sets of knowledge
(captured by patent classes) and the complexity value of
technologies. The relatedness measure provides an indi-
cator of the cost of moving from one technology to another,
while complexity provides a way of assessing the potential
benefits of such movement.

We use the OECD-REGPAT1 database to identify
technological fields and compute measures of relatedness
and knowledge complexity. TheOECD-REGPATderives
from PATSTAT: it contains all patent applications to the
EPO between 1977 and 2011. Patent applications are
regionalized at the NUTS-2 level by inventor address.2

Although the geographical coverage of the data spans all
OECD countries, the focus is restricted to the EU-28
plus Iceland, Norway and Switzerland. Patent applications
are classified in technological domains according to the
International Patent Classification (IPC). We use Cam-
bridge Econometrics tomeasure regional population, popu-
lation density and gross domestic product (GDP) per capita.

Measuring relatedness between technologies
To measure technological relatedness between patent
classes, we use the distribution of knowledge claims by
IPC class on each patent across the EU as a whole, follow-
ing Boschma et al. (2015) and Rigby (2015). This is done
by counting the number of EU patents for a given period
that contains a co-class pair, say i and j, and then standar-
dizing this count by the total number of patents that record
knowledge claims in IPC classes i and j. Relatedness is,
therefore, a standardized measure of the frequency with
which two IPC classes appear on the same patent. We
use a standardization method (Steijn, 2017) based on
Van Eck and Waltman (2009), as implemented in the
relatedness function of the EconGeo R package (Balland,
2017).3 The relatedness between technologies can be
formalized as a network, the knowledge space. The knowl-
edge space is an n*n network where the individual nodes
i (i ¼ 1,… , n) represent technological categories (IPC

classes), and the links between them indicate their degree
of relatedness. We compute relatedness (fi,j,t) between
each pair of technologies i and j for five different non-over-
lapping periods: 1985–89, 1990–94, 1995–99, 2000–04
and 2005–09. Figure 1 shows the relatedness network for
the EU for the period 2005–09. Individual nodes are
coloured according to the five aggregate technological fields
defined by Schmoch (2008).4

While Figure 1 displays the relatedness between tech-
nology pairings for the EU as a whole, it is also possible
to identify the knowledge structure of individual regions
within the EU. We are particularly interested in exploring
the knowledge cores of regions (Heimeriks & Balland,
2016), or how much of the technology produced within
each NUTS-2 region (as captured by number of patents)
tends to cluster around individual technological fields.
Thus, for each region r, we calculated the density of tech-
nology production in the vicinity of individual technologies
i. Following Hidalgo et al. (2007) and Boschma et al.
(2015), the density of knowledge production around a
given technology i in region r at time t is derived from
the technological relatedness fi,j,t of technology i to all
other technologies j in which the region has relative tech-
nological advantage (RTA), divided by the sum of techno-
logical relatedness of technology i to all the other
technologies j in the reference region (Europe) at time t:5

RELATEDNESS DENSITYi,r,t =

∑

j[r,j=i

fij

∑

j=i

fij

∗100

RTA is a binary variable that assumes the value 1 when a
region possesses a greater share of patents in technology
class i than the reference region (the EU as a whole); and
0 otherwise. A region r has RTA in production of techno-
logical knowledge i (r ¼ 1,… , n; i ¼ 1,… , k) such that
RTAt

r, i = 1 if:

patentstr, i/
∑

i patents
t
r, i∑

r patents
t
r, i/

∑
r

∑
i patents

t
r, i

. 1

Figure 2 shows for all European regions the average relat-
edness density between existing technologies in a region
and all potential alternative technologies for the period
2005–09. The higher the region’s score on relatedness den-
sity, the closer, on average, its existing set of technologies to
those technologies that are missing in the region. In other
words, it reflects an overall average score of the potential of
a region to develop new technologies. Figure 2 shows there
are huge differences in branching potential between
countries and between regions in Europe. In general, Cen-
tral Europe (north Italy, south Germany, Austria) shows
high potentials to develop new technologies, in contrast
to many regions in southern and eastern Europe where
branching opportunities are much lower.

Measuring knowledge complexity
Which technologies and regions hold the most valuable
knowledge, especially that which is tacit and thus difficult
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to access? A long literature explores the characteristics and
value of innovations (Abernathy & Clark, 1985). Using
patent data, it is common to assess the quality and value
of knowledge using forward citations (Trajtenberg, 1990)
or composite indicators including citations, family size,

renewals and litigation (Castaldi, Frenken, & Los, 2015;
Harhoff, Scherer, & Vopel, 2003). However, it remains
unclear whether such measures accurately capture the
characteristics of knowledge stocks that generate value.
Maskell and Malmberg (1999) suggest that tacit forms of

Figure 1. European knowledge space.

Figure 2. Branching opportunities of European regions.
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knowledge are valuable because they are difficult to repli-
cate. But this raises the problem of measuring the tacit
dimension of knowledge. Kogut and Zander (1993)
argue that complexity is a critical component of tacit
knowledge and thus propose complexity as a proxy measure
of tacit knowledge.

How then to measure knowledge complexity? From
Simon (1962), complexity is understood as a function of
the number of components out of which knowledge is con-
structed and the interdependence of those components.
Fleming and Sorenson (2001) develop these ideas in a
measure of complexity for individual patents that captures
the difficulty of combining knowledge subsets represented
by different technology subclasses in patent data. Hidalgo
and Hausmann (2009), in their analysis of product exports
by country, offer an alternative measure of complexity that
reflects the difficulty of mastering the capabilities required
to export a particular commodity (indexed by the rarity of
exports of a given type), the diversity of capabilities held
by different countries and the relatedness between them.
An analogy with the board game Scrabble is often used
to explicate understanding of this measure. Thus, those
countries (players) that have rare capabilities (letters) tend
to produce more complex outputs (words), especially
when those countries possess broader sets of related capa-
bilities (a greater variety of letters that may be combined
to produce many different words).

Using patent data, Balland and Rigby (2017) explore
the technological complexity of US metropolitan regions
between 1976 and 2005. They outline an eigenvector
reformulation of the method of reflections proposed by
Hidalgo and Hausmann (2009), that we employ below.
The starting point of the knowledge complexity index is
the binary-valued network that connects regions to the
knowledge classes in which they have an RTA, rep-
resented as an n × k two-mode binary adjacency matrix
(M). The matrix (M) has dimension n ¼ 282 regions
(NUTS-2) by k ¼ 33 technological domains (two-digit
level),6 as proposed by Schmoch (2008). Following our
calculations of relatedness, we divide the years for which
we have patent data into six periods of five years each,
and we construct the two-mode binary adjacency matrix
(M) for each of the periods: 1985–89, 1990–94, 1995–
99, 2000–04 and 2005–09.

To construct our index of knowledge complexity, the
matrix (M) is row standardized along with its transpose
(MT). The product matrix (B) = (MT∗M) is a square
matrix with dimension equal to the number of technologi-
cal classes (33). The technological complexity index (TCI)
for each of these classes is given by the elements of the
second eigenvector �Q of matrix (B). These elements are
standardized as:

TCIi =
�Q− k�Ql
stdev (Q)

The technological classification shown in Table A1 in
Appendix A in the supplemental data online corresponds
to the two-digit level of IPC, and is further broken down

at the three-digit level for the empirical analysis. Table
A1 shows that the most complex technologies are related
to digital communication, computer technology, biotech-
nology and semiconductors in the period 2005–09. The
least complex ones belong to textiles, mechanical elements,
materials and metallurgy.

RELATEDNESS, KNOWLEDGE
COMPLEXITY AND DIVERSIFICATION IN
EUROPEAN UNION REGIONS

This section presents the results of two econometric models
that analyze: (1) the probability that a region develops a
new RTA in a given technology (entry); and (2) the growth
rate of technologies in regions, as measured by the growth
of patents in a given technology (growth). Following the
theoretical framework, the main variables of interest are
relatedness density between a given technology and the over-
all technological portfolio of a region (i.e., proximity to
existing technologies) and the knowledge complexity of tech-
nologies (i.e., potential upgrading of technological
structure).

We also include control variables: (1) four variables at
the regional level, i.e., population (log), GDP per capita,
population density and technological stock (the total num-
ber of technological claims in a region); and (2) one variable
at the technological level, i.e., technological size (the total
number of technological claims of a technology). Popu-
lation allows one to account for different sizes of regions.
The level of economic development (GDP per capita) is
an important driver of technological diversification (Petra-
lia et al., 2017). We included population density as a proxy
for agglomeration economies (Boschma et al., 2015), and
technological stock as a proxy for the number of ideas
that could potentially be combined in a given region or
for a given technology. Table A2 in Appendix A in the
supplemental data online provides summary statistics for
the variables.

All specifications are estimated at the region-technol-
ogy level. We use a linear probability model (LPM) to
assess the probability that a region specializes in a new
technological field (entry) using the following specification
(a similar econometric model is used for the growth
models):

ENTRYr,i,t = b1RELATEDNESS DENSITYr,i,t−1

+ b2KNOWLEDGE COMPLEXITYi,t−1

+ b3REGIONSr,t−1 + b4TECHSi,t−1

+ wr + at + 1r,i,t

We expect a positive coefficient for relatedness density in
both the entry model (hypothesis 1) and the growth
model (hypothesis 2), and a negative coefficient for com-
plexity in the entry model (hypothesis 3) and a positive
one in the growth model (hypothesis 4). The baseline spe-
cification is a two-way fixed-effects model where wr is a
region fixed effect, at is a time fixed effect and 1i,c,t is a
regression residual. Since errors are correlated within
regions and technologies, the regression results presented
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in all regression outputs are adjusted for clustering at the
region and technology level. Our panel consists of data
for 282 NUTS-2 regions and 617 technologies (IPC)
over the period 1985–2009. We average the data over
non-overlapping five-year periods, denoted by t. To dam-
pen potential endogeneity issues, all the independent vari-
ables are lagged by one period, denoted by t – 1.

Entry models – full sample
In all entry7 models in Table 1,8 we find that relatedness
density has a positive and significant effect on the probability
that a region specializes (RTA > 1) in a new technological
field, which is consistent with other findings (Balland,
2016; Boschma et al., 2015; Rigby, 2015). The effect of
relatedness is also strong: an increase of 10% in relatedness
density is associated with a 23–26% relative increase in the
probability of entry.9 The effect of knowledge complexity
on entry is more ambiguous. The sign for knowledge com-
plexity is positive and significant in the simplest specification
(model 2), still positive but insignificant when regional and
technology controls are added (model 4), and negative and
significant in the fixed-effect model (model 5). Overall, the
effect is always small: when the complexity of a technology
goes up by 10 points (on a scale of 0–100), the relative like-
lihood that a region specializes in this technology increases by
0.30% in the simplest specification and decreases by 0.35% in
the fixed-effects specification. This result might indicate
the ‘diversification dilemma’ mentioned above: complex
knowledge is more attractive (a positive effect on entry) but
at the same time also more difficult to produce (a negative
effect on entry). Therefore, the relationship between knowl-
edge complexity and new specialization is not linear and
might be region specific (Petralia et al., 2017; Pinheiro,
Alshamsi, Hartmann, Boschma, & Hidalgo, 2018).

Entry models for high and low levels of
relatedness
To investigate this further and test hypothesis 5, we split
the sample between observations with high levels of relat-
edness and observations with a low level of relatedness.
The results are presented in Table 2.

The main result is that the effect of complexity on entry
appears to be conditional on the level of relatedness. When
relatedness is high, i.e., when models include only the top
10% of region-technology observations in terms of related-
ness density,10 knowledge complexity has a positive, sig-
nificant impact on the development of new technologies.
When the complexity of a technology goes up by 10 points,
the likelihood that a region will develop this technology
increases by 1.3% in the simplest specification, which is
five times higher than what was found in the specifications
unconditional to relatedness. In the more conservative
fixed-effects specification, complexity is still positive and
significant. What is interesting is that when relatedness is
low, i.e., when models include only the bottom 10% of
region-technology observations in terms of relatedness
density, complexity never has a significant impact on the
development of new technologies. What these results indi-
cate is that relatedness conditions access to complex

technologies and tends to solve the ‘diversification
dilemma’: when relatedness is high, regions are more likely
to diversify into complex technologies, confirming hypoth-
esis 5.

Growth models – full sample
To investigate further the impact of technological related-
ness and knowledge complexity on sustainable specializ-
ations, we now turn to technological growth models in
Table 3.

We find that both relatedness and complexity have a
positive, strong and statistically significant impact on tech-
nological growth at the regional level, confirming hypoth-
eses 2 and 4. This pattern holds across all econometric
specifications. We find that an increase of relatedness den-
sity by 10 points is associated with an increase in techno-
logical growth by about 2.0–4.64%. In contrast to the
entry models, the impact of knowledge complexity is now
in the same order of magnitude. An increase in complexity
by 10 points is now associated with an increase in techno-
logical growth by about 1.2–2.0%. This means that once
regions manage to diversify into more complex technol-
ogies, they tend to experience higher technological growth.
Apparently, the most difficult step for regions is to enter
complex technological fields, but the rewards of techno-
logical upgrading seem to be fairly strong.

Growth models for high and low levels of
relatedness
As for the entry models, to test hypothesis 6 we now split
the sample into observations with high or low levels of
relatedness. The results are presented in Table 4.

We find results in line with the entry models. Regions are
more likely to experience technological growth if they
specialize in complex technologies that are related to their
capabilities, confirming hypothesis 6. When relatedness is
high, i.e., when models include only the top 10% of
region-technology observations in terms of relatedness den-
sity, complexity has a positive, significant impact on techno-
logical growth.When the complexity of a technology goes up
by 10 points, technological growth increases by about 2.27–
3.25%. When relatedness is low, however, i.e., when models
include only the bottom 10% of region-technology obser-
vations in terms of relatedness density, complexity tends to
have a negative impact, though it is non-significant. In the
fixed-effect specification (for low complexity), the negative
coefficient is statistically significant, though its impact is
small (–0.3% growth for a 10-point increase). Therefore,
relatedness conditions technological growth in regions,
suggesting that regions need to upgrade their technological
structure by building on related, pre-existing capabilities.

FRAMEWORK FOR SMART
SPECIALIZATION

We now formalize the implications of these results into a
framework for smart specialization. We present a frame-
work to identify systematically technological opportunities
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for regions, based on the relatedness density and knowledge
complexity of individual technologies. This framework
reflects the fact that regions have different sets of core com-
petences, and thus a top-down ‘one-size-fits-all’ model
built around picking champions is unlikely to be successful.
Instead, we offer a model for smart specialization built
around relatedness that demands a bottom-up approach.
This framework could be used to identify hidden techno-
logical opportunities, avoid unrealistic investments and
assess how entrepreneurial discoveries that emerge from
regional actors fit in the overall economic landscape of
the region.

This framework is presented in Figure 3. Operationali-
zation requires identification of the knowledge base of
regions to which a specific set of technological possibilities
is tailored. The framework uses the relatedness measure to
map technologies in which the region does not yet possess
an RTA but which are relatively close to the region’s exist-
ing technology core. Relatedness measures allow precise
mapping of the accessibility of new regional growth paths
and thus an accounting of the costs of their deployment.
An index of the relative ease with which a region might
be able to develop an RTA in a new technology is defined
along the x-axis. The y-axis reflects the complexity of all

technologies in which the region does not have an RTA.
Thus, for each region, the quadrants in the x–y space of
Figure 3 represent the relatedness between the region’s
knowledge base and each technology for which the RTA
does not exist in the region, and a measure of how the
development of the RTA in each of these technologies
would shift the region’s overall knowledge complexity.
Hausmann et al. (2014) proposed a similar strategy to
identify future economic opportunities for countries.

Table 1. Entry models – full sample.
Dependent variable: Entry (¼ 1) | 1990–2009

Baseline Complexity Controls Full model Full model (FE)
(1) (2) (3) (4) (5)

Constant 0.1632872***

(0.0005543)

0.1632945***

(0.0005543)

0.1498963***

(0.0005242)

0.1639320***

(0.0005722)

–0.0117608

(0.0255653)

Relatedness Density 0.0042477***

(0.0000388)

0.0042494***

(0.0000388)

0.0041635***

(0.0000419)

0.0037696***

(0.0000449)

Knowledge Complexity 0.0000459*

(0.0000199)

0.0000354

(0.0000211)

–0.0000575**

(0.0000215)

Population (log) 0.0322163***

(0.0008129)

0.0172538***

(0.0008150)

–0.1155466***

(0.0148724)

GDP per capita 0.0000020***

(0.0000001)

0.0000005***

(0.0000001)

0.0000017***

(0.0000003)

Population Density –0.0000090***

(0.0000007)

–0.0000030***

(0.0000007)

0.0000198

(0.0000122)

Technological stock –0.0000022***

(0.0000001)

–0.0000022***

(0.0000001)

–0.0000023***

(0.0000002)

Technological size 0.0000004**

(0.0000002)

0.00000005

(0.0000002)

0.0000013***

(0.0000002)

Region fixed effects No No No No Yes

Time fixed effects No No No No Yes

Observations 498,785 498,785 466,814 466,814 466,814

R2 0.0303005 0.0303106 0.0040004 0.0306804 0.0371538

Adjusted R2 0.0302985 0.0303068 0.0039897 0.0306659 0.0366399

Notes: The dependent variable entry equals 1 if a region r gains a new relative technological advantage (RTA) in a given technology i during the correspond-
ing five-year window; and 0 otherwise. All independent variables are mean centred and lagged by one period. Heteroskedasticity-robust standard errors
(clustered at the region and technology level) are shown in parentheses.
Coefficients are statistically significant at the *p<0.05, **p<0.01 and ***p<0.001 level.

Figure 3. Framework for smart specialization.
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Our smart specialization policy framework (Figure 3)
allows policy-makers to weigh the relative ease of develop-
ing a new technology in a region in relation to the gains in
knowledge complexity. Technologies with high relatedness
represent new technological possibilities that are closely
connected to the current knowledge base of the region.
These technologies might reasonably be developed at rela-
tively low cost and thus represent a low-risk strategy for the
region. Technologies with a low level of relatedness in
relation to a region’s existing knowledge base represent
new techniques that are distant from the region’s existing
specializations and for which development is likely to be
more costly, embodying greater risk. Each of these poten-
tial technology types is associated with a change in the
region’s complexity or the value of the knowledge gener-
ated in the region. Potential new technologies that have
high complexity are likely to add considerably to the com-
plexity of the region and the overall value of the region’s
knowledge assets, in contrast to potential new technologies
with low complexity.

The four quadrants of Figure 3 highlight the cost–
benefit trade-off that undergirds smart specialization

policy. An attractive smart specialization approach is
the one that supports potential technologies that occupy
the north-east quadrant of Figure 3, for these technol-
ogies promise above-average returns and can be devel-
oped at relatively low risk. We refer to that as the
‘high road’ policy. In contrast, a policy focus on potential
technologies in the south-west quadrant represent tech-
nologies that are far removed from the existing knowl-
edge base of the region and their development is thus
risky. Alongside the risk, these technologies are unlikely
to raise the complexity value of the regional knowledge
base. Therefore, we refer to such a policy as a ‘dead-
end’ policy. The north-west quadrant reflects a poten-
tially high-benefit strategy, but it is not rooted in regional
capabilities and therefore likely to fail due to high risks.
This policy aims at developing new technologies from
scratch, which we therefore refer to as a ‘casino’ policy.
The fourth policy option focuses on technologies in the
south-east quadrant, which reflects a relatively low-risk
strategy because it builds on related capabilities. We
dub this the ‘slow-road’ policy because these potential
technologies offer few expected benefits.

Table 2. Entry models by level of relatedness.
Dependent variable: Entry (¼ 1) | 1990–2009

High
relatedness

Low
relatedness

High
relatedness

Low
relatedness

High
relatedness

Low
relatedness

(1) (2) (3) (4) (5) (6)

Constant 0.3669312***

(0.0023488)

0.0309562***

(0.0006430)

0.3614363***

(0.0026666)

0.0405249***

(0.0009141)

0.2306594

(0.1847726)

0.0903739**

(0.0327663)

Knowledge

Complexity

0.0004628***

(0.0001007)

–0.0000389

(0.0000272)

0.0002671*

(0.0001127)

–0.0000062

(0.0000395)

0.0002526*

(0.0001124)

–0.0000359

(0.0000419)

Population (log) 0.0433384***

(0.0044990)

0.0224518***

(0.0014247)

–0.0657516

(0.0934813)

0.0488210*

(0.0200723)

GDP per capita 0.0000004

(0.0000004)

0.0000015***

(0.0000001)

0.0000016

(0.0000016)

0.0000002

(0.0000005)

Population

Density

0.0000016

(0.0000034)

–0.0000057***

(0.0000015)

0.0000252

(0.0000569)

–0.0000202

(0.0000281)

Technological

stock

–0.0000026***

(0.0000004)

0.0000002

(0.0000002)

–0.0000036***

(0.0000007)

0.0000003

(0.0000004)

Technological

size

0.0000088***

(0.0000012)

0.0000021**

(0.0000007)

0.0000139***

(0.0000013)

0.0000018*

(0.0000007)

Region fixed

effects

No No No No Yes Yes

Time fixed

effects

No No No No Yes Yes

Observations 42,164 72,557 34,309 47,029 34,309 47,029

R2 0.0005119 0.0000281 0.0053447 0.0127176 0.0584039 0.0334063

Adjusted R2 0.0004882 0.0000143 0.0051707 0.0125916 0.0515479 0.0282820

Notes: High relatedness models only include the top 10% region–technology observations in terms of relatedness density. Low relatedness models only
include the bottom 10% region–technology observations in terms of relatedness density. The dependent variable entry equals 1 if a region r gains a
new relative technological advantage (RTA) in a given technology i during the corresponding five-year window; and 0 otherwise. All independent variables
are mean centred and lagged by one period. Heteroskedasticity-robust standard errors (clustered at the region and technology level) are shown in parenth-
eses.
Coefficients are statistically significant at the *p<0.05, **p<0.01 and ***p<0.001 level.
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Therefore, the core idea of the smart specialization fra-
mework is that region-specific capabilities define not only
the set of opportunities to develop new growth paths but
also the limits on those choices. By operationalizing this
idea, we can eschew the one-size-fits-all policy model
and offer place-based policy adapted to the particular con-
ditions of regions (Tödtling & Trippl, 2005). In the past,
regional technology policy was too often focused only on
the y-axis of Figure 3. Such a policy of picking winners,
of building ‘cathedrals in the desert’, paid insufficient atten-
tion to whether host regions had the technological capacity
to support such ventures. Balancing the dimensions of
relatedness and knowledge complexity provides an evi-
dence-based platform on which to develop smart specializ-
ation, a platform that is more attuned to region-specific
capabilities and thus less likely to lead to duplication and
waste of scarce public and private resources.

REGIONAL CASES TO ILLUSTRATE
FURTHER THE SMART SPECIALIZATION
FRAMEWORK

For illustration purposes, we apply the smart specializ-
ation framework to four types of NUTS-2 regions that
can be considered representative cases (Camagni &

Capello, 2013): a core leading region (Île-de-France), a
high-tech region (Noord-Brabant, the Netherlands), an
old industrial region (Lancashire, UK) and a lagging,
peripheral region (Extremadura, Spain). We present the
four cases in Figures 4(a–d), following the same structure
of Figure 3, with relatedness density on the horizontal
axis and knowledge complexity on the vertical axis. The
nodes (circles) represent potential technologies (or new
growth paths) in which the region does not exhibit an
RTA in the period 2005–09. The size of the nodes rep-
resents the total number of patents in each technology
class, though note that all such classes are smaller than
might be expected in the regions, based on the share
of patents in these classes at the European level. Colours
show the one-digit classification of the technological
classes. The distribution of the nodes in each figure
makes clear that not all regions are in the same situation
to build new growth trajectories: the size and content of
the list of choices, as well as their accessibility, vary from
one region to another.

The Île-de-France is the region with most patent
applications. Its diversified portfolio of activities reveals
the existence of a large set of capabilities the region
can rely on to branch out towards new activities. Figure 4
(a) shows that the Île-de-France has a relatively high

Table 3. Growth models – full sample.
Dependent variable: Technological growth | 1990–2009

Baseline Complexity Controls Full model Full model (FE)
(1) (2) (3) (4) (5)

Constant 13.7038900***

(0.1707395)

13.7207500***

(0.1707130)

13.5505400***

(0.1773364)

13.5218000***

(0.1767446)

73.6810700***

(7.4333840)

Relatedness Density 0.4642356***

(0.0101046)

0.4650504***

(0.0101016)

0.3519811***

(0.0113171)

0.2038730***

(0.0119662)

Knowledge Complexity 0.2083142***

(0.0079042)

0.1811793***

(0.0082521)

0.1236107***

(0.0079222)

Population (log) 15.6830000***

(0.2933130)

13.9970400***

(0.2957986)

57.4033100***

(4.4582030)

GDP per capita 0.0004739***

(0.0000201)

0.0003251***

(0.0000205)

0.0000061

(0.0000892)

Population Density –0.0039671***

(0.0002246)

–0.0033924***

(0.0002242)

–0.0031405

(0.0032979)

Technological stock –0.0004838***

(0.0000325)

–0.0005061***

(0.0000326)

–0.0051211***

(0.0001068)

Technological size 0.0010760***

(0.0000560)

0.0007250***

(0.0000565)

0.0016523***

(0.0000584)

Region fixed effects No No No No Yes

Time fixed effects No No No No Yes

Observations 556,721 556,721 521,175 521,175 521,175

R2 0.0039793 0.0055811 0.0072392 0.0103975 0.0671133

Adjusted R2 0.0039775 0.0055776 0.0072297 0.0103842 0.0666674

Notes: The dependent variable growth corresponds to the rate of technological growth (growth in the number of claims) of a technology i in a region r from
period t to period t+1. All independent variables are mean centred and lagged by one period. Heteroskedasticity-robust standard errors (clustered at the
region and technology level) are shown in parentheses.
Coefficients are statistically significant at the *p<0.05, **p<0.01 and ***p<0.001 level.
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relatedness with a large number of technologies in which
it is not specialized, many belonging to fields such as
electrical engineering and chemistry which are already
established in the region, and to a lesser extent to mech-
anical engineering and instruments. Thus, the Île-de-
France has a wide range of options to diversify at rela-
tively low risk. They involve both high- and low-com-
plexity technologies, making the second criterion of our
framework relevant when choosing the direction by dis-
criminating among the low-risk alternatives. Since more
complex technologies tend to have higher upgrading
and growth potential, the Île-de-France could easily
implement a ‘high-road’ smart specialization policy that
targets the development of potential technologies in the
north-east quadrant.

Noord-Brabant is a typical high-tech region, located
around Eindhoven, the Netherlands. In spite of its rela-
tively small size, the region ranked as one of the top 10
most innovative regions in the EU. Figure 4(b) shows
the technologies in which Noord-Brabant could diversify
by redeploying its existing capabilities. The menu of
potential low-risk paths is less rich and more limited
than for the Île-de-France, i.e., the number of potential

technologies with relatively high relatedness is smaller.
While for the Île-de-France the low-risk options are
in high- and low-complexity technologies, in Noord-
Brabant they tend to be concentrated in high-complexity
technologies (such as communication) in the electrical
engineering domain. Investing in other complex
technology domains such as chemistry (in the north-
west quadrant) would imply a radical diversification
strategy that is very risky, given the current, relatively
specialized, technological structure of the Noord-Brabant
economy.

Lancashire, in the north-west of England, is a typical
case of an old industrial region. Its patenting activity is far
below the EU average, and less diversified than the previous
two cases. Figure 4(c) shows that Lancashire, as Noord-
Brabant, has many diversification options related to existing
technologies. From the complexity angle, however, the story
is different. Almost all potential technologies in Lancashire
are closely related to low-complexity domains mostly in
mechanical engineering, while complex domains, with
high-growth potential, are difficult to access given the cur-
rent strengths of the region. Thus, for Lancashire, there
are no low-risk–high-benefit smart specialization options.

Table 4. Growth models by level of relatedness.
Dependent variable: Technological growth | 1990–2009

High
relatedness

Low
relatedness

High
relatedness

Low
relatedness

High
relatedness

Low
relatedness

(1) (2) (3) (4) (5) (6)

Constant 53.7695700***

(0.7609844)

–6.0870230***

(0.1377738)

49.6868700***

(0.8003883)

–8.4233190***

(0.2020142)

–31.0214900

(60.1171500)

–10.3398200

(5.9970820)

Knowledge

Complexity

0.3256727***

(0.0340018)

–0.0096395

(0.0069824)

0.2581051***

(0.0361123)

–0.0107926

(0.0104075)

0.2276855***

(0.0344880)

–0.0305587**

(0.0101187)

Population

(log)

28.4596000***

(1.4859160)

–3.3740520***

(0.3181761)

–26.7761900

(31.0434900)

–2.6496500

(4.0115730)

GDP per

capita

0.0001111

(0.0001073)

–0.0003621***

(0.0000220)

0.0037211***

(0.0005146)

0.0001280

(0.0000970)

Population

Density

–0.0048569***

(0.0009146)

0.0006342*

(0.0002874)

–0.0729367***

(0.0144477)

–0.0052360

(0.0046896)

Technological

stock

–0.0020091***

(0.0001021)

–0.0001944*

(0.0000909)

–0.0080889***

(0.0003040)

–0.0015154***

(0.0002594)

Technological

size

–0.0012314***

(0.0001257)

–0.0013100***

(0.0002712)

0.0001989

(0.0001165)

–0.0011047***

(0.0002697)

Region fixed

effects

No No No No Yes Yes

Time fixed

effects

No No No No Yes Yes

Observations 63,797 74,199 54,992 48,659 54,992 48,659

R2 0.0017529 0.0000365 0.0115695 0.0155464 0.1329042 0.0509171

Adjusted R2 0.0017372 0.0000230 0.0114617 0.0154250 0.1289760 0.0460551

Notes: High relatedness models only include the top 10% region–technology observations in terms of relatedness density. Low relatedness models only
include the bottom 10% region–technology observations in terms of relatedness density. The dependent variable growth corresponds to the rate of tech-
nological growth (growth in the number of claims) of a technology i in a region r from period t to period t+1. All independent variables are mean centred
and lagged by one period. Heteroskedasticity-robust standard errors (clustered at the region and technology level) are shown in parentheses.
Coefficients are statistically significant at the *p<0.05, **p<0.01 and ***p<0.001 level.
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Targeting most electrical engineering technologies might
reflect a ‘casino’ policy, while policy focus on most mechan-
ical engineering technologies comes down to a ‘slow-road’
approach. A smart specialization approach for Lancashire
could target technologies that are relatively complex
(upgrading its local economy), but still related to existing
capabilities, such as some instruments and a few chemical
technologies in the centre of the graph.

Finally, Extremadura, in western Spain, is a typical per-
ipheral region with a weak technological base (Figure 4(d)).
This severely limits the ability of the region to develop new
growth paths. In the terminology of our framework, the
region has many policy options in the high-risk quadrants,
with both high- and low-expected benefits, but none in the
low-risk quadrants, because most missing technologies
show low relatedness. Peripheral regions provide one of
the most complicated cases to build an effective smart
specialization policy, which is also echoed in writings on
smart specialization policy (Foray, 2015; Morgan, 2015).

Extremadura could go for a ‘casino’ strategy focusing on
complex technologies because the expected benefits are
higher. However, complex technologies require a large set
of capabilities that makes such successful long jumps for
peripheral regions near to impossible. In our framework,
every region can find a smart specialization policy by
adjusting its ambitions to the local economic context. In
the case of Extremadura, the subset of chemical technol-
ogies can be a reasonable starting point to accumulate
knowledge and capabilities that can further be redeployed
into increasingly complex technologies.

DISCUSSION AND CONCLUSIONS

This paper has attempted to tackle the perceived lack of
a strong theoretical and empirical foundation for smart
specialization policy in Europe. First, it constructed a
theoretical framework for smart specialization built
around the concepts of relatedness and knowledge

Figure 4. Application of the framework: (a) Île-de-France (France, FR10); (b) Noord-Brabant (the Netherlands, NL41); (c) Lanca-
shire (UK, UKD4); and (d) Extremadura (Spain, ES43).
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complexity. Second, it operationalized this framework
empirically by calculating relatedness between technol-
ogies using EPO patent data and measuring the knowl-
edge complexity of technologies using network-based
techniques. Third, it used these measures to provide
new evidence on how EU regions develop new technol-
ogies. We find that relatedness has a positive effect on
technological diversification within regions. Diversifying
into complex technologies is difficult for many regions,
though it is easier when such technologies are more clo-
sely related to the existing knowledge core of the region.
And regions tend to grow more if they specialize in
complex technologies related to existing technologies in
the region.

Based on these theoretical and empirical underpin-
nings, we proposed a policy framework for smart specializ-
ation that highlights the potential risks and rewards for
regions of adopting alternative diversification strategies.
We showed how potential risks of smart specialization
may be assessed using the concept of relatedness, and
how potential benefits can be derived from estimates of
the complexity of technologies. Our policy framework
incorporates the key logic of smart specialization, that is,
a bottom-up policy approach based on the idea that regions
should leverage their existing capabilities to develop and
secure comparative advantage in related high-value-added
activities. We underlined further the relevance of such a
policy framework and the need for a region-specific focus
by identifying the diversification opportunities in different
types of regions.

Although this paper provides some important pieces to
the puzzle of smart specialization, we are still far from a
comprehensive framework. We have not focused on the
design and implementation of smart specialization policy,
and what exact role public agents need to play (Capello
& Kroll, 2016; Iacobucci, 2014; Kroll, 2015; Matti, Con-
soli, & Uyarra, 2017; Moodysson, Trippl, & Zukauskaite,
2016; Valdaliso, Magro, Navarro, Aranguren, & Wilson,
2014). Moreover, our framework focuses primarily on the
supply side, and less so on the demand side (such as internal
or external demand, and market access), at least not expli-
citly (Montresor & Quatraro, 2017; Tanner, 2014). We
now discuss some other important issues that still need to
be tackled.

This paper has focused on technological knowledge,
and only that part of knowledge embodied in patent
activity. It is crucial to emphasize that smart specialization
policy is about diversifying from regional capabilities in
general, not only from knowledge captured by patents.
The proposed smart specialization policy framework
could and should, therefore, assess diversification options
for regions that include other forms of knowledge and capa-
bilities not captured by patents, such as products, industries,
scientific disciplines and jobs (Cortinovis, Xiao, Boschma, &
van Oort, 2017; Unterlass et al., 2015). It could also be
applied to tacit and symbolic forms of knowledge
through targeted educational programmes and college
degrees. This is especially important for bringing smart
specialization policy more in line with the objective of

Cohesion Policy that aims at reducing disparities between
EU regions, and which has repeatedly been mentioned as
one of the key challenges in EU regional innovation
policy (McCann & Ortega-Argilés, 2013, 2015; Mor-
gan, 2015). This is because non-technological knowledge
(of both high and low complexity) also provides diversifica-
tion opportunities for regions, especially in the more
peripheral parts of the EU (Asheim, Boschma, & Cooke,
2011).

We need to think more deeply about how to tackle the
inherent tension within smart specialization policy between
prioritizing and selecting activities based on regional
potentials (as in the proposed framework), on the one
hand, and reliance on the entrepreneurial discovery process
in which this selection process is completely decentralized,
bottom-up and process-led, on the other hand (Coffano &
Foray, 2014). One potential way to solve this tension is,
first, to identify diversification opportunities in each region
based on their scores on relatedness and complexity, after
which, within that range of opportunities, the entrepre-
neurial discovery process will unfold, in which a range of
local actors will decide which activities to target and assist
(Boschma & Gianelle, 2013). Or the other way around, a
range of activities will first be selected through the entre-
preneurial discovery process, which are then assessed
within the diversification opportunities of each region
identified by our framework.

Our smart specialization framework still has to be
framed in relation to territorial terms (Iacobucci & Guz-
zini, 2016; Sörvik, Midtkandal, Marzocchi, & Uyarra,
2016; Thissen, van Oort, Diodato, & Ruijs, 2013) to
account for non-local linkages to avoid regional lock-in
(Bathelt et al., 2004), as these give regions access to
complementary capabilities elsewhere (Miguelez & Mor-
eno, 2017; Tavassoli & Carbonara, 2014). One example
is the recent focus on trade networks and value chains
and how to incorporate these into smart specialization
strategies (Radosevic & Ciampi Stankova, 2015).
Another challenge is how smart specialization policy
can assist in linking peripheral regions to the outside
world to compensate for lack of local capabilities (Fitjar
& Rodríguez-Pose, 2011; Grillitsch & Nilsson, 2015).
And we need to think how smart specialization policy
can incorporate the crucial importance of inflows of
skilled labour for related diversification and structural
change in regions (Neffke, Hartog, Boschma, & Hen-
ning, 2018).

Another building block of smart specialization policy
is the need for the right institutional governance structure
to be in place at the local level (Grillitsch, 2016;
McCann, van Oort, & Goddard, 2017; Morgan, 2017).
When the quality of institutional governance differs
greatly between regions, as it does in Europe (Rodrí-
guez-Pose, di Cataldo, & Rainoldi, 2014), it is also likely
to affect their ability to move into new and more complex
technologies. This might require a local institutional con-
text (governance, social capital) that facilitates the coordi-
nation and combination of a wide range of capabilities
(Cortinovis et al., 2017). Especially, peripheral regions
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suffer from institutional weaknesses that might limit
smart specialization strategy (Karo & Kattel, 2015;
Rodríguez-Pose & Wilkie, 2015), such as a traditional
approach to governance (no experimentation culture),
weak administrative capabilities, a low quality of govern-
ment, tight connections with local vested players, weak
entrepreneurial capacities and the absence of a local cul-
ture of collaboration.

Lastly, there is an ongoing discussion whether smart
specialization policy should focus on disruptive activities,
as echoed in recent pleas for mission-oriented policies
such as curing cancer or greening the economy (Frenken,
2016; Mazzucato, 2013). While there is little under-
standing about how mission-oriented policies should
actually be designed (except for setting specific targets
and directions for future development), our framework
shows how risky such demand-led policy targeting very
complex and unknown technologies will be when formu-
lated and implemented without embedding it in the
appropriate technological and institutional context in
countries and regions. When ignoring that, it is not dif-
ficult to foresee that such mission-oriented policies will
fall into the same traps that smart specialization policy
aims to avoid, such as picking fashionable activities
from scratch, and duplicating major research and inno-
vation investments. This is not to deny the fact that pub-
lic policy can play a key role in initiating transformative
change when fundamental uncertainty is the rule, but
only when embedded in an appropriate territorial context
(Boschma, 2017; Montresor & Quatraro, 2017; Uhlbach,
Balland, & Scherngell, 2017; Unterlass et al., 2015). Our
proposed framework may be instrumental to make such
informed choices.
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NOTES

1. September 2015 Edition. OECD ¼ Organisation for
Economic Co-operation and Development.
2. Fractional counts cleaned by inpadoc families of PAT-
STAT. NUTS ¼ Nomenclature of Territorial Units for
Statistics.
3. In this paper we used EconGeo, version 1.3 (see
https://github.com/PABalland/EconGeo).
4. Source: WIPO IPC Technology Concordance Table.
5. Our notion of relatedness is inspired by the related var-
iety literature (Frenken et al., 2007), but we apply it to the
topic of regional (related) diversification, instead of regional
growth. Some papers on (related) diversification have used
related variety as an explanatory factor for diversification in
regions (e.g., Xiao, Boschma, & Andersson, 2018). How-
ever, a positive correlation between related variety and the
entry of new technologies at the regional level does not
necessarily imply that the new technologies are related to
existing regional technologies, as measured by related var-
iety. Therefore, we make use of relatedness density, as
this indicator measures directly the degree of relatedness
between existing technologies in the region and missing
technologies in the region.
6. The two-mode network used to compute complexity is
based on the two-digit technological domains and not IPC
classes because of the high size heterogeneity of IPC
classes. In fact, using IPC classes as nodes in the region–
technology network would lead to a noisy complexity esti-
mation because some IPC classes are very small (fewer than
20 patent applications a year), while others are very large
(more than 3000 patent applications a year). Using the
broader and more homogenous classification proposed by
Schmoch (2008) allows one to circumvent this problem.
The EU complexity ranking is consistent with that in the
United States described by Balland and Rigby (2017). As
a robustness check, we also computed complexity using
the model proposed by Fleming and Sorenson (2001)
and found no major differences.
7. In the entry models, we cannot distinguish between
diversification induced by new or existing firms, by small
or big firms, or by local or non-local firms because firm-
level data are not available. See Neffke et al. (2018) for
such a firm-level analysis of regional diversification.
8. The control variables GDP per capita, population and
technological size have a positive and significant impact on
technological entry in most models, while the regional
technological stock and population density tend to have a
negative and significant impact.
9. In the baseline model 1, for instance, the unconditional
probability of entry is around 16% (as all independent vari-
ables are mean centred, the constant is equal to the uncon-
ditional probability of entry ¼ 0.1632872). An increase by
10% in relatedness density (relatedness density ranges from
0 to 100%) increases the relative probability of entry by
(0.0042477*10)/0.1632872 ¼ 26%. In the most conserva-
tive model (fixed effect, model 5), we find an increase in
the relative probability of entry of about (0.0037696*10)/
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0.1639320 ¼ 23%. The intercept in a fixed-effect model
cannot be interpreted as the unconditional probability of
entry by definition. The unconditional probability of
entry for this model can be found as the intercept of
model 4.
10. Therefore, relatedness density is excluded from this
model.
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