UNIVERSITAT
JAUME |

Design and Development of
Videogames Degree

Final Degree Project

SHADERONOMICON:
Tool for high-level
developing and
exportation of shaders

Author: Albert Dols Ferrandis
Academic supervisor: José Ribelles Miguel

Date: 01/07/2018
Academic Course 2017/2018

Albert Dols Ferrandis July 1, 2018 Final Degree Project

Abstract

Computer graphics is a branch of computer science that involves the treatment
of everything that could appear on a screen. In the past years, this field has become
one of the most important for video game developers, as it provides a tool for easy but
powerful optimization solutions, and a huge improvement in visual quality. As
interesting as it may sound, the greatest barrier to learn about it is the difficulty of its
intern calculations and structure. As it requires not only to learn/adapt oneself to a
programming language (in this case, nvidia CG is a C-based language), it also requires
more advanced mathematical knowledge, regarding matrix operations.

Fortunately, in the recent years, this barrier was tightened by tools that use an
object-based programming, the node-based shader edition. This type of edition allows
the user to create shaders in a more visual way, using objects with linkable properties,
and let us see the result in real-time. This type of tool has overcomed the hurdle of
using a programming language, but it still requires specific mathematical knowledge
to dig out its full potential. An example of this type of tool is the Shader Graph!, the
node-based shader editor included inside Unity3D.

Shaderonomicon is a tool which aims to surpass the previously mentioned
limitations, and give access to any developer to basic shader edition, in an intuitive
and easy way. By using this application, one can understand which basic properties
have a texture®, normal map", or how lighting models affect the overall quality of the
shader’s output, and how all of these features interact with each other.

The target audience of Shaderonomicon involves anyone without prior shader
knowledge, who wants to learn in a direct way how does a shader works, and
experiment with basic features without writing a line of code. Because of its
easy-to-export and multi-platform operability, Unity3D is the best platform, not only to
implement the application’s systems, but also the most efficient one for the shader to
be exported to.

Key Words

Computer Graphics, Shader Development, CG Shader Coding, Unity3D

Albert Dols Ferrandis July 1, 2018

Index

1 - Introduction: Shaderonomicon
1.1 - About the project: What is this?
1.2 - Basic Concepts: What is a shader?
1.3 - Motivation: Why?
1.4 - Objectives: What are our goals?
1.5 -Initial Task Planning
1.6 - Expected Results
1.7 - Tools and used plug-ins
1.8 - Similar Tools

2. Shaderonomicon’s systems
2.1 - Introduction
2.2 - Shader-oriented systems
2.2.1 - Shader export system
2.2.2 - Shader Management system
2.2.2.1 - Shader Library Component

2.2.2.2 - State Machine Shader Component (SMSC)

2.3 - Feature-oriented systems
2.3.1 - Main Texture Parameters system
2.3.2 - Normal Map Parameters system

2.3.3 - Lighting Model Parameters system
2.3.3.2 - Phong Lighting Model Parameters system
2.3.3.3 - Lambert and Half-Lambert Lighting Model Parameters system

2.4 - Scene-oriented systems
2.4.1 - Camera Movement System
2.4.1.1 - Camera Zooming Component
2.4.1.2 - Camera Rotation Component
2.4.2 - Mesh Swap system
2.4.3 - Lighting Model Selection system
2.4.4 - Shader Change Name system
2.4.5 - Scene Settings Parameter system
2.4.6 - Main Feature Selection System
2.4.7 - Exit Application Menu system

3. Shaderonomicon'’s Tools
3.1 - Introduction
3.2 - Color Picker

3.2.1 - HSV and RGB color representation models

3.2.2 - Color Picker's workflow
3.2.3 -HUE and HSV display shaders

3.2.4 - Mouse position Detection Component

Final Degree Project

O 0 0 N O O U1 01 »;

S I el el e e T T e T e e e e - e S e e B [
O OmMMWMMOMUNu dTuNOOOO NP wwWwOEEEOOO

N D DNDNMNDNDMDDNDDN
W W NMNDNMNDNMDDNDND

N

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3.2.5 - Current and New Color Display
3.2.6 - Framework Buttons
3.3 -Crosstale’s File Browser
3.3.1 - File Selection Derived Component
3.3.2 - Folder Selection Derived Component
3.4 - Shader File Scripting
3.5 - Interface-exclusive Tools
3.5.1 - Slider
3.5.2 - Input Field
3.5.3 - Button
3.5.4 - Text
3.5.5 - Image
3.5.6 - Multi-resolution component

4. Shaderonomicon Development Diary

4.1 - About the changes in the project’s goals

4.2 - About the development of the Modifiable shader
4.2.1 - Before the first version of the Modifiable shader:
4.2.2- First version of the Modifiable shader
4.2.3 - Development of the all-purpose library
4.2.4 - Current version: State Machine Shader Component

4.3 - About the Shader Export System

4.4 - About Camera movement, and Mesh Display Behaviour
4.41 - About the Camera Movement
4.4.2 - About the Mesh Display Behaviour

4.5 - About the Color Picker Tool

4.6 - About the File Explorer Tool

5. Interface Design and Evolution

5.1 - Main interface
5.1.1 - [Sketch] Pass Edition Window
5.1.2 - Main Interface Window

5.2 -Auxiliar interfaces
5.2.1 - Color Picker Tool and its evolution
5.2.2 - File Explorer Tool

5.3 - Future interfaces
5.3.1- Pass Manager Window
5.3.2 - Export Settings Window
5.3.3 - New Project Window

6. Project Results
6.1 - Tools and Canvas Results
6.2 - Shader Edition Results
6.3 - Shader Export Results

23
24
24
24
25
25
26
26
26
27
27
27
28

29
29
29
30
30
31
31
32
33
33
33
33
34

36
36
36
37
38
38
39
40
40
41
41

42
42
43
45

Albert Dols Ferrandis July 1, 2018

6.4 - Shaderonomicon’s Video Demostration, and executable

7. Conclusions
7.1 - Goal Accomplishment
7.2 - Project’s Planning Deviation
7.3 - Future work: What comes next?

8. Bibliography

Final Degree Project

49

50
50
50
52

53

Albert Dols Ferrandis July 1, 2018 Final Degree Project

1 - Introduction: Shaderonomicon

1.1 - About the project: What is this?

This document is the final memory of Shaderonomicon, the project made for
the Final Degree Project in Design and Development of Videogames, based on the
development of a tool which allows to create simple but powerful shaders. Using
high-level controls such as sliders or lists of options, its aim is to provide indie
developers, beginner shader developers, and everyone interested in this “black-magic
realm”, a way to work in shaders without using code, or the necessary knowledge
about shader programming. This tool will be created using Unity3D, and finished
shaders could be exported to this game engine.

1.2 - Basic Concepts: What is a shader?

Following the wikipedia's description®, a shader is:

“ A type of computer program that was originally used for shading (the
production of appropriate levels of light, darkness, and color within an image) but
which now performs a variety of specialized functions in various fields of computer
graphics, special effects or does video post-processing unrelated to shading, or even
functions unrelated to graphics at all.”

So, in short, a shader is a program used by the GPU, which can perform a wide
range of operations, mainly graphics oriented ones. A shader is usually assigned to a
mesh, and some types of shader are counting on its properties to do its calculations.
There are many types of shaders: geometry shaders, tessellation shaders, compute
shaders, pixel shaders, vertex shaders, etc. Every type is specialized on a particular
field, although some of them can be mixed to obtain unique results.

In Shaderonomicon, only one type of shader is used: the “Pixel Shader”, because
of its relevance in basic shader knowledge. This type of shader is well-known for its
“fragment” calculations. This behaviour allows the shader to obtain realistic lighting
representations, and simulate normal mapping, as one of its main features. Also, we
will implement a variation of this type of shader, mixing its structure with the “Vertex
Shader”, because of its structure harmony with the Pixel Shader, and the differences
between how they internally work (the main difference is the place where they do
their calculations). To understand this, I will briefly explain the structure of these
functions:

e Both Pixel and Vertex Shader use two main functions: the vertex
function and the fragment function. The first is called every vertex of
the mesh, and the second is called every time a pixel is rendered.

Albert Dols Ferrandis July 1, 2018 Final Degree Project

e Knowing this, we can assume that, if the calculations are made in the
vertex function, the shader will perform better, but its visual output will
be worse (as for the pixel color will be interpolated from the mesh face’s
vertex). And, in the other hand, if the calculations are made in the
fragment function, the shader will produce a more detailed color output,
but its performance will be hindered.

1.3 - Motivation: Why?

The main purpose of Shaderonomicon, is to provide a useful tool to developers
who does not know how to create a shader, and overcome the initial hurdle of not
knowing what they can do with them. By experiencing first-hand how shaders work,
they will gain experience with them faster than by coding by scratch without knowing
what are they really doing. Based in my personal experience, I decided to develop an
application which would let new programmers to learn about the basic concepts in a
intuitive way, to help them in their first steps inside the computer graphics field.

Also, shader developing does not only provides better visual results, but also
improves its application’s performance, if used wisely. This approach to game
optimization is not common among indie developers, because it is not an essential
priority for low-level projects: helping them to have more possibilities thanks to
teaching them how do shaders work, will make them more competitive in an
overcrowded industry, like the mobile-oriented videogame environment.

The development of a tool of these characteristics requires a lot of time
dedicated to research, not only for the development of shaders, but also for the
interface design and implementation: it has to be well designed and explained for
everyone to understand every feature, without the use of tutorials. Furthermore, most
of the basic tools that are needed for the first version of the application are not
implemented inside Unity3D, so they must be done from scratch too.

1.4 - Objectives: What are our goals?

The goals of this project include, not only the shader edition system
development, but also the creation of the application itself. The main objectives of
Shaderonomicon are:

1. To develop a tool to help developers with zero experience with shader editing,
to create them without writing a line of code.

2. To develop a tool that exports the created shaders to Nvidia CG.

3. Ability to customize the basic features that usually involves shader edition

(texture, normal map, lighting model, etc).

4. The application interface can be understood without prior knowledge, and
users can start creating shaders without explicit instructions.
5. The exported shader works correctly in an external Unity3D project.

Albert Dols Ferrandis July 1, 2018

1.5 -Initial Task Planning

Final Degree Project

Task Estimated
Time
Reference Research: Bibliography, competitors, shader 30 hours
frameworks, etc.
Implementation of tools and systems: 175 hours
e Color Picker Tool 10 hours
e Implementation 5 hours
e Research 1 hour
e Shader developing 2 hours
e Bug fixing 2 hours
e File Explorer Tool 7 hours
e Implementation 3 hours
e Research 3 hours
e Bug fixing 2 hours
e Shader Management System 125 hours
e Implementation (C# framework) 5 hours
e Shader development (nvidia CG) 30 hours
e Library function development (both nvidia CG and 75 hours
string-based)
e Bug fixing 15 hours
e Shader Export System 20 hours
e Implementation 15 hours
e Bug fixing 5 hours
e Mesh Related System 5 hours
e Mesh visualization System 1 hour
e Mesh Swap System 1 hour
e Camera Movement System 3 hours

Albert Dols Ferrandis July 1, 2018

Final Degree Project

e Scene Settings Parameter System 6 hours

e Exit Application Menu System 1 hour

e Shader Change Name System 1 hour
Project’s Technical Proposal 4 hours
Project’s Research and Design Proposal 6 hours
Project’'s Memory 30 hours
Project’s Presentation 10 hours
Project’s video 10 hours
Project’s Main Interface Development 30 hours

e Visual Shader Development 3.5 hours

e Implementation 23.5 hours

e Multi-resolution canvas 3 hours
Organization of project’s assets (relocation and removal of 5 hours
obsolete assets and code)
Total hours: 300 hours

1.6 - Expected Results

The developed application will work without any major or minor bug; its
performance will be stable, and its interface would be easily understood by anyone
without prior knowledge about shaders. The quality of the exported shaders will be
excellent in both visual result and efficiency. The quantity of possible features to use
will not make the application more difficult to operate. The shader will be correctly
exported, and could be used in an external Unity project. Its framework will be

scalable, for its continued development.

1.7 - Tools and used plug-ins

Engine to create the app: Unity3D.

plugin)®.

Code Editor: Microsoft Visual Studio 2017,
Program to create the artistic assets: Adobe Photoshop CC".
Plug-in for File Explorer Management: CrossTale's File Browser (Asset Store

Program to create and edit the Project’s Documents: Google Docs".
Program to create and edit the display meshes: Blender!“.

Albert Dols Ferrandis July 1, 2018

1.8 - Similar Tools

Node-based shader editor: Unity3D Shader Graph.
Professional material and texture editor: Substance®™.

Code-based and node-based shader editor: Shaderfrog?.

Code-based shader editor: Shadertoy™.

Final Degree Project

Albert Dols Ferrandis July 1, 2018 Final Degree Project

2. Shaderonomicon'’s systems

2.1 - Introduction

The development of this application will require the implementation of a wide
variety of tools to provide the best experience to the user, which we will call from now
on, “systems”. They are divided in three great fields, and the interaction between them
can be seen in the Figure 1.

e Shader-oriented systems: These are the backbone of the project, as they are the
ones which manage the shader’s library and its interaction with the other two
fields.

e Feature-oriented systems: These are the ones responsible to ease and optimize
the user's actions to modify the different properties of the shader. They are the
bridge to unite the other two fields.

e Scene-oriented systems: These are in charge of the user’s interaction with the
application’s interface and its visualization.

Feature-oriented

7 Systems
Manages
Feature Display

Shader-oriented
SyStemS Updates visual

,\ Display
</

Provides Scene-oriented

User

input Systems

Provides
User
input

Shaderonomicon Systems Workflow

Figure 1. Workflow diagram of the different system fields.

2.2 - Shader-oriented systems

A shader-oriented system is a tool whose objective is to manage the shader’s
library code, or provide it to another systems of another field. The ones which this
project use are the following:

10

Albert Dols Ferrandis July 1, 2018 Final Degree Project

2.2.1 - Shader export system

One of the main features of the application. This system enables the player to
save the modifications of the edited shader, in a “.shader” text file format that is
compatible with almost every version of Unity3D, as my research concluded that this
format is exactly the one used to write code in nvidia CG. It receives information from
the Shader Naming and the Shader Management tools, from which data will fill all the
gaps needed for the shader to work correctly.

Its task is done smoothly thanks to some of the most important tools of the
application: the File Explorer, the Shader Feature Save and the Shader File Writing.
These all three are intertwined in a simple workflow:

1. The user edits the shader name and the properties of the shader as desired.

2. When the “Save Shader” button is pressed, the File Explorer tool shows a
window for the user to select the desired folder to save the shader.

3. If he does not cancel this window, and selects the desired folder, the main
system receives the necessary information from the Shader Management,
Shader Naming and Shader Feature Save tools, which data is sent to the Shader
File Writing tool, filling the shader to be exported.

4. When the Shader File Writing tool finishes its job, the file explorer exports the
shader to the selected folder.

2.2.2 - Shader Management system

This system is the main application’s system. It receives information from
almost every tool, and modifies the shader to adjust its desired output. It sounds
simple, but its components are quite complex: the State Machine Shader Component
provides the framework to switch between the correct functions from the Shader
Library Component, while the feature-oriented systems provide the necessary
information from the user, and the scene-oriented systems show the output of the
shader, as shown in Figure 1. We will now proceed to explain how these components
work:

2.2.2.1 - Shader Library Component

Inside this component resides all the possible functions that the shader can
use, and the State Machine Shader Component main framework. This is possible
thanks to a function-based structure which allows the code to be straightforward and
easy to read and edit. But this component is split in two: the real code reference, from
which the shader receives the data, and a string-based copy, used by the Shader
Feature Save tool, to obtain the code from the necessary functions.

11

Albert Dols Ferrandis July 1, 2018 Final Degree Project

2.2.2.2 - State Machine Shader Component (SMSC)

This component adapts the shader’'s output depending on its state, given by
specific control parameters. The SMSC is located inside the Shader Library
Component, and its framework depends entirely on it.

The main goal of the SMSC is to switch between the shader's vertex and
fragment functions, depending on the features that the user wants. So, for example, if
the player does not use a texture and do not use a normal map, the SMSC makes sure
that the current vertex and fragment shader are the ones that do not use them. The
moment the user adds one of these properties, the SMSC changes the current vertex
and fragment shader used, now supporting this feature. But, how can a shader change
its vertex and fragment functions in real time? The answer to that question is that
they never change.

When compiling our shader within the application, we use special vertex and
fragment functions, which receive a data structure made only for this purpose. Inside
the functions, depending on control parameters offered by the feature-oriented
systems, we choose the correct vertex and fragment functions. These need their
respective data structures (because not all of the functions need all of the available
parameters), so we will create auxiliar data structures for these purpose, and update
them with the correct values. This way, we can simulate the behaviour of a state
machine inside the shader in real time. An example of an actual cycle of the SMSC
would be this:

1. As we enter the vertex/fragment function, we follow the logic of the
state machine to reach the current state.

2. If we need additional data structures, we create and complete them with
the received custom input structure.

3. We retrieve the necessary information from the state’s real vertex
function (called with the correct data structure), and complete the
custom output structure with it.

4. When we reach the fragment function, we repeat steps 1 and 2.

5. Then we will obtain the final color of the pixel from the state’s real
fragment function.

This structure has a great flaw: its practical performance. Checking every cycle
the shader’s current state, creating additional variables and processing unnecessary
input variables would drastically affect the shader’s performance if the user was to
use 1t in a real videogame environment. But this is where the Shader Library
Component, and the Shader Export System have their time to shine: using the
string-based copy of the library, and accessing the control parameters, we deduce

12

Albert Dols Ferrandis July 1, 2018 Final Degree Project

which the shader’s current state so to correctly export the shader we do know which
specific functions we need to export, without extracting the SMSC, avoiding this issue.

2.3 - Feature-oriented systems

A feature-oriented system is one whose responsibility lies in maintaining the
user’s attention at the interface, give adequate feedback about what they are doing,
and ultimately improve the user’s interaction with the shader’s features. Its main
tasks require translating the user’s input from the main scene tools, (Sliders, Input
Fields, Color Selection and Image Selection), and updating the appropriate values of
the Shader Management system. The following systems are the ones within this field:

2.3.1 - Main Texture Parameters system

This system is in charge of the most basic and important feature of a basic
shader: the main texture. It visual design can be seen at the Section 5.1.2.
The properties that this system allows to modify are the following:

e Main Texture: Applies an image to the figure, depending on its UV
coordinates. To obtain this image, the system makes use of the File
Explorer Selection tool, converts the obtained picture to a usable texture,
and then assigns it to the shader using the Shader Management System.
The provided controls allow the user to select an image, reset this
component (by deleting the selected texture from the shader), or
visualize the applied texture.

e Main Color: This property changes the color output of the texture and
therefore, of the shader, using an external tint. To obtain the desired
color from the user, we use the Color Picker tool, and then update the
correct parameter using the Shader Management System. The provided
controls allow the user to select this color (with the Color Picker Tool),
tweak its influence at the color calculations (with a Slider which limits
are restrained from 0 to 1), visualize it (using an Image component), and
reset it to white (using a Button).

e Offset X and Y of the Main Texture: This properties allow the user to
displace the UV coordinates of the Main Texture at the X and Y axis. The
coordinate shifting is restricted from 0 to 1, as the texture coordinates
cannot be different from that range. This special properties are
presented by Sliders, and if the user changes them, the parameters are
updated in the Shader Management System.

e Tile X and Y of the Main Texture: This properties allow the user to repeat

the UV coordinates of the Main Texture, in the X and Y axis. Making use
of the Input Field tool, we can obtain from the user the desired repetition

13

Albert Dols Ferrandis July 1, 2018 Final Degree Project

of the coordinates, and then update the necessary values with the
Shader Management System.

2.3.2 - Normal Map Parameters system

This system is in charge of one of the most basic and important features of a
basic shader: the normal map. Its visual design can be seen at the Section 5.1.2. The
properties that this system allows to modify are the following:

Normal Map: Applies a normal map to the figure, depending on its UV
coordinates. To obtain this image, the system makes use of the File
Explorer Selection tool, converts the obtained picture to a usable texture,
and then assigns it to the shader using the Shader Management System.
The provided controls allow the user to select an image, reset this
component (by deleting the selected texture from the shader), or to
visualize the applied texture.

Normal Map Force: This parameter adjust the force that the normal map
applies to the lighting data. This property is adjusted thanks to the Input
Field tool, receiving the information that the user provides, and then
updating the necessary values using the Shader Management System.

Offset X and Y of the Normal Map: This properties allow the user to
displace the UV coordinates of the Normal Map at the X and Y axis. The
coordinate shifting is restricted from 0 to 1, as the texture coordinates
cannot be different from that range. This special properties are
presented by Sliders, and if the user changes them, the parameters are
updated in the Shader Management System.

Tile X and Y of the Normal Map: This properties allow the user to repeat
the UV coordinates of the Normal Map, in the X and Y axis. Making use
of the Input Field tool, we can obtain from the user the desired repetition
of the coordinates, and then update the necessary values with the
Shader Management System.

2.3.3 - Lighting Model Parameters system

The Lighting Model is the sum of different calculations that simulate the light
reflection over the surface of an object. Its good use is a must for any basic shader, and
its implementation, one of the main struggles that new graphics programmers have to
face. As every model uses its own set of scene parameters to do their computations,
they have to be thoroughly studied, not only on the calculations, but also on the
acquisition of the crucial engine variables to make it work correctly. As every Lighting
Model makes use of the normal Direction at every cycle (its base value depends if the
lighting model is pixel-based or vertex-based), its result is affected by the addition of a
normal map, which only purpose is to modify this value by using a special color

codification.

14

Albert Dols Ferrandis July 1, 2018 Final Degree Project

The calculations of the Lighting Model can be called at the vertex function, or
the fragment function, if the input parameters are processed correctly. Its
performance and visual output performance differences are explained at the Section
1.2.

In Shaderonomicon, there are seven possible Light Models, three of them are
vertex-based, one is the possibility of having no light system, and the last three are
pixel-based. Each three of both categories are Phong, Lambert and Half-Lambert, and
the user can switch between then in real time, using the State Machine Shader
Component.

2.3.3.2 - Phong Lighting Model Parameters system

The Phong Lighting Model™ is well-known for its wide range of customizable
properties, its great performance and realistic graphic results. The provided controls
for all the colors allow the user to select this color (with the Color Picker Tool), tweak
its influence at the color calculations (with a Slider which limits are restrained from 0
to 1), visualize it (using an Image component), and reset it to white (using a Button).
Every value is updated in the shader, using the Shader Management System. It visual
design can be seen at the Section 5.1.2.

e Ambient Color Management: This property changes the base color used
by the Phong Lighting Model. This value is often omitted, as its only use
is to provide a color difference between the mesh own color and the
other two color components of this model.

o Diffuse Color Management: This property changes the diffuse color,
which provides the lit areas the color modification given by the low
reflection of the light, using its color.

e Specular Color Management: This property changes the specular color
calculation, with boosts the color modification in areas which the light
is most reflected. This areas usually “override” the previous color with
the light’s color.

e Shininess Management: This property is in charge of increasing or
decreasing the influence of the specular color calculation on the
lighting formula. This property is presented by a Slider and two Input
Fields, which use this workflow:

o The user can change the shininess value by selecting the desired
value from the Slider.

o The user can tweak the low limit number, and high limit number
of the shader, by editing the values in both Input Fields.

o As any value mentioned before is modified, the Shader
Management system updates the shader.

15

Albert Dols Ferrandis July 1, 2018 Final Degree Project

2.3.3.3 - Lambert and Half-Lambert Lighting Model Parameters system

Both Lambert™ and Half-Lambert are the same lighting model, with a few
differences at its variable computations. Their good points are better performance
than Phong (by a long way), easier to implement, and is view-independent (it does not
depend on camera position). Their disadvantage is that it does not represent well
shiny surfaces, and its visual result is worse than Phong. Also, it has less variables
that could be tweaked, making it less flexible.

The main difference between Lambert and Half-Lambert is the diffuse color
calculation, in which the Half-Lambert is halved, then half is added, and then is
squared. This helps the darker areas to lighten up a bit, displaying better the
boundaries of the mesh and avoiding the apparent flattening in areas with almost no
lighting. This model only allows to change the tint of the provided light (which would
be the tint color over the mesh). The provided controls allow the user to select the
color (with the Color Picker Tool), tweak its influence at the color calculations (with a
Slider which limits are restrained from 0 to 1), visualize it (using an Image
component), and reset it to white (using a Button). It visual design can be seen at the
Section 5.1.2.

e Light Color Management: This color modifies the coloration over the
mesh made by the diffuse color calculation. When updated, the Shader
Management System process the appropriate values.

2.4 - Scene-oriented systems

The task of every scene-oriented system is to properly offer the correct
feedback to the user, about what is he doing, and notify the appropriate system of the
other fields. Its visual finish is crucial, as it will be seen at any moment the player is
using the application. Also, it has to be simple, to understand its behaviour almost
instantly, but complete, to provide every system with the correct data. Every system
on this field has only one controllable property at a time, as it cannot be more
complicated than that. So, the implemented systems are the following:

2.4.1 - Camera Movement System

This system is responsible for the camera movement in the scene, allowing to
see the mesh from different angles and positions at the scene. It is the most
complicated system in this field so far, as it is formed of two components: the Camera
Zooming Component, and the Camera Rotation Component, both of them controlled by
the mouse.

The camera movement has some inertia and absorption (the movement will

start a little after the input is received, and it will finish a little after the input has
disappeared), allowing it to be more natural and enjoyable. The mesh is always in the

16

Albert Dols Ferrandis July 1, 2018 Final Degree Project

center of the display screen, for the user to always know how changes affect the
shader.

2.4.11 - Camera Zooming Component

This component is in charge of changing the position of the camera, relative to
the mesh, focusing on it or moving away from it. This movement has its limits, as it is
not possible to move further from the mesh than a specified distance, and its is not
possible to move towards the mesh center if there is not a minimum distance between
the camera and mesh. This component control is the mouse wheel, zooming in as the
wheel rolls up, and zooming out as the wheel rolls down.

2.4.1.2 - Camera Rotation Component

This component is in charge of rotating the camera around the mesh, to
visualize how does the shader behave in the scene. This component is particularly
useful to see how does the lighting model works on the meshes. This rotation is
locked to maintain the same distance to the mesh as it rotates (unless the Camera
Zooming Component is activated), and works in the X, Y and Z axis, always having the
mesh at the center of the rotation. This movement is only activated when the user
does a left click at the designated area (created by a invisible Button), and it will not be
deactivated until the user stops holding the left click button, to allow the user to move
as he pleases.

2.4.2 - Mesh Swap system

This system is the one responsible to show different meshes in the scene (only
one at a time) to see how does the shader looks in different forms. To make it easier
for the user to choose one mesh or another, every option has a Button assigned at the
bottom right part of the interface, with the name of the proper mesh in it, and when a
mesh is selected the corresponding button will show an animation to tell the user
which mesh is currently active. Its appearance can be seen in the Figure 2. The ones
implemented right now are:

e A sphere with a high number of polygons: With this mesh, the user can
understand the difference of applying a vertex-based lighting between a high
count polygon mesh, and the other option available, as the visual difference
between vertex and pixel-based lighting fades as we use more polygons.

e A sphere with a low number of polygons: With this mesh, it is clearly visible the
difference between the vertex-based lighting and pixel-based lighting.

e A torus: With this mesh, we can show how does the coordinate map for the
texture deforms itself to adapt to the mesh, and a great example of how does
the lighting models calculation works with bent surfaces.

e A cylinder: With this mesh, the user can detect the differences in the
coordinate map for the texture, between planes, and how does this deformation
affects the texture and lighting. A low count polygon is chosen, to highlight the
differences between pixel-based and vertex-based lighting.

17

Albert Dols Ferrandis July 1, 2018 Final Degree Project

e A cube: WIth this mesh, the user can see the difference between the orientation
of the UV coordinates on the different mesh faces, and how it matters to take
this into account.

| tighpoy ¥ towpay § oo oo Heono o
" Sphere | Sphere | Cube 1§ Torus iCylinders
| Fire 2. Mesh Swap Sysem, insidehe applicaon. N

2.4.3 - Lighting Model Selection system

This system is the one which allows the player to choose between pixel-based
and vertex-based lighting models, and every model implemented (including the
possibility of no lighting). This system is composed of two parts: the Slider and the
Switch Buttons. Its appearance in the main interface can be seen at the Figure 3.

e The Slider allow the user to change between “No Light”, “Phong”, “Lambert”
and “Half-Lambert” Lighting Models (without taking into account if they are
pixel-based ot vertex-based). As the Slider moves, a Text element below the
Slider shows the current lighting model name selected.

e The Switch Buttons allows the user to change between pixel-based
computations or vertex-based computations. As the normal map i1s dependent
of the lighting system, the selected field will also affect the calculations of this
feature. As there can be only one option selected, the buttons will allow to
select one of the options.

|1

No Lighting
Pixel

Vertex
Lighting Lighting

Figure 3. Lighting Model Selection System, inside the application.

2.4.4 - Shader Change Name system

This system is the easiest to understand: it uses an Input Field to receive the
desired name for the exported shader. It can be changed anytime, and it will not affect
another features of the shader. As the value is updated, the Shader export system will
take care of saving the selected name.

2.4.5 - Scene Settings Parameter system

This menu is the one responsible of changing the colors used at the scene’s
skybox and light. An skybox is a representation of the infinite boundaries of the scene

18

Albert Dols Ferrandis July 1, 2018 Final Degree Project

(the sky, or the horizon, for example), and tweaking the parameters of the one used at
the scene, we can simulate the desired work environment, and observe how the
shader behaves on it. The provided controls for all the colors allow the user to select
this color (with the Color Picker Tool), tweak its influence at the color calculations
(with a Slider which limits are restrained from 0 to 1), visualize it (using an Image
component), and reset it to white (using a Button). When a parameter is modified, it is
updated in the Shader Management System. The visual design of this menu can be
seen at the Section 5.1.2. This menu is composed of four components:

e Sky Tint: This is the base color of the sky in the scene, modified by the
Atmosphere Thickness and the Exposure values.

e Ground Color: This is the base color of the ground in the scene, modified by the
Atmosphere Thickness and the Exposure values.

e Light Color: This is the base color for the main light in the scene, which will
modify the result of every Lighting Model (except the “No light” possibility).

e Atmosphere Thickness: This value is the one that tweaks the absorption of
color in the scene (modifying the sky final color). It is controlled by a Slider
with predefined limits (as the variation above or below these is deemed
indiscernible).

e Exposure: This value tweaks the influence of the high refraction zone that
happens at the horizon of the skybox (modifying the sky final color at the
affected zones). It is controlled by a Slider with predefined limits (as the
variation above or below these is deemed indiscernible).

2.4.6 - Main Feature Selection System

This system is made by a series of Buttons spread across the interface, which
helps the player to open the different sub-menus and navigate through the different
features. These Buttons can only be selected one at a time, and opening one menu will
close the previously opened ones: the first time a Button is pressed, it will show an
animation that will allow the user to see which menu have they opened. A Text
element above the menu’s designated space informs the user about the title of the
current opened menu. Every Secondary Menu will be opened inside the designated
area for it, the right wing of the main interface. The appearance of all of these
elements can be seen at the Figure 4. The available buttons are:

e Basic Color / Texture Button: By clicking on this Button, the Main Texture
Parameters System will be opened.

e Normal Map Button: By clicking on this Button, the Normal Map Parameters
System will be opened.

19

Albert Dols Ferrandis July 1, 2018 Final Degree Project

Open Lighting Model Button: By clicking on this Button, the Lighting Model
Parameters System will be opened, depending on the current selected Lighting
Model.

Scene Settings Button: By clicking on this Button, the Scene Settings
Parameters System will be opened.

Exit Application Button: By clicking on this Button, the Exit Application will
open the Exit Application Menu system at the center of the main interface.

Shader Export Button: By clicking on this Button, the Shader Export system is
activated, and the File Explorer tool is opened.

Enter shader name...

Basic Color / Texture

Normal Map

=
B
= &

Close Menu i

Exit Shaderonomicon Change Scene Settings Save Shader

A T
D

, %Opern‘r Lig'hrting; Model Ménu ‘

Figure 4. Main feature Selection System, inside the main interface, at the left wing of it.

2.4.7 - Exit Application Menu system

This system allows the user to exit the application, as one of its main goals is to

remind him to save the created shader (if he desires) before the application is closed.
This simple menu is made by three Buttons inside a window with a informative Text,
and its appearance can be seen at the Figure 6:

Exit Application System: If the user wants to exit the application, by clicking on
this Button, the application will close, losing all the modification on the shader.

Close Exit Application Menu: If the user does not want to exit the application,

by clicking on this Button this menu will be closed, returning to the main
interface.

20

Albert Dols Ferrandis July 1, 2018 Final Degree Project

e Save Shader Button: By clicking on this Button, the Shader Export system is
activated, and the File Explorer tool is opened. After that, the application is
automatically closed.

Do you want to save the
changes? |

Figure 5. Exit Application Menu's visual design

21

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3. Shaderonomicon'’s Tools

3.1 - Introduction

All of the systems of Shaderonomicon, specially the feature and scene oriented
ones, are made by tools, a sub-system that cannot work by itself, so it must be
implemented in the right framework to be of use. The sub-system's structure depends
on its given purpose, but as a rule, any of the tools does not consist of two or more
possible controls, to be easier to understand and use by a novice user. In this section,
every tool's mechanic will be thoroughly explained, for a better understanding of how
do they work.

3.2 - Color Picker

This is the most complete tool of the application, as it involves color/coordinate
conversion component (using shaders (nvidia CG) and C#) , a mouse position Detection
Component, and another tools such as Images, Text and Buttons. The color conversion
involves converting HSV color values to RGB, and vice-versa, as the Color Picker uses
two main panels, the HSV panel, and the HUE panel. Its visual design can be seen at
the Section 5.2.1.

3.2.1 - HSV and RGB color representation models

From the start, it was decided that the Color Picker tool would be based on a
HSV color interface, as it is the most spread workframe in this type of tools: not only
the user would be more familiar with this system, but the acquisition of the desired
color for the shader would be easier than using a RGB system. To understand better
this decision, I recommend this article!®, as it is very well explained.

3.2.2 - Color Picker’'s workflow

The workflow of the Color Picker tool follows this scheme:

1. When a Color Selection Button is pressed, the Color Selection tool saves the
desired color to be changed, and updates the Current Color Image Display.
Then, the Color Picker window opens.

2. The user can select the desired color from the HSV panel, using the mouse
position Detection component.

3. The user can change the HUE component from the HUE panel, using the mouse
position detection component. When a new color is selected, the HSV panel is
refreshed with the new HUE value.

4. When the user has selected a new color, he can save his selections by clicking
on the Apply Button, which will assign the new color to the previously saved
color, and close the Color Picker window. If the user does not want to save the
changes instead, he can cancel this assignment by clicking on the Cancel
Button, which will only close the Color Picker window.

22

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3.2.3 -HUE and HSV display shaders

Making use of the HSV to RGB conversion formulas found online!"”, and taking
advantage of the properties of the UV coordinates of the shader, The HSV is quite easy
to implement, as we only need to assign the Saturation and Value parameters of the
pixel's color to the X and Y coordinates of the UV map (which always go from 0 to 1),
which we will multiply for the selected value at the HUE display. As for its shader, we
will only have to use the Y coordinates to vary from 0 to 1, to 0 to 360, keeping the
Saturation and Value parameters to 1. To show these colors we have to convert the
assigned values to the RGB model, and then return the output of the operation to the
fragment shader’s function.

3.2.4 - Mouse position Detection Component

The current mouse position Detection Component works using four auxiliar
objects, which are anchored to the corners of the desired detection area. This may
seem primitive, but this way the detection area can update itself with the
multi-resolution component. But the real aim of the use these corners, is to replace the
necessity to obtain the pixel’s color, by using the adapted values to obtain the relative
color from that position. The workflow of this component is the following:

1. The user does a left click: if the Color Picker window is open, and the mouse
position is within the corners, the program takes as the user wants to select a
color.

2. Then, interpolating the value between the corners (in the X and Y axis), the
program obtains the relative position, from 0 to 1 values.

3. The relative position is used to obtain the Saturation and Value parameters (in
the HSV panel) and the HUE parameter (in the HUE panel).

To obtain a more intuitive interaction with the user, a little offset is added to the
position of the corners, allowing to detect the position of the mouse in a little wider
area (but the relative position’s range do not change), to make the selection of the
corners easier. Furthermore, two concentric circles show the position of the mouse
while selecting the color, and points out the estimated position of the color in the HSV
panel. Its analogous component in the HUE panel is a rounded rectangle, which shows
the estimated HUE value selected.

3.2.5 - Current and New Color Display

These components are only made for user-feedback purposes. Every display is
composed by Text (to show which color corresponds to its display), and Image tools
(to show which color is selected / saved). Every Image is updated by the Color Picker
system, as the window opens (Current Color Display) or the user selects a new color in
the HSV Panel (New Color Display).

23

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3.2.6 - Framework Buttons

This Buttons are made to ensure that the color selection is correct, or to avoid
to change the current color selected. These make the user interaction to be
slow-paced, and so reducing the possible errors that the user would make. Every
Button of this framework closes the Color Picker window, but its purposes are
opposites. These are the following:

e Accept Button: This Button saves the changes on the selected color, by using
the Shader Management system.

e Cancel Button: This Button discards the changes on the selected color,
maintaining its original value.

3.3 -Crosstale’s File Browser

This is the only tool that was not programmed by me. Free from the Asset Store,
the File Browser's plugin from CrossTale is the only framework that allowed this
application to use the built-in Windows File Browser, and compile the application
with this feature (this will be further explained in Section 4.6 of this memory).

From this plug-in, we use to of the implemented components: the File Selection
Component and the Folder Selection Component. Its code only provides the route of
the selected item (folder or object) from the opened window, so we have to process it
accordingly to its nature. And, in the case the user does cancel the selection, the
exception needs to be taken into account. We will do this in both components. Its
visual design can be seen at the Section 5.2.2.

3.3.1 - File Selection Derived Component

This component uses both functions from the Crosstale’s File Browser, and
from the built-in libraries of C#. Its aim is to provide the Shader Management system
with the desired file from the computer, and process it for this system to use it
correctly. The functions of this component are called following this scheme:

1. First, when this system is called, the external function from the plug-in opens
the built-in Windows File Browser, and then the user can navigate through the
files of the computer to choose the desired file.

2. When the user selects the desired file, this window is closed and the function
returns the route of the file. Then, using the WWW class, we can extract or
“download” into an scriptable object this file.

3. As every File Selection call in this application is bound to retrieve an image, we
extract from the WWW object the texture that we will use in the project, and
depending on the feature that called this component, the appropriate
parameters are updated by the Shader Manager system.

24

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3.3.2 - Folder Selection Derived Component

This component uses functions from the Crosstale’s File Browser, and from the
built-in libraries of C#. Its aim is to provide the Shader Export system with the desired
folder from the computer, and process it for this system to use it correctly. The
functions of this component are called following this scheme:

1. When the user wants to save the modified shader, the Crosstale’s File Browser
function opens the built-in Windows Folder Browser, for the user to select the
desired folder of destination.

2. As the desired folder is selected, the window is closed and the function returns
the route. Unlike the File Selection Component, we do not need to process the
obtained route any further, as we provide the desired information to the Shader
Export system.

3.4 - Shader File Scripting

The main tool used by the Shader Export System, which objective is to create a
text file, fill it with the shader necessary instructions (following a predefined
structure), and exporting it to the provided route. This tool makes use of the
“System.I0” library from C#, and receives the crucial data from the Crosstale’s File
Browser (Folder Selection Derived Component), and the Shader Management system.
Its workflow follows this design:

1. First, it receives the specified route from the Crosstale’s File Browser.

2. Then, it creates the text file, using the value of the shader’'s name,
provided by the Shader Management system, and using the “.shader”
format.

3. Then, it fills the text file using this sequence:

3.1. Right after opening the file, we copy the first part of the basic
shader structure, using the obtained shader name, and paste it
into the text file.

3.2. Obtains all the values for all the parameters that the shader
currently uses in its current state, thanks to the Shader
Management system, and copies them into the text file.

3.3. Then, depending on the current state of the shader, the program
acquires the indispensable functions for the shader to work
correctly, extracting them from the string-based function library,
inside the Shader Management system.

3.4. After copying the functions, we extract from the string-based
function library, the vertex and fragment functions, and paste
them into the text file.

3.5. Lastly, we copy the second part of the basic shader structure, and
close the StreamWriter object.

25

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3.5 - Interface-exclusive Tools

These tools are exclusively used in the interface, and its only purpose is to link
the player’s input on different features, to the appropriate management systems. Its
behaviour differs, as some of them does not provide direct interaction with the user,
but to offer feedback from the system about the state of some features. The
implementation structure of all the following tools is provided by built-in components
of the Unity3D Canvas System.

3.5.1 - Slider

This tool's behaviour is simple: an interactable element moves inside a
horizontal bar, and the return value is the relative position of this element, between
the to limits of the bar. If provided with two Input Fields (like the Shininess
Management) the two numerical limits of the bar can be changed, modifying the
accessible values by the Slider. If that is not the case, the Slider will only access the
numeric values between the two limits. An example of both cases is shown in the
Figure 6.

Phong Shininess:

& | E)
i ol M
vin I [

Figure 6 .Left: Example of Slider with variable limits.
Right: Example of Slider without variable limits.

3.5.2 - Input Field

This tool’s objective is to receive the input from the user, and update the related
variable on its dependent system. Depending on its application, it will only allow to
insert text or numerical values. It is usually implemented with a Text element, to
show which element will be modified. The text inside the field can be selected, erased,
and modified, and all of the values are updated in real time by the system that are
using it. Its appearance can be seen in the Figure 7.

Normal Map
Scale X:

Figure 7. Two Input Fields, displaying the received values.

26

Albert Dols Ferrandis July 1, 2018 Final Degree Project

3.5.3 - Button

This is the most simple interactable tool: if the user clicks on it, an specified
function will be called. Every Button has a Text element inside, referring to its
purpose. It has two possible visual behaviours, which appearance can be seen in the
Figure 7:

e [ts appearance will change when the button is clicked, and when the
mouse is over them.

e Its appearance will change once the button is clicked, and will not
change until another button is clicked. (This is the case of the Switch

Buttons).
Hequn @l Lighting
Open Lighting Model Menu
Figure 8. Top: Example of Switch Buttons
Bottom: Example of normal Button.
3.5.4 - Text

This tool is used to inform the user, about other tools or the shader's current
state. Its simple implementation provides a flexible yet strong support for the user’s
understanding of the interface, and hence, improving the user’s experience with the
application. An example of its use, is shown in the Figure 9.

Half-Lambert Lighting

Figure 9. Text display showing the slider’s state.

3.5.5 - Image

This tool is used to inform the user, about shader feature's state, or scene
properties (as shown in the Figure 10). Its is used in all of the color or texture
modifications, and its possible behaviour are the following:

e Texture-oriented: its texture property will update when the system that
uses it adds, modifies or erases it.

e Color-oriented: its color property will change when the system that uses
it modifies its value.

27

Albert Dols Ferrandis July 1, 2018 Final Degree Project

Select

Texture

Figure 10. A button with its output assigned at the Image on the right.

3.5.6 - Multi-resolution component

This component allows the interface to resize itself if the screen’s size varies in
real time, maintaining the global proportions of all the items inside. This component
is also the most complicated to build, as it needs to be carefully adjusted to every
element in the interface. Its behaviour is controlled by the following components:

Horizontal / Vertical Layout Group: this component is the one
responsible of managing the size/proportion of its childs. Depending on
the tweaking of its properties, it is possible to align the object following
a simple pattern, or sharing a common anchor point, which is crucial for
its resizing when the screen’s size is modified.

Canvas Scaler Component: This component is the one in charge of
scaling the whole interface with the desired proportions (the ones
established by its childs in the Scene’s Hierarchy). This component
must be ONLY in the parent gameobject of the whole GameObject, to
ensure that the proportions are well saved.

Layout Element: This component allows individual elements to reserve
the desired size, inside their Horizontal or Vertical Group, overriding the
offered proportions by these.

As it may seem easy to understand and modify, it is quite difficult to work with if you
are accessing its parameters through a C# script. For example, its coordinates and
dimensions will look the same if we access the parameters using a script, but they
will vary when looking them from the editor's window (as they are correctly scaled
depending on the screen). All of these unwanted behaviours will trigger various
difficulties, as I explain in the next section.

28

Albert Dols Ferrandis July 1, 2018 Final Degree Project

4. Shaderonomicon Development Diary

4.1 - About the changes in the project’s goals

The original goal of Shaderonomicon was to be a library of basic, yet powerful
shader effects, to be used and edited by anyone, in an intuitive way. For this purpose,
three consecutive versions of the tool were expected to be released, one more
advanced than the previous one. As the development would prove challenging, I
thought of some “time-savers” that would help the project to progress smoothly: the
use of the Standard Shader framework, a powerful and scalable system from Unity3D,
would help to set up the initial version rather fast; the use of the Unity Canvas
components that allowed to quickly set up a prototype of the interface, allowing at the
same time the interface to have the multi-resolution feature; and, if I were able to find
a way to read an script as a text file, by creating a system that could read the functions
from it, the process of exporting the shader would be faster.

For this purpose, I initially made a lot of research, not only on the nvidia CG
language, but also on the implementation of the Standard Shader framework. After
dozens of hours studying it, I concluded that this framework could not be edited in
any way that I thought; moreover, the system to I thought to flexibly edit the shader by
adding passes (by rewriting the shader, exporting it within the project, and then
recompiling it) was quickly deemed non-viable (because of the inability to compile
any UnityEditor's library function; this also made me discard the use of the built-in
Color Picker and File Explorer tools, as they use this library).

So, after having consumed more than 10% of the time estimated to develop this
project, I had to start the project’s planification from scratch. If a library of shaders
was impossible to develop at a short-term; the best I could do was to set the right
framework, and the basic properties, for the project to be extended and upgraded in
the future. And so, I established the current goal of Shaderonomicon: development of
an application (only the final version), with the ability to edit the basic properties of a
shader in real time, and to be able to export it to use it in a Unity project. I decided to
prioritize quality over quantity, so the application would have less features, but it
would be more polished.

Most of the systems and tools of this application have been refined and
updated over the course of the project. The goal of this section is to show how the
systems have changed, and the reasoning behind their implementation.

4.2 - About the development of the Modifiable shader

The Modifiable shader is the system that has changed many times throughout
the development of this project. Being the target of most of the research time, the
Modifiable shader shifted its structure from the Standard Shader, to a “sketch” custom

29

Albert Dols Ferrandis July 1, 2018 Final Degree Project

shader, with an all-purpose library. Also, as the research concluded that the library file
could not be loaded as a text file, to process it by the Shader Export System, a
constantly updated string-based copy of the library was needed to be able to export
the functions correctly. Furthermore, as the research also concluded that it was not
possible to recompile a shader in real time, another system to manage the fluctuation
between possible states of the shader. Now, we will explain the reasoning behind all
these decisions:

4.2.1 - Before the first version of the Modifiable shader:

The first contact of my research did not gave me much hope, as the
bibliography that I could find about shaders in Unity was quite limited, being most of
the books dedicated to the Standard Shader?*??4_As I originally planned to use that
framework anyways, so I did a quick glance over their content. The result was not as
good as I expected: most of the variations that the books offered were choosing the
different properties that the Standard Shader had already implemented. So, after that,
I decided to look for more information online. I found quite instructive websites
(which I will mention at the next chapter), but all of them did not went further into
“how does Standard Shader works”. Then, I decided to look into them myself, to study
them in detail, and see if I could get something out from them.

As the Standard Shader provides a wide variety of functions and pre-built data
structures, the more of them I found (as I found that the basic library, UnityCG?¥, gets
most of their functions from other sub-libraries, as UnityCommonVariables,
UnityShaderUtilities, UnityShaderVariables, etc.), less flexible were their functions, so
I had to study their dependencies, too. The more I searched for its basic calculations,
the more functions I found that were purely untouchable (as they made reference to
function calls that were not accessible for me). Also, as I find that the shader
properties like the ability to cast shadows, are not included in the CGPROGRAM, and
so they cannot be changed (unless I rewrite the shader from scratch, which I will
conclude months later that it is not possible). As the edition of this framework, or the
tweaking of its properties seems almost impossible (not only because of its structure,
but also because I lack the ability to extract more information about it), I discard the
idea of using this framework to develop the Modifiable shader.

4.2.2- First version of the Modifiable shader

Thanks to the research I did about the nvidia CG language, as well as the basic
knowledge about shaders that I learnt from the subject “Computer graphics”, as well as
the useful websites that 1 found online (wikibooks.org‘z"], and
jordanstevenstechart.com®), helped me implement the first version of the modifiable
shader quite fast. But, as I implemented the normal mapping feature, and the phong
lighting model, the shader began to show implementation errors. As my knowledge
with debugging shaders in Unity was almost zero, the progress was halted. Then, I
decided to separate the different parts of the shader into functions; this way, if the
shader workflow was modular, it would be easier to pinpoint the cause of the
malfunctioning. And it worked, as the problem was the miscalculation of one of the

30

Albert Dols Ferrandis July 1, 2018 Final Degree Project

input vectors (which was overwritten at two functions with different purposes). So,
the first hurdle was overcomed. As I finished to implement all the lighting systems,
the texture handling and the normal mapping, everything worked fine... on the editor
debugging values; the controls from the main interface had suddenly stopped
working. As I did not find a lead to where the problem could be, I searched for a
solution, at the same time that I developed other systems that were not as advanced
as they should be.

A week later, I found the cause of the problem, after hours and hours of
searching in internet forums about it: as long as the variables were modifiable from
the editor's shader window, the global values that were sent to the shader were
overwritten by these. So, once I got rid of this feature, the application worked as
intended.

4.2.3 - Development of the all-purpose library

As I was trying to debug the shader, I found that it was extremely difficult, even
if the structure was more modular than having all the calculations altogether.
Furthermore, I realised that the current system would not work if the main shader had
to support more functions in the future. So I decided to put every function of the
shader into an all-purpose library, which would contain all the functions necessary for
the computation of the shader’s functions. Using this structure, the shader would only
need to call the vertex and fragment functions, from which all the necessary functions
would be called. This decision made me realize that the implementation of the bump
map™® was not as sturdy as I thought: as I separated its implementation from the
normal map calculations, a lot of errors popped up. So, after considering its real
importance, and looking into the new system'’s possibilities (I would have to take into
account if a bump map or not was provided, which increased the number of possible
states of the shader), I decided to keep it simple, and erase it from the project.

As I proceeded to continue the expansion of the library, I found that the
possibility of reading the script file as a text file from another script, was non-viable
for this project. So, the simultaneous copy of this library, but converted to strings, was
needed for the Shader Export System to correctly work. This would take a lot of the
time dedicated to the library implementation, so the expected date of finishing all of
the planned functions from the library was delayed.

As my research on the possibility of re-compiling a script concluded that it was
not possible too, I searched for a way to manage the switch between different vertex
and fragment functions in real time. After a couple of days, I found a solution: the
State Machine Shader Component.

4.2.4 - Current version: State Machine Shader Component

The State Machine inside the all-purpose library would solve the problem:
using custom vertex and fragment functions, as they would call the necessary
functions by extracting the data from custom input and output data structures (this

31

Albert Dols Ferrandis July 1, 2018 Final Degree Project

process is thoroughly explained at the Section 2.2.2.2). This way, the desired
implementation of the shader was accomplished, but there is still some bugs that I
could not find a solution: applying a normal map, and then erasing it, would result a
illumination error, as if it the light was “baked”. In the future, when a new feature
wants to be added, we have to follow these steps:
e First, adapt it to be accessible by using only a function (respecting the
modular design of the library).

e Then, four variants need to done: a “no texture” variaint, a “no normal
map” variant, a “no texture and no normal map” variant, and the “texture
and normal map applied” variant. These are the basic sketches, which
need different data structures. If one state is not possible, the new
feature has to be disabled if the shader is in that state variant, to avoid
future errors.

e Then, a copy of every new function has to be copied into the
string-based library.

These are the steps necessary to work with the Modifiable shader; it will need more
changes in other systems.

4.3 - About the Shader Export System

The Shader Export system is the second most important system of
Shaderonomicon, as it is one of the main goals of this project. A lot of the total
research time was dedicated to explore for different ways to implement it in a
efficient and, if possible, simple way. Unfortunately, that has not been the case.
Unlike the Modifiable shader, most of the time dedicated to this system was
purely searching and analyzing different methods, and only when I had a good
lead I decided to implement a prototype of the system. I've done it this way,
because this system is greatly dependent from the Modifiable shader and the
Shader Management System, as the output of this system is entirely based on
these: if I constantly modify these system, then I would have to update this
system, too. That was one of the main reasons that part of my research on this
field was to look for a way to read a script as a text file. To get a hold of
something that would assure me to obtain this result, is one of the things that I
will continue to search, for future versions of this project.

The current version of the Shader Export system uses two tools: the
Crosstale’s File Browser (its Folder Selection Derived Component, to obtain the
desired folder) and the Shader File Writing tool. This way, by accessing the
Shader Management system (to acquire the modified values of the shader, and
its current state), and the string-based function library from the Modifiable
shader, we can write into one single file the shader, with its values tweaked by
the user, and without having to export the State Machine (which would produce
serious performance issues).

32

Albert Dols Ferrandis July 1, 2018 Final Degree Project

4.4 - About Camera movement, and Mesh Display
Behaviour

4.41 - About the Camera Movement

The movement of the camera, and the mesh, were not a priority at the
implementation of the application, as I was more worried about the shader and its
features. So, when things went south (as I could not find a solution to the error I was
facing, for example), I decided to not lose time, and implement the remaining systems.
One of the first that I implemented following this, was the Mesh Rotation System. It
may sound simple, but using Quaternions and working with them is not. As the mesh
rotates, its reference axis also moves, and applying the same force will result in
undesired behaviour.

After trying different tutorials, I decided to go the other way around: the user
will move the camera around the mesh to observe how does the shader behaves in lit
and unlit areas. Thus, following a great tutorial®, we implement the camera
movement as desired.

4.4.2 - About the Mesh Display Behaviour

The main interface, because of its design, has been difficult to work with: the
display mesh has to be centered at its designed space all the time, but the center of
that designed space is never the center of the screen. This has been the first problem I
had to deal with, and it seemed quite easy to solve: by using a secondary camera to
show the mesh in the designated space, and focus on it with this camera the display
mesh in its center, it will always be centered. So, this new camera will render its
output in a Render Texture, which will occupy the designated area for the mesh
display, and will be cropped to prevent image deformation. As a temporary solution, it
worked quite well.

But as I found out when I compiled the application, the Mesh Render would
deform its output, giving undesired results. So, after months using this method, I
decided to revert this change, and return to the single-camera scene. This one
resolved that problem, but brought more and more complicated problems. So, after a
few weeks trying to solve them, I decided to use again the Render Texture: obtaining
by code the four corners of the designated space, the image could be resized without
undesired defromations.

4.5 - About the Color Picker Tool

This tool is one of the main reasons the planning started to fell apart. It was not
because of its shaders, or its color conversion formulas, but the mouse position
Detection Component, and its quirks with the Multi-resolution component. I will now

33

Albert Dols Ferrandis July 1, 2018 Final Degree Project

proceed to explain my foolish attempts to tame this component, until I found a
work-around solution:

4.6 -

First try, Direct Pixel Color detection: As Unity provides an input value,
that is the mouse position on the screen, I could convert its coordinates
to match the ones in the canvas, and then detecting the correct color by
using a deprecated function to obtain the color value on the selected
pixel. Of course, it did not returned the desired value, as the conversion
of the coordinates did not work well with the multi-resolution interface.
Then, I searched for a method that would not base its behaviour in
coordinates, but the texture displayed by the Image.

Second try, obtain the color's position using a Texture2D: After
searching for different methods online, I found one that seemed to work
for anyone. That was not my case, at first because it used a texture, and
in my case I use shaders to display the colors. So, to solve this hurdle, i
could render the shader’s result into a Texture2D, and then obtain the
color using the relative position of the mouse inside the detection panel.
This worked to an extent, as the selected color was shifted by an offset
relative to the mouse position. I tried tweaking it many times, rewriting
the formulas all over again, but my efforts were in vain.

Third try, current version: This version does not use the mouse position
to obtain the pixel’s color: instead, it uses four corners that contain the
detection area, and when the user clicks inside, the position is used to
calculate a relative value (constrained between 0 and 1), which the
program use to actually compute the color using a color conversion
formula. As it now achieves its purpose without errors, I consider this a
success.

About the File Explorer Tool

This tool is the one in which I actually spent the most time figuring out how to
implement it, and the main reason the original planning fell completely apart (aside
from the Standard Shader research, read more about this at Section 4.1). I will now
explain every version made of this tool, and why I decided to use an external plugin:

First version, using UnityEditor's functions: This was an easy and quite
fast implementation of the File Explorer, as the functions opened the
built-in Windows File Browser, and returned the desired route. The main
problem with this version was that the application could not be
compiled, as for using UnityEditor in runtime is impossible. So this first
version was quickly discarded.

Second version, using the Directory Class: As the rapid implementation
of the first version encouraged me to implement the File Explorer, I did

34

Albert Dols Ferrandis July 1, 2018 Final Degree Project

some research about how C# handles these. I found how to access
folders, and select files, so I implemented my own version of a File
Browser using a Canvas component called Scroll Rect, which would be
filled with the folders and files of the current route, and update itself as I
navigated through the computer's directories.. until I found an
exception when I tried to access some specific folders. I searched for a
solution for a long time, trying all of the alternatives that could work
(changing the iteration through the directories to a recursive-based
iteration), but none of them were successful. As the number of hours
spent on this tool kept rising above the desired number, I decided to
spend some time searching for an external plug-in to solve this problem
once and for all.

e Current version, Crosstale’s File Browser: As I tested many plugins that
guaranteed to work in runtime, this plugin was the only one that
actually worked. Its use is quite simple, which sped up the
implementation, and is easily accessible by any script, so it is perfect for
this purpose (to find a more detailed explanation, please read the
Section 3.3).

35

Albert Dols Ferrandis July 1, 2018 Final Degree Project

5. Interface Design and Evolution

5.1 - Main interface

As the sketches were made in light of the first objectives, the main interface
was initially divided into four screens: the Pass Edition Window (which would allow
the user to edit the properties of the desired pass of the shader), the Pass Manager
Window (where the user would be able to swap the order of the created Pass), the
Export Window (where the user would see how the shader is exported, and change its
name before saving it), and lastly, the New Project Window (the initial screen of the
application, where the user could choose to create a new shader from scratch, or edit
one of the available ones in the library). But, as we mentioned before, in the Section
4.21, the use of the Standard Shader was deemed non-viable for this project, so the
whole interface design could not be implemented. So, I decided to merge two of the
main windows, and create the Main Interface, where the user would modify the
properties of the shader, and export it.

5.1.1 - [Sketch] Pass Edition Window

' S 1 S%ZJC-H.'*/,,, F

1al
ke =
—
i

[@ EL, | Albedo
[e Mae |[TT]] [

= .)
i Cad Shadows’ / |
I/ Uminalion |7pe = 5 i
= M’*‘ = i1]

LT
Lambei? e Blwn Phong Hobic Hobile
Lo Ohorg 7 13 e

| M (G 1k o0

SCEERRSSTIRE < e

Figure 11. Interface sketch of the main window

As this sketch (Figure 11) was made by the time I had not discovered that I
could not use the Standard shader framework, most of the properties that I planned to
implement were the ones available from the editor (which I thought I could extract
and modify). Its distribution has not greatly changed between the two interfaces, as
the right half of the interface has not been modified. The Parameter Edition Segment
has suffered a lot of changes. I will talk about them in the next chapter.

36

Albert Dols Ferrandis July 1, 2018 Final Degree Project

5.1.2 - Main Interface Window

Enter shader name...

Basic Color / Texture

Normal Map

- Opeh Lighting Model Menu Close Menu

Exit Shaderonemicon Change Scene Settings Save Shader

Figure 12. Screenshot from the final design of the main interface

The main interface, as I said before, is the result of the merge of two of the
designed windows: the Pass Edition Window, and the Export Settings Window. This
way, the resulting interface (Figure 12) had quite different distribution than the
previous Pass Edition Window, enlarging the Shader Change Name System, and
dividing the distribution of the Parameter Edition Segment into two parts: the Main
Feature Selection (the left wing) and the Secondary Menu Parameters (the right wing).

e Main Feature Selection: This part of the interface is responsible in
calling the desired secondary menu. Its objective is to set the basic
properties of the shader, and to edit these basic properties, the adequate
parameter menu will appear in the Secondary Menu Parameters section.

e Secondary Menu Parameters: In this part of the menu, the features

mentioned in the Section’s 2 and 3 will emerge, allowing the user to
modify them. Its designs are the following (Figure 13):

37

Albert Dols Ferrandis July 1, 2018 Final Degree Project

> P Normal'Map Parameters | B exture Parameters——
Select Ambient Reset
Reset COIor - Sl o | Select Color -
Color Reset Normal Map e
Reset elec
oor
Color - Normal MapI

\ S oanl Offset X:
Reset elect Specular

Color Normal Map
l Offset Y:

Normal Map
Scale X:

Select Reset Select Sky
Tint Color Color
Reset Color
Reset || Select Ground

Color Color P

Reset | Select Light

Color Color
| :
3 5 Atmosphere Thickness '

1
Exposure

Close Menu

Close Menu

Figure 13. Final design of all the secondary Menus. From left to Right, from top to bottom:
Phong Lighting Parameters Menu, Normal Map Parameters Menu, Base Texture Parameters
Menu, Lambert Lighting Parameters Menu, and Scene Settings Parameters Menu.

5.2 -Auxiliar interfaces

Most of the shader settings are colors or textures from the user. To pick these
in a intuitive and easy way, the user can access auxiliar interfaces, made for this
purpose. Their internal structure has already been defined and explained in the
previous sections, so we will now focus on its visual appearance and utility.

5.2.1 - Color Picker Tool and its evolution

38

Albert Dols Ferrandis
H |
R H]
G|l S _L::_j
il R

July 1, 2018

!
i
|
(

Curv. Color L,...’

il

Final Degree Project

Current Color:

New Color:

Figure 14. Left: Interface sketch of the Color Picker Window.
Right: Final Design of the Color Picker Window.

This interface was always a tricky one to design, as it needed to have a
necessary amount of features to be useful. First, I designed the interface,
having into account that the user could insert the values at every color
channel, in both color models, as well as select it using the HSV Panel and the
HUE panel (Figure 14, Left). But as I included those Input Field, the tool's
interface seemed overwhelming: the simplification of the available controls, as
we can see at the final design, was spot on (Figure 14, Right). My mistake at the
first sketch was not taking into account the actual size of the tool inside the
application (which it is quite small).

5.2.2 - File Explorer Tool

€ OpenFile

L)
<

Nombre:

Figure 15. Windows File Explorer Window

The default Windows interface (Figure 15) is the best option to navigate
through directories. The user familiarity with this window, and so the facility of use,
make this option the best available. As the second version of this tool did not have a
defined graphic design, it is unnecessary to be displayed here, although its versability
was its weak point (it could navigate only by folder proximity); the built-in Windows

39

Albert Dols Ferrandis July 1, 2018 Final Degree Project

interface is quite wise, as it lets the user take advantage of their own shortcuts
(without having to modify anything from the project).

5.3 - Future interfaces

As the draft for the different available windows were made with the original
goals in mind, after redirecting the project’'s aim, we decided to merge some of the
windows inside the main interface, and discard others (as their functionality would
not be implemented). For reference purposes, these sketches are kept in this chapter,
with their short description.

5.3.1- Pass Manager Window

: = { Ee) T ¥ e
| {’@-‘,, Save o X« por ’/ hange /lesh ov Lmpet ’»’fjj‘/“

s

Figure 16. Interface sketch of the Pass Manager Window

This window (Figure 16) provides the user the possibility of having many
passes at the same shader. More than one pass allows to create more complex effects
increasing the functionality of the application. The Pass Order Display shows all the
Passes on this project. The user can move, rename, activate/deactivate or erase a Pass
once created. He can also save his project, reset recent changes, rename the shader, or
go to the Export Settings Window.

40

Albert Dols Ferrandis July 1, 2018 Final Degree Project

5.3.2 - Export Settings Window

MyNewShader

e

} (Change Hesh o Lrp I[4
Figure 17. Interface sketch of the Export Settings Window
At the Exports Settings Window (Figure 17), the user can export the created
shader to the selected platform, rename it, or read the instructions to import the

shader at the designed platform. The user can see the Shader Display at the right of
the screen, showing the created shader before confirming its exportation.

5.3.3 - New Project Window

Figure 18. Interface sketch of the New Project Window

This window (Figure 18) has three buttons: Open an existing project, choose
and edit a built-in preset, or creating a new shader. If the user opens an existing
project, after loading the custom save file, the application will open the Pass Editor
Window. If the user wants to edit a built-in preset, a new window will appear showing
the different presets available. After selecting one, the application will open the Pass
Editor Window. If the user wants to create a new shader, he will have to choose
between two options: create a post-processing shader, or a geometry shader. After
selecting the desired option, the application will open the Pass Editor Window.

41

Albert Dols Ferrandis July 1, 2018 Final Degree Project

6. Project Results

In this section, the current state of every system and tool will be displayed, as
well as examples of different states of the application. This section is divided in
different chapters: Initial Documents Results, Tools and Canvas Results, Shader
Edition Results and Shader Export Results.

At first, while the first tools were being developed (first versions of the Color
Picker and File Explorer), the Technical Proposal Document and the Research and
Design Proposal were written. All the sketches from the Section 5 were included in the
second document, and the Section 1 is based in the first one (although this part was
severely modified as the project evolved into its current state, because of the
supervisor’s advice and the change in the projects aims).

6.1 - Tools and Canvas Results

All of the systems and tools, regarding scene-oriented ones, are completely
functional: The camera can rotate around the object and change its zoom in a smooth
movement (only when the player has clicked on the right half of the screen); the mesh
can be changed at anytime, and is displayed always in its designated space no matter
the movement of the camera, as shown in the Figure 19.

New Shader

Basic Color / Texture

Normal Map

E ejected
Vertex Pixel
iy Lighting

Open Lighting Model Menu | [

bt shagdenonicon | engescenesetn s saveshager

| ignpoy | towpaly | cp |

e —

Basic Color / Texture

Normal Map
]

- e
| o [P

ssssssssssssssssssssss

Figure 19. Examples of the camera’s different position and zoom

The Color Picker Tool successfully selects the desired color from the user’s
input, and displaying the selection in the appropriate panel, as we can see in the
Figure 20.

42

Albert Dols Ferrandis July 1, 2018 Final Degree Project

Current Color:

‘ TE— — e —

| New Color: | New Color:

Close - pl Close

Figure 20. Example of different color selections.

Current Color:

Regarding the CrossTale's File Browser, the built-in Windows File Browser
works properly, and is capable of selecting the correct file from the user’s input, and
process it to be used in the application (Figure 21).

4 || > Esteequipo > Documentos > GitHub > Shaderonomicon » Assets v|©| | Buscaren Assets o

Organizar v Nueva carpeta =~ I @
A Nombre

Materials
Models
Plugins
Prefabs
Presets
Scenes
Scripts
Shaders
Sprites
Test Fonts.

s Otros (F)
= SYSTEM (G
= HP_RECOVERY

= Volvacio (D:)

Nombre: | V] [ceng =

Figure 21. Example of the built-in Windows File Browser.

Lastly, the Scene Settings Parameter system works smoothly, allowing the
player to change the environment settings to obtain a more personalized feedback of
the shader (Figure 22).

Current Light Color:

New Shader

Basic Color / Texture Select sky
Color Color
Normal Map] i
Color Color

Il Reset | Select Light
Col Color

Vertex
Lighting
Open Lighting Model Menu Close Menu

il sdranorican range scne sltings saveshader

Figure 22. Example of a change in the application’s environment..

6.2 - Shader Edition Results

The Shader Management System and all of the feature-based systems of
Shaderonomicon have been thoroughly tested, and work as intended. The shader can

43

Albert Dols Ferrandis July 1, 2018 Final Degree Project

display any of its many features as they intertwine. Because of its properties, the
normal map with vertex lighting will not behave as well as when its applied with per
pixel lighting, and the visual output will greatly depend on the target mesh. In Figures
24, 25, 26 and 27 the mesh displayed is the High-Poly Sphere, to obtain the best
results. In Figure 23, the texture and the normal map used are shown. The program
used to create the normal map is CrazyBump'®!,

LJ

UNIVERSITAT
JAUME |

Figure 23. Left: Texture used in the Figures 25 and 26. Right: Normal map used in the Figures 26
and 27

bl
IR

Figure 24. From left to right, from top to bottom, all shaders have no texture nor normal map:
shader with no light, shader with Pixel Phong, shader with Pixel Lambert, shader with Pixel
Half-Lambert, shader with Vertex Phong, shader with Vertex Lambert, shader with Vertex
Half-Lambert.

44

Albert Dols Ferrandis July 1, 2018 Final Degree Project

Figure 25. From left to right, all are shaders with texture and Pixel Lighting Models: No Light,
Phong, Lambert, Half-Lambert.

N\ ERS/7
\WE /

Figure 26. From left to right,from top to bottom, all are shaders with texture and normal map:
No Light, Pixel Phong, Pixel Lambert, Pixel Half-Lambert, Vertex Phong, Vertex Lambert, Vertex
Half-Lambert

Figure 27. From left to right,from top to bottom, all are shaders without texture and normal
map: No Light, Pixel Phong, Pixel Lambert, Pixel Half-Lambert, Vertex Phong, Vertex Lambert,
Vertex Half-Lambert

6.3 - Shader Export Results

This system have been fully implemented, but currently does not work
completely well. For now, it can generate a compilable shader depending on the
selected parameters by the Shader Management System, and values provided by the
user, but it does not work as desired inside an external project. The text generated by

45

Albert Dols Ferrandis July 1, 2018 Final Degree Project

the program, when no texture nor normal map is selected, a custom color applied to
the Half-Lambert Lighting Model, using Per Pixel Lighting, and the provided name
“Testcustomlambert”:

Shader"Shaderonomicon/Testcustomlambert™

{
SubShader

{
Blend SrcAlpha OneMinusSrcAlpha
Pass
{
Tags { "LightMode" = "ForwardBase" }
LOD 100
CGPROGRAM
#pragma vertex vert_PerPixellighting_NoTextureNoNormalMap
#pragma fragment frag PerPixellLighting HalflLambert_NoTextureMapNoNormalMap
#include "UnityCG.cginc"
#include "UnityLightingCommon.cginc"
uniform fixed4 _TextureTint = float4(1 , 1, 1, 1) ;
uniform float _LambertTintForce = 1 ;
uniform float4 _LambertTintColor = float4(0.3210825 , ©.8309469 , ©.8393108 , 1) ;
struct vertexInput_NoTextureNoNormalMap { float4 vertex : POSITION;
float3 normal : NORMAL;
}s
struct vertexOutput_NoTextureNoNormalMap_PerPixellLighting { float4 pos : SV_POSITION;
float3 posWorld : TEXCOORDO; float3 normalDir : TEXCOORD1l; float3 normal : NORMAL; };
struct vertexOutput_NoNormalMap_PerPixellLighting
{ float4 pos : SV_POSITION;
float3 posWorld : TEXCOORD®;
float3 normalDir : TEXCOORD1;
float3 normal : NORMAL;
float2 tex : TEXCOORD2;
¥
float3 HalfLambert_Lighting Pixel_NoNormalMap(vertexOutput_NoNormalMap_PerPixellLighting
input)
{ float3 normalDirection = normalize(input.normalDir);
float3 viewDirection = normalize(_WorldSpaceCameraPos - input.posWorld.xyz);
float3 lightDirection;
float attenuation;
if (0.0 == _WorldSpacelLightPos®@.w)
{ attenuation = 1.0f;
lightDirection = normalize(_WorldSpacelLightPos@.xyz);
} else
{ float3 vertexToLightSource = _WorldSpacelLightPos@.xyz - input.posWorld.xyz;
float distance = length(vertexToLightSource);
attenuation = 1.0 / distance;
lightDirection = normalize(vertexToLightSource);
} float3 NDotL = max(@.0, dot(normalDirection, lightDirection));
float HalfLambertDiffuse = pow(NDotL * ©.5 + 0.5, 2.9);
float3 finalColor = HalfLambertDiffuse * attenuation * _LightColor@.rgb;
return finalColor; }

vertexOutput_NoTextureNoNormalMap_PerPixellLighting
vert_PerPixellLighting_ NoTextureNoNormalMap(vertexInput_NoTextureNoNormalMap input)

{ vertexOutput_NoTextureNoNormalMap_PerPixellLighting output;

float4x4 modelMatrix = unity_ObjectToWorld;

float4x4 modelMatrixInverse = unity_WorldToObject;

output.posWorld = mul(modelMatrix, input.vertex);

output.normalDir = normalize(mul(float4(input.normal, 0.0), modelMatrixInverse).xyz);
output.normal = input.normal;

output.pos = UnityObjectToClipPos(input.vertex);

return output; }

46

Albert Dols Ferrandis July 1, 2018 Final Degree Project

float4

frag_PerPixellighting HalflLambert_NoTextureMapNoNormalMap(vertexOutput_NoTextureNoNormal
Map_PerPixellLighting input) : COLOR

{ vertexOutput_NoNormalMap_PerPixellLighting dummyOutput;

dummyOutput.posWorld = input.posWorld;

dummyOutput.normalDir = input.normalDir;

dummyOutput.normal = input.normal;

dummyOutput.pos = input.pos;

return float4 (HalfLambert_Lighting Pixel NoNormalMap(dummyOutput).xyz *
(_LambertTintColor * _LambertTintForce).xyz * _TextureTint.xyz, 1.0);

}

ENDCG
}orod

And lastly, a shader that uses both normal map and texture, and Phong with
vertex Lighting and custom colors, with the name “New Shader”:

Shader"Shaderonomicon/New Shader”

{ Properties {
[NoScaleOffset] _NormalMap(" Normal Map ", 2D) = "bump" {}
[NoScaleOffset] _CustomTexture("Main Texture ", 2D) = "white" {}

}
SubShader

{
Blend SrcAlpha OneMinusSrcAlpha

Pass

{

Tags { "LightMode" = "ForwardBase" }

LOD 100

CGPROGRAM
#pragma vertex vert_PerVertexLighting Phong
#tpragma fragment frag_PerVertexLighting

#include "UnityCG.cginc"

#include "UnitylLightingCommon.cginc"

uniform sampler2D _CustomTexture;

uniform fixed4 _TextureTint = float4(1 , 1 , 1, 1) ;
uniform float _TextureTileX = 3 ;
uniform float _TextureTileY = 3 ;
uniform float _OffsetTileX = ©
uniform float _OffsetTileY = 0
uniform sampler2D _NormalMap;
uniform float _NormalTileX =
uniform float _NormalTileY =
uniform float _NormalOffsetX
uniform float _NormalOffsetY
uniform half _NormalMapScale = 2 ;

uniform float _CustomShininess = 0.6644058 ;

uniform float4 _PhongAmbientColor = fl0at4(0.8669783 , 0.3017504 , ©.3017504 , 1) ;
uniform float _PhongAmbientForce =1 ;
uniform float4 _PhongSpecularColor = float4(0.0183183 , 1 , 0.9615222 , 1) ;

uniform float _PhongSpecularForce =1 ;

uniform float4 _PhongDiffuseColor = float4(0.3017504 , 0.3574262 , ©.8669783 , 1) ;
uniform float _PhongDiffuseForce = 0.8847263 ;

struct vertexInput_Allvariables { float4 vertex : POSITION;

float3 normal : NORMAL;

float2 texcoord : TEXCOORD®;

float4 tangent : TANGENT; };

struct vertexOutput_PerVertexLighting { float4 pos : SV_POSITION; float4 col : COLOR;

float2 tex : TEXCOORD1; };

float4 Texture_Handling Vertex(vertexOutput_PerVertexLighting input)

B
3

n w w
© ® v ..

B
3

47

Albert Dols Ferrandis July 1, 2018 Final Degree Project

{ float2 texCoordsScale = float2 (_TextureTileX, _TextureTileY);
texCoordsScale *= input.tex.xy;
float4 textureColor = tex2D(_CustomTexture, texCoordsScale + float2(_OffsetTileX,
_OffsetTileY));
textureColor = textureColor * _TextureTint;
return textureColor; }
float3 Phong_Lighting Vertex(vertexInput_AllVariables input, float3 normalDirection)
{
float4x4 modelMatrix = unity_ObjectToWorld;
float3x3 modelMatrixInverse = unity_WorldToObject;
float3 viewDirection = normalize(_WorldSpaceCameraPos - mul(modelMatrix,
input.vertex).xyz);
float3 lightDirection;
float attenuation;
if (0.0 == _WorldSpacelLightPos®@.w)
{
attenuation = 1.0;
lightDirection = normalize(_WorldSpacelLightPos@.xyz);
}

else
{
float3 vertexToLightSource = _WorldSpacelLightPos@.xyz - mul(modelMatrix,
input.vertex).xyz;
float3 distance = length(vertexToLightSource);
attenuation = 1.0 / distance;
lightDirection = normalize(vertexToLightSource);
} float3 ambientLighting = UNITY_LIGHTMODEL_AMBIENT.rgb *
_PhongAmbientColor.rgb;
float3 diffuseReflection = attenuation * _LightColor@.rgb *
_PhongDiffuseColor.rgb * max(0.0, dot(normalDirection, lightDirection));
float3 specularReflection;
if (dot(normalDirection, lightDirection) < 0.9)

{
}

else

{
specularReflection = attenuation * _LightColor@.rgb *
_PhongSpecularColor.rgb * max(0.0, dot(reflect(-lightDirection, normalDirection),
viewDirection));
specularReflection = specularReflection * _CustomShininess;
} return (ambientLighting * _PhongAmbientForce) + (diffuseReflection *

_PhongDiffuseForce) + (specularReflection * _PhongSpecularForce);

}

float3 Normal_Direction_With_Normal_Map_Handling_Vertex(vertexInput_AllVariables input)

{ float4x4 modelMatrix = unity_ObjectToWorld;

float4x4 modelMatrixInverse = unity_WorldToObject;

float3 tangentWorld = normalize(mul(modelMatrix, float4(input.tangent.xyz, 0.0)).xyz);
float3 normalWorld = normalize(mul(float4(input.normal, ©.0), modelMatrixInverse).xyz);
float3 BitangentWorld = normalize(cross(normalWorld, tangentWorld) * input.tangent.w);
float3 biNormal = cross(input.normal, input.tangent.xyz) * input.tangent.w;

float2 normalCoordsScaled = float2(_NormalTileX, _NormalTileY);

normalCoordsScaled *= input.texcoord.xy;

normalCoordsScaled += float2(_NormalOffsetX, _NormalOffsetY);

float4 encodedNormal = tex2Dlod(_NormalMap, float4(normalCoordsScaled.xy,0, 0));
float3 localCoords = float3(2.0 * encodedNormal.ag - float2(1.0, 1.9), 0.0);

localCoords.z = 1.0 - 0.5 * dot(localCoords, localCoords);

float3x3 local2WorldTranspose = float3x3(tangentWorld, BitangentWorld, normalWorld);
float3 normalDirection = normalize(mul(localCoords, local2WorldTranspose));

normalDirection = float3(_NormalMapScale, _NormalMapScale, 1.0f) * normalDirection;

return normalDirection; }

vertexOutput_PerVertexLighting vert_PerVertexLighting_Phong(vertexInput_AllVariables
input)

{ vertexOutput_PerVertexLighting output;

float3 normalDirection = Normal_Direction_With_Normal_Map_Handling_Vertex(input);

specularReflection = float3 (0.00001, 0.00001, 0.00001);

48

Albert Dols Ferrandis July 1, 2018 Final Degree Project

output.col = float4(Phong_Lighting Vertex(input, normalDirection), 1.0f);
output.pos = UnityObjectToClipPos(input.vertex);
output.tex = input.texcoord;

return output; }

float4 frag_PerVertexLighting(vertexOutput_PerVertexLighting input) : COLOR { float4
TextureColor = Texture_Handling Vertex(input);

return float4(input.col.xyz * TextureColor.xyz , 1.0f);

¥
ENDCG

}orod

6.4 - Shaderonomicon'’s Video Demostration, and
executable

This project is always accessible by using its github repository,
https://github.com/al315151/Shaderonomicon, and it is ready to work in a compiled
version following this link,

For this project, I have developed a video that shows the application’s
performance, and an example of creating a shader from scratch using
Shaderonomicon. The music used is from Jay Man, called “Wonder And Magic”?’. The
link to the video is the following: https://youtu.be/RRv00l5HIh4

49

https://github.com/al315151/Shaderonomicon
https://youtu.be/RRv0o15Hlh4

Albert Dols Ferrandis July 1, 2018 Final Degree Project

7. Conclusions

7.1 - Goal Accomplishment

This project’s goals have been changed over its development, being the ones in

the Section 1.4 the second version. Although its content were almost the same as its
predecessors, their application was quite different: as the priorities behind them
shifted from being shader-centered, to being focused on the application’s
development. Aside from this remark, the goals have been clearly completed. I will
explain now step-by-step.

L

to the

“Developing a tool to teach developers with zero experience with shaders, the
basics of shader editing without writing a line of code.” As the basic shader
properties have been implemented, it is possible to squeeze all its potential
without prior knowledge of the application.

“Developing a tool that exports the created shaders to Nvidia CG.” Because the
Shader Export System has been fully implemented, this goal is cleared.

“Customizing of the basic features that usually involves shader edition (texture,
normal map, lighting model, etc).” Because all the systems included in Sections
2.3 and 3.1 to 3.4 have been fully implemented this goal is completed.

“The application interface can be understood without prior knowledge, and
users can start creating shaders without explicit instructions.” Thanks for the
systems and tools developed at the sections 2.4 and 3.5, this goal can be
cleared.

“The exported shader works correctly in an external Unity3D project.” This
feature is currently being debugged, as in some cases it shows undesired
behaviour, although a compilable shader can be correctly exported.

7.2 - Project’s Planning Deviation

As the original planning was supposed to cover 300 hours, the time dedicated
different systems and tools has differed greatly from that value. These are the

estimated, and real time values for each task:

Task

Task Completion Time

Reference Research: Bibliography, competitors, shader 38 hours
frameworks, etc.

Implementation of tools:

50

Albert Dols Ferrandis

July 1, 2018

Final Degree Project

e Color Picker Tool 32.5 hours
e Implementation 15 hours
e Research 1 hour
e Shader developing 3.5 hours
e Bug fixing 13 hours

e File Explorer Tool 20.5 hours
e Implementation 9.5 hours
e Research 7 hours
e Bug fixing 4 hours

e Shader Edition System 100 hours
e Implementation (C# framework) 3.5 hours
e Shader development (nvidia CG) 21.5 hours
e Library function development (both nvidia | 50 hours

CG and string-based)

e Bug fixing 25 hours

e Shader Export System 25 hours
e Implementation 21 hours
e Bug fixing 4 hours

e Project’s Technical Proposal 4 hours

e Mesh Related System 14.5 hours
e Mesh visualization System 3 hour
e Mesh Swap System 2.5 hours
e Camera Rotation System 9 hours

e Scene Parameters System 6 hours

e Exit Menu System 1 hour

e Shader Change Name System 1 hour

Project’s Research and Design Proposal 6.5 hours
Project’'s Memory 45 hours

51

Albert Dols Ferrandis July 1, 2018 Final Degree Project

Project’s Presentation 7 hours
Project’s video [Not developed yet]
Project’s Main Interface Development 34 hours

e Shader Development 2 hours

e Implementation 30 hours

e Multi-resolution canvas 2 hours
Organization of project’s assets (relocation and removal | 9 hours
of obsolete assets and code)

7.3 - Future work: What comes next?

Because all of the problems that I have encountered while developing
Shaderonomicon, some of the features that could have been implemented (such as
post-processing shader effects, feature animation system, shader pass editor) were
deemed non-viable for the short-term development of the application. But, in the
future, I would like to expand it by adding those systems, to transform
Shaderonomicon into what it was supposed to be from the beginning: a library of
basic effects, that could be easily modified and understood by non-programmers; a
tool to introduce more people to the “magic” of computer graphics, as this field has a
potential that is greatly underused and underestimated by novice videogame
developers.

Because of the problems that still hinder the application, if they are not solved
in a short-term period an extensive overhaul of Shaderonomicon will be made: as its
public target are the novice developers, the application will run inside their projects,
using the Unity Editor as its base, and the users will be able to see the changes inside
the shader in their own project and environment, enhancing the received feedback.

52

Albert Dols Ferrandis July 1, 2018 Final Degree Project

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

8. Bibliography

Shader Graph [26/06/2018]: https://unity3d.com/es/shader-graph

Unity3D homepage [26/06/2018]: https://unity3d.com/es

Definition of Texture in computer graphics context [26/06/2018]:
https://en.wikipedia.org/wiki/Texture_mapping

Normal mapping [26/06/2018]: https://en.wikipedia.org/wiki/Normal _mapping
Definition of shader [26/06/2018]: https://en.wikipedia.org/wiki/Shader
Microsoft Visual Studio 2017 [26/06/2018]:
https://www.visualstudio.com/es/downloads/

Adobe Photoshop Free Trial (version used) [26/06/2018]:
https://www.adobe.com/es/products/photoshop/free-trial-download.html
Crosstale’s File Browser [26/06/2018]: https://crosstales.com/en/portfolio/FileBrowser/
Google Docs [26/06/2018]: https://www.google.es/intl/es/docs/about/

Blender’'s homepage [26/06/2018]: https://www.blender.org/

Substance homepage [26/06/2018]:
https://www.allegorithmic.com/products/substance-designer

Shaderfrog homepage [26/06/2018]: https://shaderfrog.com/app

Shadertoy homepage [26/06/2018]: https://www.shadertoy.com/

Phong Lighting System (Phong Reflection Model) [26/06/2018]:

https://en.wikipedia.org/wiki/Phong_reflection_model
Lambert Lighting System (Lambert and Half-Lambert Reflectances) [26/06/2018]:

https://en.wikipedia.org/wiki/Lambertian_reflectance

Differences between RGB and HSV [26/06/2018]:
https://www.quora.com/What-are-the-differences-between-RGB-HSV-and-CIE-Lab
Color Conversion Formulas [26/06/2018]:
https://gamedev.stackexchange.com/questions/59797/qlsl-shader-change-hue-saturat
ion-brightness/59808#59808

Bump mapping [26/06/2018]: https://en.wikipedia.org/wiki/Bump_mapping
Tutorial for camera movement implementation [26/06/2018]:
https://www.youtube.com/watch?v=bVo0YLLO43s

[26/06/2018] https://en.wikibooks.org/wiki/Cg_Programming/Unity

Lighting Models implementation sketch [26/06/2018]:
http://www.jordanstevenstechart.com/lighting-models

Standard Shader Unity page [26/06/2018]:
https://docs.unity3d.com/Manual/SL-SurfaceShaders.html

Standard Shader Parameters Explanation [26/06/2018]:
https://docs.unity3d.com/es/current/Manual/StandardShaderMaterialParameters.html
Standard Shader snippets library [26/06/2018]:
https://docs.unity3d.com/Manual/SL-ShaderPrograms.html

Download Page of Unity's Built-in Shaders [26/06/2018]:
https://unity3d.com/es/get-unity/download/archive

Unity Shaders and Effects cookbook - ISBN: 9781849695084

The Cg Tutorial : The Definitive Guide to Programmable Real-Time Graphics - ISBN:
0321194969

CrazyBump homepage: https://www.crazybump.com/

Shaderonomicon Executable:
https://drive.google.com/open?id=1aQHwI.C0GcCd0OIszBa-NQgzj3S4a73YFd
Presentation video music: https://www.youtube.com/watch?v=jZ1UJ5v7iFc

53

https://unity3d.com/es/shader-graph
https://unity3d.com/es
https://en.wikipedia.org/wiki/Texture_mapping
https://en.wikipedia.org/wiki/Normal_mapping
https://en.wikipedia.org/wiki/Shader
https://www.visualstudio.com/es/downloads/
https://www.adobe.com/es/products/photoshop/free-trial-download.html
https://crosstales.com/en/portfolio/FileBrowser/
https://www.google.es/intl/es/docs/about/
https://www.blender.org/
https://www.allegorithmic.com/products/substance-designer
https://shaderfrog.com/app
https://www.shadertoy.com/
https://en.wikipedia.org/wiki/Phong_reflection_model
https://en.wikipedia.org/wiki/Lambertian_reflectance
https://www.quora.com/What-are-the-differences-between-RGB-HSV-and-CIE-Lab
https://gamedev.stackexchange.com/questions/59797/glsl-shader-change-hue-saturation-brightness/59808#59808
https://gamedev.stackexchange.com/questions/59797/glsl-shader-change-hue-saturation-brightness/59808#59808
https://en.wikipedia.org/wiki/Bump_mapping
https://www.youtube.com/watch?v=bVo0YLLO43s
https://en.wikibooks.org/wiki/Cg_Programming/Unity
http://www.jordanstevenstechart.com/lighting-models
https://docs.unity3d.com/Manual/SL-SurfaceShaders.html
https://docs.unity3d.com/es/current/Manual/StandardShaderMaterialParameters.html
https://docs.unity3d.com/Manual/SL-ShaderPrograms.html
https://unity3d.com/es/get-unity/download/archive
https://www.crazybump.com/
https://drive.google.com/open?id=1aQHwLC0GcCd0IszBa-NQgzj3S4a73YFd
https://www.youtube.com/watch?v=jZ1UJ5v7iFc

