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Abstract

Parametric curves are extensively used in engineering. The most commonly used para-
metric curves are, Bézier, B-splines, (NURBSs), and rational Bézier. Each and every one
of them has special features, being the main difference between them the complexity of
their mathematical definition. While Bézier curves are the simplest ones, B-splines or
NURBSs are more complex. In mobile robotics, two main problems have been addressed
with parametric curves. The first one is the definition of an initial trajectory for a mobile
robot from a start location to a goal. The path has to be a continuous curve, smooth and
easy to manipulate, and the properties of the parametric curves meet these require-
ments. The second one is the modification of the initial trajectory in real time attending
to the dynamic properties of the environment. Parametric curves are capable of enhanc-
ing the trajectories produced by path planning algorithms adapting them to the kine-
matic properties of the robot. In order to avoid obstacles, the shape modification of
parametric curves is required. In this chapter, an algorithm is proposed for computing
an initial Bézier trajectory of a mobile robot and subsequently modifies it in real time in
order to avoid obstacles in a dynamic environment.
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1. Introduction

In the last years, intelligent vehicles have increased their capacity up to the point of being able
to navigate autonomously in structured environments. Implementations, such as Google [1]
(with more than 700,000 hours of autonomous navigation in different scenarios), are an exam-
ple of the effort made in this area. However, there is still a long way to go until we found real

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72574

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



autonomous cars on the roads, as there are both technical and legal problems involved [2, 3].
The intelligent system is composed of three different groups and subgroups: acquisition and
perception, decision and actuation-control.

Although the vast majority of the literature often depicted the problems by focusing mainly on
these groups or subgroups of processes, functionality in intelligent vehicles, or in mobile
robots in general, cannot be conceived as composed of separate blocks, and therefore, a
sufficiently efficient system can only be achieved if all the systems work in unison.

This chapter is devoted to the use of parametric curves in the field of robotics. Parametric
curves are mainly used in the decision block when the path is defined. However, they are also
employed in other blocks, and some of their properties are beneficial for other processes.

Focusing on the decision-making block, the “path planning” or the design of the path to follow
has been the subject of study in the last decades, where many authors divide the problem into
global and local path planning. On the one hand, the global path planning generates an overall
path composed of a set of points to be followed, covering large distances and considering static
obstacles in the environment. On the other hand, the local path planning constructs a short
path with much more precision, even in continuous form, taking into account unexpected
obstacles that may appear.

In general, path planning techniques can be grouped into four large groups: graph search,
sampling, interpolating and numerical optimization, see [3]:

• Graph search-based planners search a grid for the optimal way to go from a start point to a
goal point. Algorithms, such as Dijkstra, A-Start (A *) and its variants Dynamic A* (D*),
field D*, Theta*, etc., have been extensively studied in the literature.

• Sampling-based planners try to solve the search problem restricting the computational time.
The idea is to randomly explore/sample the configuration space, looking for connections
between source and destination. The main problem is that the solution is suboptimal. The
most common techniques are the probabilistic roadmap method (PRM) and the rapidly
exploring random tree (RRT).

• Interpolating curve planners try to insert a new group of data within the previously defined
data group. In other words, both graph search and sampling-based planners are global
planners that provide a rough approximation of the solution. In this case, it is a matter of
interpolating this group of points. At this stage, the design of the trajectory is when the
properties of continuity, smoothness and geometrical restrictions of the vehicle, among
others, intervene. Computer-aided geometric design (CAGD) techniques are generally used
to smooth the gross path provided by the global planner. The use of lines and circles is usually
employed as a first solution, with Dubin’s curves defined when the vehicle moves forward
and Reed and Sheep’s curves when the vehicle moves backward. The clothoid appears as a
solution to the discontinuity in curvature between the line and the circle since, by definition, it
has a constant relationship between the length of the arc and its curvature. The polynomial
curves are another alternative to the previous ones. Themodification of its coefficients allows
taking into account, among others, the adjustment of positions, curvature restrictions, etc.

Advanced Path Planning for Mobile Entities126



• Numerical optimization is generally used to minimize or maximize a numerical function
that depends on different variables such as smoothness, continuity, velocity, acceleration,
jerk, curvature, etc.

In [3], the use of parametric curves is included in the category of interpolating curve planners.
The most commonly used parametric curves in robotics are Béziers, B-splines, rational Bézier
curves (RBCs), and non-uniform rational B-splines (NURBSs). A summary of their properties
can be low computational cost, intrinsic softness, easy malleability through control points, and
universal approximation. For these reasons, parametric curves are not only relevant as inter-
polators, but also recently they are being used in combination with many other algorithms that
have effects on all the other blocks of an intelligent system [3].

The chapter is organized as follows. Section 2 provides a mathematical definition of the most
used parametric curves as well as a description of their properties (Bézier, B-spline, RBC, and
NURBS). Section 3 offers a state of the art of the use of parametric curves in robotics and an
overview of current trends. Along the lines of the new trends in the use of these curves, Section
5 proposes a method of deformation of parametric curves aimed at modifying the trajectory in
real time in order to avoid collisions. Section 6 presents the reader the conclusions.

2. Definitions: parametric curves

Curves in both space and plane are a part of the geometry necessary to represent certain
shapes in different areas. Curves arise in many applications, such as art, industrial design,
mathematics, architecture, engineering, etc.

2.1. Different ways of defining a curve. Advantages and disadvantages

There are different ways of defining a curve: implicit, explicit, and parametric.

2.1.1. Implicit and explicit expression of a curve

The coordinates (x, y) of the points of an implicitly defined plane curve verify that:

ð1Þ

for some function F. If the curve is in R3, then the curve must satisfy these two conditions
simultaneously:

ð2Þ

The explicit representation of a curve clears one of the variables as a function of the other. In
the plane, the coordinates (x,y) of the points in the curve explicitly defined satisfy either.
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ð3Þ

In the case of a curve in the space, its explicit form could be defined as:

ð4Þ

2.1.2. Parametric expression of a curve

In this case, the coordinates of a parametric curve are expressed as a function of a parameter,
for example, u. The definition of a curve defined in Rn could be done as in (5), where functions
αi are the coordinate functions or component functions. The image of α(u) is called the trace of
α and α(u) is the parametrization of α.

ð5Þ

Parametric curves are the most used in computer graphics and geometric modeling because
the curve points are calculated in a simple way. In contrast, the calculation of the points
through the implicit expression is much more complex.

Within the parametric curves, it is possible to differentiate between polynomial curves and
rational curves. Polynomial curves are those whose component functions are polynomials, and
rational curves are those expressed as the quotient of polynomials. The representation in the
form of parametric curves allows a great variety of curves, some known, some strange, some
complex and others surprising for their symmetry and beauty.

The advantageous properties of the parametric curves that make them widely used are
intuitivity, flexibility, affine-invariant, fast computation, and numerical stability.

In order to model complicated shapes or surfaces, it is necessary to introduce a way of
representing curves based on a polygon. From this idea, the most used parametric curves arise
in computer-aided geometric design (CAGD): Bézier, B-splines, RBC, and NURBS. Figure 1
shows a schematic of the most important curves in CAGD. It can be seen how NURBS are the
most general curves, and Bézier are the most particular ones. Among them, Bézier is the
simplest, possessing properties that make them be the most extensively used.

2.2. Most common parametric curves: Bézier, B-spline, NURBS, and RBC

2.2.1. Bézier curves

Bézier curves arose as a result of the car modeling in both Renault and Citroën companies, by
the engineers Pierre Bézier and Casteljau. The simplicity in the manipulation of these curves
makes their use and application widespread.

The popularity of the Bézier curves is due to their numerous mathematical properties that
facilitate their manipulation and analysis. Moreover, their use does not require great mathe-
matical knowledge, which is very interesting for designers who shape objects.
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A Bézier curve of degree n is specified by a sequence of (n + 1) control points, and its explicit
expression is (6). The polygon that joins the control points is called the control polygon, and
the functions or bases used are the Bernstein polynomials Bi,n(u), defined in (7).

ð6Þ

ð7Þ

The dimension of the vector containing the control points is related to the dimension of the
space where the curve is represented.

2.2.2. Rational Bézier curves

A conic is a curve obtained as the intersection of a plane with the surface of a double cone.
There are three types of irreducible conics: hyperbola, parabola, and ellipse. Parabolas can be
parameterized by polynomial functions, but hyperbolas and ellipses need rational functions
such as RBC. The explicit definition of an RBC is (8), where Pi are the control points, Bi,n(u) are
the Bernstein bases, and ωi are weights associated with each control point. These weights allow
a new way of modifying the curve.

ð8Þ

Figure 1. Classification of the most important curves in CAGD.
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2.2.3. B-spline curves

B-splines are polynomial curves defined in pieces, continuously differentiable up to a pre-
scribed order. The name spline is a word that means “elastic slats”. These slats were used by
craftsmen to create curves describing the surfaces to be built, such as boat hulls and aircraft
fuselages. Constrained by weights, these elastic slats or splines assume a shape that minimizes
their elastic energy.

B-spline curves were developed to overcome the limitations of Bézier curves: the need for a
local control of the curve, the difficulty in imposing C2 continuity and the fact that a number of
control points of a Bézier curve imposes its degree.

Analogous to the definition of a Bézier curve, a B-spline curve of degree k (or k + 1 order) is
expressed in (9) as an affine combination of certain control points Pi, where Ni,k are polynomial
functions by pieces with finite support of order k (degree k-1, meaning that they are zero out of
a finite interval) that satisfy certain conditions of continuity. Each of these functions can be
calculated using the Cox-de-Boor recursive formulas.

ð9Þ

B-splines can be defined by a recurrence relationship; simplicity is considered a double infinite
sequence of simple nodes such that for all i. B-splines are then defined through the following
recurrence relationship.

For the sake of simplicity, a double infinite sequence of simple nodes ai is considered such that
ai < ai + 1 for all i. Then, the B-splines Ni,k are then defined through the recurrence relationships
(10) and (11).

ð10Þ

ð11Þ

2.2.4. Non-uniform rational B-spline curves

Rational B-spline curves are obtained in a similar way as the RBCs from Bézier curves. The
definition of a NURBS curve is:

ð12Þ
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2.3. Comparison of properties

When dealing with curves, their representation is important, but their shape manipulation is a
key factor in their usability. The object to be modeled will determine the type of parametric
curve chosen, depending on the properties required. In Table 1, we can see a comparison of the
properties of the parametric curves in CAGD. In the following section, some of the most
relevant works in mobile robots using parametric curves are described.

3. Use of parametric curves in robotics: state of the art

3.1. Generation of trajectories of mobile robots through parametric curves

Predicting the movement of a robot is important as it implies the computation of a proper path
that meets the kinematic and dynamic properties of the robot. Simply moving a mobile robot
from an initial position (xi,yi,θi) to a final position (xg,yg,θg) safely implicates many research
fields, which are involved in the generation of efficient path planning algorithms.

Table 1. Comparison of the properties of parametric curves.
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Many researchers consider parametric curves very useful in the construction of trajectories of
wheeled robots, due to their advantageous properties able to improve trajectories produced by
path planning techniques.

3.2. Trajectories of mobile robots defined by Bézier curves

The first relevant publications in robotics using Bézier curves are published in 1997 and 1998
[29, 30]. These works combine path planning and reactive control for a non-holonomic mobile
robot introducing the concept of “Bubble Band” (bubble path). With an appropriate metric,
bubbles are connected with Bézier curves, generating a path. These bubbles are the maximum
free space reachable in any direction without risk of collision. This is due to the property of the
convex hull and implies that if the control points are within the bubble, then the path approx-
imation remains within the bubble. The planner, using a model of the environment, generates
an initial path connecting the start and goal positions that may not be adequate. Next, the
proposed algorithm generates a sequence of bubbles connecting both ends and replacing the
original path, the bubble band. This band is exposed to the forces in the environment, and as a
consequence, the band is modified.

In 2001, the concept of “bubble band” is used in [31]. In this case, dynamic obstacles are
introduced in the environment. Simultaneously, in [32], also Bézier curves are used for local
path planning. An initial path is computed using the generalized Voronoi graph (GVG) theory,
which is mildly deformed maximizing the evaluation of a function. Candidates obtained as
smooth paths are expressed with Bézier curves.

In 2003, a touchscreen was introduced in [33] to control a mobile robot, avoiding obstacles in
real time. In this work, two algorithms are developed: the first one extracts a succession of
important points, and the second one generates a path using cubic Bézier curves.

In 2007, the work in [34] introduces Bézier curves in cooperative collision avoidance for several
mobile non-holonomic robots and is based on the previous contributions [35, 36]. Two tasks are
developed: first, path planning based on Bézier curves for each individual robot in order to obtain
its final position and, second, computation of an optimal path that minimizes a “penalty” function
that accounts for the sum of the maximum times subject to the distances between the robots.

In 2008, [37] presents a preliminary framework that generates space trajectories for multiple
unmanned aerial vehicles (UAVs) using 3D Bézier curves. The algorithm solves a constrained
optimization problem in order to generate the trajectories. In this case, the optimization
function penalizes an excessive length, as the shortest path is required, and the restrictions
are the distances between the multiple UAVs. The system is non-linear, and numerical
methods are applied to solve it.

It is worth mentioning the work of Choi et al. [38–46] related to the computation of trajectories of
mobile robots designed from Bézier curves. In many of the publications, a constrained optimi-
zation problem is raised, where the function to be optimized is the curvature of a Bézier curve.

Finally, [47] presents a methodology based on the variation of the RRT that generates suitable
trajectories for autonomous vehicles with holonomic constraints in environments with
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obstacles. This algorithm is based on the use of seventh-order Bézier curves that connect the
vertices of the tree. In this way, the generated paths meet the main kinematic constraint of
the vehicle: the smoothness of the acceleration is guaranteed for the entire path by controlling
the values of the curvature of the endpoints of each Bézier curve composing the tree. The
proposed algorithm provides a rapid convergence to the final result. In addition, the number
of vertices of the tree is reduced because the method allows the connections between the
vertices of the tree with an unlimited range. The properties of seventh-order Bézier curves are
also used to avoid static obstacles in the environment. This method was simulated with a small
UAV. Since then, B-splines and Beziers curves have been used to generate search trees by a
large number of researchers, see [7].

Recent efforts are being made to merge Bézier curves with numerical optimization, [4, 5]. In
these works, a teleoperation is carried out where the operator indicates some points. The
proposed algorithm calculates the path to continuity of curvature C1 and C2. In [6], something
similar is proposed: nodes/points are initially generated between the start and the goal
(collision-free) and then are joined by cubic Bézier curves with curvature constraints. Finally,
cubic Bézier curves are used in [8] to solve the problem of roundabouts for automated vehicles:
entry, departure, and crossing.

3.3. Trajectories of mobile robots defined by B-spline

In 1989, B-spline curves were incorporated in the design of robot trajectories. In [13], segments
were added with the aim of generating the entire path near the desired one. This new trajec-
tory did not go through the exact points. Later, in 1994, the work in [14] used B-splines for path
planning but adding a temporal variable. In this case, the speed of the robot was controlled by
the same B-spline. The same year, in [15], a fuzzy controller is designed to emulate spline
curves for generating smooth motion trajectories. In 1999, the work [16] also used a B-spline
curve to calculate the trajectory of a mobile robot by generating many points from a spline for
the robot to follow them in the form of succession. Additionally, in [17], kinematic constraints
were introduced in the path planning using B-spline curves to find the optimal temporal
trajectory in a static environment.

Lately, in 2007, the works [18–20] developed a method to solve the path planning problem
using cubic splines to avoid the obstacles. This method iteratively refined the path to be
followed in order to obtain in real time a collision-free feasible path in unstructured environ-
ments. In [20], the path planning implementation based on B-spline is detailed. The use of
splines allows to restrict the polynomials since the first derivative of P1,…, Pn-1 is continuous
across the entire boundary. In addition, some constraints can be introduced on the first and last
points to force a particular value of the derivative. These characteristics of the splines offer
many advantageous properties to plan a suitable path. If a value of the derivative is imposed, a
path can be generated starting from a specific position and having a direction imposed by the
value of the derivative. Therefore, they can be generated and initialized from the current
position and direction of the vehicle. The first derivative is proportional to the direction of the
vehicle, then a non-continuous derivative could be obtained and, as a consequence, a non-
feasible path for that type of vehicle. As the second derivative is proportional to the direction
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of the angle, some discontinuities could force the vehicle to stop at each control point to adjust
its direction.

B-splines curves allow an easy construction of smooth paths through control points. In order to
avoid obstacles, control points are introduced near them, and methods are developed to move
these control points away from the obstacles and move them to the free space.

Earlier methods also worked with splines to generate smooth paths also avoiding the sur-
rounding obstacles [20, 21]. Nevertheless, these previous methods had a high computational
cost when evaluating the overall path. In [18], the computational time and the viability of one
of these algorithms are analyzed, since it is executed with an iterative method. Monte Carlo
simulations indicate a high degree of success for complex environments. The running time is
also measured and increases with the complexity of the environment. Finally, in [19], experi-
mental results are provided. The main disadvantage of this algorithm is that the obstacle-free
path is computed by means of an iterative method. Thus, the computational time will always
increase with respect to other non-iterative methods.

A large number of researchers have also used parametric curves, and particularly B-splines
and Béziers, to generate search trees as in [7].

3.4. Trajectories of mobile robots defined by NURBS

This type of parametric curve is used in the reconstruction of trajectories with the aim of
generating smooth paths that approximate the real movement of the robot. In [22], the advan-
tages and disadvantages of the NURBS curves are highlighted, providing a detailed study of
their properties. In the field of robotics, the work [23] highlights advantageous properties of
NURBS for path planning in both 2D and 3D.

In other works, such as [24–26], NURBS curves approximate or describe the path described by
a robot arm PUMA 560. Programming by Demonstration is used to program the behavior of
the robot, a good solution to automatically transfer the human knowledge to a robot. How-
ever, the NURBS trajectory does not guarantee the obstacle avoidance.

More recently, in [9–12] a predefined NURBS curve is used to improve its properties adjusting
the weights.

3.5. Trajectories of mobile robots defined by RBC

In [27], an off-line methodology is presented to approximate a Clothoid (Fresnel integrals) to
an RBC. Subsequently, [28] presents a method to obtain trajectories in real time with Clothoids.
To do this, two steps are involved: the off-line definition of approximations of Clothoids with
RBCs and the generation of online paths by scaling, rotating and moving the previous off-line
curves. One of the advantages of this method is the off-line calculation since it considerably
reduces the computational time. Throughout the process, the weight coefficients and control
points remain invariant. In this work, it is guaranteed that an RBC has the same behavior as a
Clothoid using a low order for the curve.
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3.6. Current trends in the use of parametric curves in robotics

This comprehensive study of the use of the parametric curves evidences its importance in the
design of trajectories of a mobile robot. They are not only used for interpolating points in the
global map but also being integrated into global planners and in numerical optimizations.
Although non-rational curves have a lower approximation capacity, researchers prefer them
for their simplicity and easy manipulation. Among them, we must highlight the Bézier curves,
which are the most used.

However, when the parametric curve is used as an approximation, the use of rational curves
is significantly greater, as in the approximation to the clothoid and the circle. Recently, pre-
defined rational curves are being used, where only the weights are modified. This can trans-
form rational curves into manageable curves in comparison to non-rational curves.

Along the lines of merging the use of parametric curves with other types of algorithms in an
intelligent navigation system, it is not only important to define the path of the robot, but also to
avoid obstacles in the environment. Consequently, the initial trajectory must be modified in
real time so that the mobile robot avoids the possible dynamic obstacles that may appear. In
this sense, the Bézier trajectory deformation (BTD) algorithm, described in the next section,
introduces the possibility of deforming a Bézier curve through a vector field, which can be
used in mobile robotics. The temporal parameter is introduced in the Bézier curve to transform
it into a path and a vector field is needed to modify the initial path.

4. Properties of parametric curves and its applications in robotics

In mobile robotics, two main needs have arisen when dealing with path planning of a mobile
robot: definition of the initial path to follow and the possibility of modifying it in the presence
of dynamic obstacles.

In the next paragraphs, the BTD algorithm is described [48, 49], which solves the abovementioned
needs. It offers the possibility of defining the trajectory of a mobile robot through a Bézier curve
and thenmodifies it by means of the repulsive forces derived from a predictive potential field (PF)
method. Reactive methods or potential field methods generate obstacle-free paths for the robot. In
these methods, the movement of the robot is determined by repulsive forces associated with
obstacles and attractive forces associated to the goal position of the mobile robot. In this work,
the potential field projection method (PFP) has been used [50, 51].

The set of discrete points provided by the posture prediction of the mobile robot is considered
as initial points Si of the original Bézier curve. These points belong to a reference path in the
BTD algorithm. Subsequently, the set of repulsive forces obtained by the PFP is transformed
into displacements by a dynamic particle model, which generates endpoints Ti that determines
the modification of the original Bézier trajectory with the BTD. A modified Bezier trajectory
free of obstacles is obtained that passes through the endpoints, as displayed in Figure 2.

The definition of the BTD algorithm requires two steps:
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a. Definition of the trajectory using a Bézier curve

A Bézier curve has a non-dimensional intrinsic parameter, u, as defined in (5). Since the Bézier
curve represents the path of the robot, the intrinsic parameter must be defined as a temporal
variable so that the position of each curve (robot position) is associated with an instant of time
t∈ t0, tf

� �
, where t0 and tf represent the initial and final times of the trajectory, respectively. The

definition of the initial Bézier trajectory is (13), where n is the order, Pi are the control points
and Bi,n tð Þ are the Bernstein bases defined in (14). To avoid loops in the Bézier curve, second-
order curves are used.

ð13Þ

ð14Þ

The initial Bézier trajectory will be deformed in order to avoid the surrounding obstacles, by
modifying the position of the control points from the initial position to the new one imposed
by the PFP obstacle avoidance algorithm. The displacement of each control point Piis denoted
as εi, so that the vector ε ¼ ε0;⋯; εn½ � is the displacement of all the control points defining the
Bézier trajectory, also known as the perturbation vector of the deformed curve. The new
modified Bézier trajectory Sε α tð Þð Þ is defined in (15) and, consequently, the optimizing function
used to solve the problem is defined as (16), where the vector ε is computed as in [49].

ð15Þ

ð16Þ

Figure 2. Deformation of a Bézier trajectory through a field of vectors.
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This objective function minimizes changes in the shape of the initial Bézier trajectory as it
minimizes the distance between the original Bézier trajectory and the modified one. This
definition is suitable for holonomic mobile robots since the original path has been generated
by a global path planner, and the original path is assumed to be already optimal.

b. Number of Bézier curves

High order Bézier curves are numerically unstable and, for that reason, in order to generate a
complete Bézier trajectory the concatenation of k curves is required. Therefore, the optimiza-
tion function (16) is replaced by (17), where 1 ≤ l ≤ k, αl is every Bézier trajectory (l), Sε αlð Þ is the
modified Bézier trajectory, t lð Þ

0 ; t lð Þ
f

h i
are the initial and end instants of the Bézier trajectory lð Þ,

and ε lð Þ is the perturbation vector of the modified curve (l).

ð17Þ

The number of repulsive forces depends on the order of the Bézier trajectory: n lð Þ � 1.

c. The constraints of the optimization problem are:

i. The mobile robot must follow a collision-free path: The modified Bézier path must pass
through the endpoints, so the robot does not collide with the obstacles the environment.
The vectors joining the initial and end points are the repulsive forces obtained by the PFP
method. The equation of this constraint is (18).

ð18Þ

ii. The robot trajectory must be smooth: this constraint implies imposing continuity and
derivability in the joint points of two curves, expressed by Eq. (19).

ð19Þ

iii. Continuity between the present and future positions must be ensured: tangency must be
maintained between the original Bézier trajectory and the deformed Bézier trajectory at the
initial and end points of the trajectory. The equation is (20).

ð20Þ
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With the objective function and the constraints, the Lagrangian function (21) is defined. In
order to calculate the stationary points, the partial derivatives of the Lagrangian function are
calculated and canceled, and a system of linear equations is obtained. The solution of this
linear system is the perturbation vector of each control point in order to obtain the Bézier
trajectory. In-depth information about the linear system obtained is described in [48].

ð21Þ

4.1. Numerical simulation

In our numerical example, it is used Bézier trajectories of second order to avoid loops in the
trajectory. For that reason, the number of Bézier curves will be equal to the number of repulsive
forces generated with the selected predictive PF technique. One vector is placed per Bézier
curve. To develop, the BTD algorithm is necessary to follow these two steps:

1. Calculation of the control points from the prediction horizon generated with the PFP

The control points are uniformly distributed throughout the prediction horizon generated by
the PFP method. The model has been developed for holonomic robots, and therefore, the
prediction of future positions provides a straight line. In this case, the control points calculated
through the formulation are obtained in Table 2.

2. Location of the repulsion forces on the Bézier curve

The control points of the Bézier curve are uniformly distributed, and the repulsion forces
obtained with the PFP method are placed at the midpoint of each curve, except for the first
and the last curves where they are placed at the first and last points, respectively.

Table 2. Calculation of control points from the prediction horizon: bx is the vector containing the future trajectory and P jð Þ
i

is the i-th control point of the j-th curve.
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In Figure 3(a), an example is shown, where a straight line represents the predicted optimal
trajectory for a mobile robot obtained with the PFP algorithm. The control points needed to
obtain the Bézier curves are displayed with red circles. The repulsive forces are placed in the
proper positions of the predicted path. In this graphic example, there are eight points in the
prediction horizon, and consequently, eight Bézier curves are concatenated in a straight line.
The time devoted to perform trajectory is defined by the PFP prediction and has to be of
14 seconds. The time intervals corresponding to each curve, respectively, are [0,1.33], [1.33,3],
[3,5], [5,7], [7,9], [9,11], [11,12.66], [12.66,14]. The representation of the resampling for the
concatenation of eight Bézier curves is represented in Figure 3(b).

5. Conclusion

This chapter details a comprehensive study of the use of parametric curves in the design of
trajectories for holonomic and non-holonomic mobile robots. First, a brief introduction of the
mathematical formulation and properties of the different curves is presented. Second, an
exhaustive revision of literature regarding the use of parametric curves in path planning for
mobile robots is developed. Third, a detailed description of the available techniques for path
planning with parametric curves is presented, thoroughly describing the most important ones.
Finally, an in-depth comparison is carried out between the different techniques of path defor-
mation using Bézier curves, with their advantages and drawbacks. The Bézier curves are
extensively used in these applications due to the simplicity of its definition and its easy
handling and manipulation. The last section describes how to merge artificial potential field
methods with Bézier curves as a solution for modifying a predefined trajectory in real time.
Future works are related to the inclusion of other parametric curves, such as B-splines, RBC,
and NURBS, in the proposed algorithm.

Figure 3. (a) Control points and future predictions of Bézier trajectory and (b) deformation of eight concatenated Bézier
curves.
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