. ' UNIVERSITAT
JAUME |

KINESTHETIC IN A CLASSIC
VIDEO GAME

Author: Tutor:

Néstor Luis Zapata Diez José Ribelles Miguel

Bachelor's Degree in Video Game Design and Development

Summary

Nowadays, video games have become a fundamental part of entertainment for
people of all ages. Every time video game companies invoice more money and can produce
bigger and more complete works. However, due to the large number of companies dedicated
to the creation of video games, it is inevitable that very similar games are launched on the
market through the years. At this point, it is the small details that make the difference
between one video game and another. The details that can produce a better immersion of
the user and produce a better game feeling are a fundamental part in the popularity of a
video game. These elements are called "kinesthetic" and are essential to highlight a video
game compared to similar ones and produce a better reaction of the players.

This document presents the technical propose for a TFG in a Video game Dessign
and Development degree. This proposal consists in the development of a multiplayer video
game for computer platform with classic mechanics like Pong, including different kinesthetic
elements and modifications in order to produce an attractive game experience. In order to
achieve this goal, this project will include effects making use of shaders, particles, sound
effects, post-processing, animations and camera movements in the Unity 3D engine.

Keywords

Video game, Kinesthetic, Game feel, Post-processing, Particles, Shader, Unity 3D.

Chapter 1: Technical Proposal

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Introduction and Job Motivation

Related Subjects
TFG Goals

Planning in Tasks and Temporary.

Expected Results
Tools .

References

Chapter 2: Game Design Document

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.1
212
213

Introduction

History

Controls

Game Flow

Game Camera

HUD

Playable Characters
Combat Mechanics .
Game Modes
Challenges

Active Abilities
Passive Abilities
Health

Chapter 3: Kinesthetic

3.1
3.2
3.3
3.4
3.5

Introduction

Kinesthetic in this Project
States of the Game .
Events in the Game .

Kinesthetic Effects

© © © © 00 0 N N

11
11
11
12
12
12
12
13
14
14
14
14
14

15
15
18
18
19
20

3.6
3.7

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

3.5.1 Camera Effects
3.5.2 Particle Systems
3.5.3 Shader Effects
3.5.4 Sound Effects
3.5.5 Animations
3.5.6 SkyBox

3.5.7 Post-processing
Assets

Summary Table

: Implementation

Ball Movement
Character Animations
Use Of Managers

The Speed in the Game
Shader Graph
Post-processing

Scene Transition

Audio Implementation

Limitations

Chapter 5: Results .
5.1 Code and Executable

5.2 Screenshots and Video

Chapter 6: Conclusion

6.1
6.2

Project Objectives
Future Work .

Chapter 7: References

20
22
24
25
26
26
27
27
27

31
31
34
34
35
35
39
39
40
40

41
41
41

45

45

45

47

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

Pong Frame .

Lethal League Shock Wave

Lethal League Background

Mario Tennis .

Controls

Candyman

Characters of the Game

Bass Fishing Game and Controller
DanceDance Revolution and EyeToy

The Future of Kinesthetic

Assassin’s Creed Syndicate

League Of Legends

States of the Game

Vectors On Bounce Effect .

Bounce Effect Fixed in the Game

Ball Oriented After Bounce Effect

Shader Graph Example

The Walls of the Game

Dissolve Shader Effect

[llumination Issues in Shader Graph

Screenshot of the Result

Wave Ground Shader and Field in Fire Particles Result
Ball Hits Wall and Player Hits Wall Particles Result
Ball Hits Player Result

Rain Particles and Night Post-processing Result
Initial Kinematic

Title Scene

10
12
13
13
15
16
16
17
17
18
32
33
33
36
37
38
40
41
42
42
43
43
44
44

1.1 Introduction and job motivation

This work was born with the idea of creating a video game that includes kinesthetic
elements that provide constant feedback to the player and also be pleasant to play.
The project will start with the development of the game itself, a multiplayer game with similar
gameplay to classic video games like Pong [1] (see figure 1) or Mario Tennis [2]. The main
inspiration of this title is the mechanic simplicity and the structure of two players matching
each other in a battle of reflexes like the games mentioned. Each player will have its own
side of the map and a scenario design based on the use of shaders and colors.

Figure 1.
A frame of the game «Pong» (1972).

After that, the kinesthetic elements will be included. These elements will improve the
immersive experience of the player giving feedback to the player and making the game to
«feel real». The kinesthetic will be explained in more detail in Chapter 3.

For the kinesthetic implementations, the game will be inspired by games like Lethal League
[3], which implements a fast gameplay based on matches that uses the ball as a weapon.
This video game launched in 2014 implements many kinesthetic elements that will inspire
the development of this game like shader efects, camera movements, player movement and
flow of the game.

B~ MAVATTACK:
AAR

Figure 2.
An example of a shock wave in the game «Lethal League».

In the figure 2 can be seen an expansive wave that appears when one player hits the ball.
Also, when certain velocity is reached in the game, more kinesthetic elements appear, like
changing the background, as we can see in figure 3.

Figure 3.
An example of a different background in «Lethal League».

1.2 Related Subjects
-VVJ1221 Computer Graphics
-VJ1222 Video Game Conceptual Design
-VJ1227 Game Engines

1.3 TFG Goals
e Develop a video game inspired by classic gameplay that provide the player with a

dynamic and fun gameplay thanks to the kinesthetic elements.

¢ Implement different kinesthetic elements in Unity making use of shaders, particles,
camera movements, sound effects and animations.

e Offer a fun scenario to allow 2 players to compete on ability and reflexes.

1.4 Planning in Tasks and Temporary

Game core [70h
Shader Effects 50h
Camera Effects 30h
Animations Implementation 15h
Audio Implementation 15h
Kinematic Implementation 15h
Particles Implementation 30h
Debugging and Testing 25h
TFG Document 50h
Table 1.

Time ditribution of tasks.

1.5 Expected Results

At the end of this video game development it is expected to have done a fast, fun and
enjoyable videgoame with many kinesthetic features that will favor the immersion. Also, it is
expected to achieve a smooth and interesting gameplay.

The effects of the game will be representative and easy to understand, giving feedback to
the player continually.

1.6 Tools
-Unity 3D
-Shader Graph
-3DsMax
-Audacity

1.7 References

My principal references to do this game are games like “Lethal League”, “Pong” and
“Mario Tennis”.
«Pong» is a video game published in 1972 for the Atari platform. This game simulates the

9

table tennis sport in 2D with basic graphics and simple mechanics.

«Mario Tennis» (figure 4) is a video game published in the year 2000 for the Nintendo 64
platform. This game simulates the Tennis sport in a 3D space.

«Lethal League» is a video game published in 2014 and developed by Team Reptile. This
game is a fusion between the mechanics of pong and a typical fighting game, as the player
must defeat the opponents using the ball as a weapon.

The main characteristics of these games that inspired the development of this game are
these:
e Pong: The simple idea of two fields, one for each player and the main mechanic of
return the ball to the other player.
e Mario Tennis: The evolution of the mechanics of Pong in a 3D space.
e Lethal League: The successful implementation of kinesthetic elements to the Pong
formula.

ISR CTRao ot

™
[

Frk

V7 >
=
R/ e T ST e -
i 5 '
& 3 I

I
ty

|

A

Figure 4.
Mario Tennis in-game screenshot.

10

Chapter 2:
Game Design Document

2.1 Introduction

This project is a local multiplayer 3D game made with Unity 3D where two players
can fight each other.

The main purpose of the game is to allow two players to match each other in a fast game
with elements of kinesthetic that will allow a continuous feedback between the player and the
game. The main mechanic of the game is returning the ball to the other player’s field as soon
as possible, as the ball explodes when a certain time has passed.

For this reason, the game implements different kinesthetic formulas to make the player feel a
feedback of the game at every moment and make the game easy and nice to play, but also
challenging.

2.2 Story

This game does not have a story, but an introduction of the playable characters
through the initial kinematic in which these two players will see the ball moving and will go
after it. If the result of the match is a draw, another scene will be shown, where the players
are running again trying to catch the ball, sending the message of the player that there is no
winner and the fight must continue.

2.3 Controls.

In order to make the game easy to play and accessible, the game can be played
using only one keyboard or only one controller (see figure 5) for the two players.

On the keyboard the controls are these:

e Blue player: WASD for movement and Left Control for the hit action.
¢ Red player: IJKL for movement and Right Control for the hit action.

On controller the controls are these:
e Blue player: Left stick for movement and Left Bumper for the hit action.
¢ Red player: Right stick for movement and Right Bumper for the hit action.

11

Left trigger Right trigger

Connect
jel %} T

Left bumper Right bumper

5

Face buttons
Left stick

Directional pad Right stick
(D-pad)

Figure 5.
A PC controller numerated [A1].

2.4 Game Flow

When the game starts will show the players the Main Scene which contains the title
of the game with two buttons: the PLAY button and the Exit button.

If the PLAY button is pressed, the game will show an initial cinematic that will present the
characters of the game. After that cinematic the main battle scenario is shown, where the
two players can move and start a match.

2.5 Game Camera

The camera of the game will be on the lateral of the stage showing all the field, but
this camera will not be static all the game because it will be shaking in certain circumstances
and it will move at the end of the match.

Also, the camera will make different animations like the movement in the initial cinematic and
the general view of the game field at the end of the match.

2.6 HUD

The HUD in this game will be minimal. The intention is not to charge the players with
so much information, so the hud will consist in a timer at the top center of the screen and two
counters that will show the score of each player.

2.7 Playable Characters

Following the line of «Lethal League» (the game that inspires a big part of this
project) the main character of this project will be a 3D modelled character of the game:
Candyman (see figure 6). This character will have two different skins that will follow the
global aesthetics of the project (see figure 7).

12

Figure 6.

Candyman, a character of the game «Lethal League».

Figure 7.

The playable characters of the project: Player Blue (left) and Player Red (right).

2.8 Combat Mechanics

The game field will be a big terrain divided into two mini fields: one for each player.
Each player only will move into its own field.

The match between the two players will start once the global time starts its countdown.
Then, one of the players will start the game hitting the ball, which will travel across the field
and will enter into the other player’s field.

13

This is the first mechanic of the game: if a player hits the ball, it will go to the other player’s
field, directly or not (bouncing first into one or more walls).

When the ball enters into a field, it can’t exit until that field’s player hits it. If the player does
not hit the ball, it will bounce between the walls.

Once the ball enters in the other player’s field three possibilities can occur:

1. The ball hits the player before the player hits the ball: This is a “dead” for this player.

2. The timer of the bomb reaches 0, so the ball explodes and kills the player in that
field.

3. The player on that field hits the ball, making it go into the other player’s field, starting
again the loop.

Each time that the ball changes of field, the timer will restart, so the intention of this timer is
pushing the players to try to hit the ball instead of just avoiding it. It is like a “player turn
time”. Also, the ball will gain velocity little by little with each hit from the players, making the
match harder.

At the end of the global time, the player with a higher score will be the winner of the match.

2.9 Game Modes
There will be only one game mode: the classic match.

This match will be structured like is explained previously.

2.10 Challenges
This game makes the players afford different kind of challenges:

1. Fastreflexes to avoid the ball when is necessary.

2. Fast position prediction to know where the ball will hit and which direction will it
follows.

3. Good timing control to hit the ball exactly in the moment it can be hit (not too near or
too far of the player).

2.11 Active Abilities
The active abilities of the characters will be:
-Running: The characters will move through the game field running by default.

-Hit: The players have the ability to hit the ball.

2.12 Passive Abilities

There won’t be any passive abilities for the characters.
2.13 Health

Each character will have only one health point and this will decrease to 0 when is hit
by a ball or an explosion.

14

Chapter 3:
Kinesthetic

3.1 Introduction

As a concept, the kinesthetic (or kinaesthetic) has many different meanings
depending of the ambit that we are talking about.

Out of the video games it is defined like a sense, the self perception of the position of the
muscles. The capacity of feeling the position of our body without the help of other senses,
something very similar to propioception.

In the video game’s world, the meaning of this word is more diffuse and, depending the
author, it can be defined in many ways. Although, it is related most of the time one way or
another with game feel.

Kinesthetic consists in all the different methods than allow the player to gain a «virtual
propioceptiony.

Sensations like feeling the weight and momentum of a virtual object with virtual physics, the
sensation of toughness when you are facing a boss of one game, the sense of speed in race
games or the «fear to fall» when playing a platform game are sensations that allows the
player to be immersive in the virtual world and need different elements to be implemented.

There are two ways to make the player be part of these sensations: physical and virtual.

On one hand, we have the physical kinesthetic, that is related to sensations that give
feedback to the user in a physical way, like different kind of controllers for specific games, or
features like vibration in the controllers. An example of this would be games like «Bass
Fishing» and its controller (see figure 8) made for a fishing experience emulation. Also
games like «Dance Dance Evolution or «Eye Toy» (see figure 9), that implements different
ways of playing.

Figure 8.

The video game «Bass Fishing» (left) with its special controller (right).

15

Figure 9.

Examples of other games that explore the physical kinesthetic: «Dance Dance Revolution» (left) and «EyeToy
Play» (right).

Nowadays, the line between physic and the virtual world is vanishing thanks to the creation
of new ways to play with technologies like virtual reality and augmented reality (see figure
10).

Figure 10.

A new controller for physical kinesthetic (left) and one screenshot of the game played with that controller (right).

On the other hand, we have the virtual kinesthetic, that consists in every method that allows
the user to feel part of the game with visual and sound feedback.

Features like the way of moving the character, the animations, the sound effects, the
shaking screen effects when doing a hit, the particles, strength waves and changes in the
environment are elements that allow a good game feel, giving feedback to the player. This
feedback builds a direct relation between the player’s actions and the virtual world.

16

For example, in the figure 11 a view effect can be seen. This effect helps the player to «feel»
the speed of the game and feeling inside the game. Also, in the figure 12 another effect can
be seen, using particles to make the attack more visual to the player.

-

WESTMINSTER | 7%

Figure 11.

An example of virtual kinesthetic: View distortion caused by speed in «Assassin’s Creed Syndicate».

Figure 12.

An example of virtual kinesthetic: Particles caused by the force of an impact in «League Of Legends».

As a conclusion, in a video game the kinesthetic elements are not a fundamental part of the
game itself and are not «necessary» for the correct working of the game, but including these
elements give the player a better immersive response, makes a feedback loop that marks
the difference. It is like driving a car, the driver thinks about the vehicle as an extension of
the body. The same with video games, forgetting that the player is using a controller to move
a character to «be» this character and moving through it.

17

3.2 Kinesthetic in this Project

With the goal of giving to the player a good — feeling response of the game, | have
researched different effects that fits in my game.

This game includes collisions between a ball with walls and other players. Also, it must be
fast, so the effects must complement the action and be agile, not stopping the flow of the
game if it is not necessary.

Also, | will use these effects to give coherence to the game. For example, when the ball is
placed in its initial position, some particle effects should start and an appropriate sound
effect must be played, not just popping the ball in the place. This will also make the
experience better and will help to the immersion of the player.

3.3 States of the Game

To understand the different events an how are they related with the feedback to the
player, it is necessary to explain which states will be and what events can be found in each
one.

The match of the game is divided into these states (see figure 13):

Running EEE— . End Game

Start Game f

End Point SEE—. Start Point

Figure 13.

The transition between the states of the game.

The match starts in the «Not Started» state. This is the initial state when all the
GameObijects are placed in their initial positions and the Global Countdown starts running.

This «Not Started» state will be waiting until the player hits the ball to change to «Running».
In fact, the global countdown will start at the beginning of this state, although the ball has not
been hit yet.

18

The main state of the game is the «Running», the state in which the game will be played the
most part of the match. In this state is where the players fight each other, moving, hitting and
avoiding the ball.

During «Running» state, when the ball explodes (by colliding with one player or reaching 0 in
its countdown), the match will change to «End Point», that marks the end of one point, when
one player’s score increase by one.

In «kEnd Point» the ball is moved to one of its starting points. Also, the player that has been
hit is moved to its initial position.

Just after «kEnd Point», the game changes to «Start Point», which is a void state that will wait
until the player of the field where is placed the ball hits it, starting a new round and changing
the state to «Running» again.

Finally, the «End Game» state is the state reached when the Global Countdown has
reached 0, the match is over and the game must show the winner, or the scene designed in
case of a draw.

3.4 Events in the Game

For each state of the game we can find these events in which we can add kinesthetic
elements:

1. Not Started
= Place the ball in the initial position.
Place the characters in their initial position.
Start the countdown.
Character moves.

Character hits the air.

v Vv v VY

Character hits the ball (transition to «Running»).

2. Running
=> The ball moves.
The ball hits a wall.
The ball hits a player (transition to «End Point»).
The ball’s countdown is near to 0.
The ball’'s countdown reaches O.
The characters move.
Character hits the ball.

Character does a direct hit.

L 2 2 BN T D

Character hits the air.

19

= Time to change SkyBox (every 10 seconds).

= Time to change post-processing (accordingly with the night SkyBox).
= Time to start raining (second 50).

= Time to end raining (second 80).

=> Global countdown reaches 0 (transition to «<End Game»).

3. End Point

The ball disapears.

The ball is placed in one of the starting points.

The defeated player disappears.

The defeated player is placed in one of the starting points.
Character hits the air.

Character moves.

L2 2 N T

Transition to «Start Point».

4. Start Point
=>» Character hits the ball (transition to «Running»).
=> Character hits the air.

=>» Character moves.

5. End Game
=>» There is a winner.

=>» The result is a draw.

3.5 Kinesthetic Effects

The kinesthetic effects can be grouped by different types: Camera, Shader, Particles,
Sound, SkyBox and Animation.

3.5.1 Camera effects

These kinesthetic effects are in relation to movements of the camera.

3.5.1.1 Camera Shake

Is a relative movement of the camera without changing the direction of the view.

20

The camera of the game is contained by a «Holder Gameobject». This gameobject will point
in the direction we desire for our camera. Then the main camera will be placed inside with
coordinates (0, 0, 0) and no rotation. Now the position of the camera inside the holder
gameobiject is moved by script, returning to (0, 0, 0) at the end of the shake.

With this method we can both shake the camera and moving if (by moving the holder) at the
same time and no losing the orientation.

The camera shake is very important for the game feel of any game, because it is a direct
feedback of the status of the game.

In this game, it will inform the player when a collision of the ball and other object happens.

The intensity and the duration of the shake varies depending on the event.

3.5.1.2 Soft Shaking
A little shake with short duration and intensity. It will be used when the ball hits a wall.

The collision with a wall is an event that will occur often. For that reason it is necessary to
use a soft feedback and no over-charge the player with too much shake when it is not
necessary.

3.5.1.3 Medium Shaking

A short duration shake with higher intensity. It will be used when the player hits the
ball.

In order to make the player «feel» the impact like a powerful one, it is necessary to make a
higher intensity shake. This effect is like the character «makes the camera tremble» because
the impact power.

Also, it is necessary to remark the short duration of this shake because probably after the hit
the ball will hit soon a wall and a long-time shake could cause an union of the two shakes,
resulting in a bad feel because of the abuse of the camera movement and a lack of stability.

3.5.1.4 Hard Shaking

This is the hardest and longest camera shake. It will be used when a round ends, by
exploding or hitting a player with the ball.

In contrast with the previous point, when a round ends the game will make a little period of
«relaxing timey, displaying other effects and later moving each element in their appropriate
position in order to start the new round.

Also, it is necessary to give a strong feedback about the end of the round, it is an important
moment in the game and the player must really feel a difference with the previous types of
shaking.

Taking into consideration these two points, this camera shake has strong intensity shake
with longer duration, because the game makes a little «break» and this shake will not occur
too near of other camera shake effect.

21

3.5.1.5 Camera Traveling
A traveling of the camera from its initial position to the front of a player.

This effect is used using the function «Lerp» [4] given by Vector3 in Unity. This function
interpolates through two positions and can be used for making transitions.

This effect will be displayed at the end of the match, when the global countdown reaches 0.

Also, this effect will only be shown when there is a winner. In case of a draw the game will
change of scene.

3.5.2 Particle Systems

Kinesthetic effects in relation with the emission of particles at certain circumstances.

3.5.2.1 Explosion Particles

This particle system emulates a fire explosion with smoke and little pieces in flame
flying away.

This effect is created by starting two «son» particle systems, one with the smoke effect and
the other with the flying pieces and playing these two systems at the same time.

Also, this particle system is adjusted to decrease the size of the particles over their lifetime,
making as a result an effect of «vanishing» an disintegration.

With this effect, we can give an event, like the collision of the ball and the player or the end
of the ball’'s countdown a better feedback and direct information about what is happening.
This effect will be displayed at the same time that the ball disappear, achieving the explosion
effect.

3.5.2.2 Ball Positioning Particles
This particle system emulates a «canalization of energy» with rays and color smoke.

This effect is created also with two «son» particle systems, one with the smoke effect and
another with an emission in the shape of semi-transparent spears.

This effect is used when the ball is placed in one of the start points.
With this effect it seems like the ball is «canalized» in the place, instead of just popping.

There are two almost identical Ball Positioning Particles, one with hot colors and another
with cold colors, each one for its current start point.

3.5.2.3 Hit Wall Particles

This effect uses two different particle systems. These particle systems are used
when the ball hits a wall.

The first one throws little spears from the point of collision that bounce on the floor. The
second one emulates the dust of the wall, an effect that gives the sensation of moving the air

22

when the ball hits the wall.

With these particle systems it is possible to reinforce the feedback given by the camera
shake, making a good combination of effects that results in a comprehensive look of the
game.

3.5.2.4 Ball Trail Particles
This particle system is used when the ball’'s countdown is near to 0.

Using this the player can obtain information about the remaining time of the ball without
looking at the countdown, so it results in giving to the user more information without leaving
the point of vision of the field.

This particle system emits particles of smoke and fire (using two «son» emitters) that will
remain for a short period of time in the scene, using the world coordinates, not the local
ones of the ball.

3.5.2.5 Field in fire Particles
This particle system is used when the ball’'s countdown reaches 0.

As the event «Ball's Countdown reaches 0» means a death for one player because the ball
explodes, it is useful to make the player feel that all the area of the explosion is affected, so
this particle system emulates fire coming from the ground.

Because the position of the camera and the perspective of the game, this particle system is
modified to emit in the shape of a cube, using only the sides, not the volume as it is
common.

This makes the effect of corners in the smoke of these particles, giving the effect of fire that
has been trapped inside the game field.

3.5.2.6 Run Particles

This particle system is used when the characters run and emulates the effect of
moving dust while running.

It is used to give the player the feeling that the character is really in the game, that he
interacts with the environment and that his actions have consequences.

For this reason, when a character is running, these particles will be emitted, giving the
sensation of "moving dust".

These particles are shaped like white cubes. Also to increase the realism, these particles are
configured to decrease their size and speed during their lifetime, giving the feeling of being
created by the speed of the player and losing strength by the resistance with air.

3.5.2.7 Rain Particles

This particle system is used when one special timer, that is used for managing the
weather, reaches its start point. This particle system will stop when this timer reaches its

23

stop point.

In order to give the player the feel of time changing and the pass of the time, these particles
will simulate the rain for a period of time during the match.

This particle system is formed by two emitters: one that will emulate the rain and another
that will emulate the clouds.

This effect will be complemented with the change of SkyBox and the use of post-processing
in order to achieve a better result.

3.5.2.8 Hit Ball Particles

This particle system is used when a player hits the ball. The effect of this particle
system emulates the effect of the hit in the comics, doing little white spears at the moment of
impact.

This effect is used together with the medium shaking and the hit ball sound.

3.5.3 Shader Effects

The main use of shaders in this project has been to provide an interesting aesthetic.
However, its properties have also been used to provide kinesthetic effects to the project.

In order to produce different effects without having problems when painting the final pixel
color, each of the effects has been placed in a different layer, so that the most important
ones are in an upper layer and cover the lower ones in case there were two effects at the
same time.

3.5.3.1 Wave Ground Hit Shader

During the course of the game, when a player hits the ball, an effect will be produced
as an expansive wave on the ground that will indicate that the hit has been made
successfully. This means that the ball will reach the other side of the stage without bouncing
in any wall first and will be called a «direct hit».

This wave is produced by a shader graph that generates transparencies based on a noise
function in a shape of an ellipse.

In addition, to keep the aesthetics of the scene, the wave that is performed will maintain the
red and blue colors that are used in the rest of the game.

3.5.3.2 Dissolve Shader

This shader is programmed to give an effect of dissolution and composition by
modifying an attribute of the material.

This effect will be displayed when a character is defeated, both being hit by the ball or when
the ball’'s countdown reaches 0, making the dissolve effect.

Also, the opposite effect will be displayed when the character is replaced in its initial position,
startin an effect of composition.

24

This effect gives a better visual impact to the player than just moving suddenly the player
between two positions.

3.5.4 Sound Effects

The sounds are also an important part of the kinesthetic elements of a game. Sound
can help to build a bigger game immersion. On top of that, sounds give to the user auditory
feedback.

The use of an auditory feedback and a visual feedback complements the game experience.

It is necessary to search sound effects easy to comprehend. So easy that a player that is not
looking at the screen must have a little idea of what is happening on the screen by hearing
the sounds.

3.5.4.1 Hit ball sound

This sound effect will be played when the player hits the ball. It must transmit the feel
of a powerful hit.

3.5.4.2 Hit wall sound

This sound effect will be played when the ball hits a wall. It must transmit the feel of
the collision with a solid and static element.

3.5.4.3 Hit air sound

This sound effect will be played when the character tries to bat, also if it hits the ball
or not.

The sound will resemble the «cut air» effect and must give power and speed sensation to
the player.

3.5.4.4 Explosion sound

This sound effect will be played when the ball hits a player and the explosion is
produced.

It will also be played when the ball’'s countdown reaches 0.

The sound will emulate an explosion sound, strong and loud.

3.5.4.5 Ball positioning sound

This sound effect will be played when the ball is placed in its initial position. This
sound will complement the particle system that will be played in this event.

This sound must transmit the feel of canalization and concentration of energy.

25

3.5.4.6 Start game sound

This sound effect will be reproduced only once at the beginning of the match, to tell
the players that the match starts.

At the same time that this sound is being played, the global countdown will start running.

This sound must be recognizable for the users, similar to a horn.

3.5.4.7 End game sound

This sound will only be reproduced once in the match, at the end. It will help the
player understand that the match is over without looking the countdown.

This sound effect will emulate a thorn too, like the Start Game sound.

3.5.5 Animations

In a videogame it is important to use fluid animations that transmit to the player
information about what the character is doing.

It is, therefore, necessary to associate animations with the possible states that the character
may have. In this project the states are the following:

3.5.5.1 Idle
Is the base state of the character.

In this state there is no need to add any other effect because it represents the lack of input
of the player. In this animation the character only breathes and moves almost nothing.

3.5.5.2 Running
The Running animation will be displayed when a movement input is detected.

With this animation the Run Particles will also be played in order to increase the feedback to
the player.

3.5.5.3 Hitting
An animation that makes the character move its stick like a baseball bat.

With this animation the «Hit air sound» will always be displayed, but the «Hit ball sound» will
also be reproduced if the character hits the ball.

3.5.5.4 Falling

In this case, there will be two different animations that will depend on the direction of
the impact respect the character. Once the game has computed this information, one
animation or another will be displayed, making the character fall to the ground «face down»

26

if the impact was from the back or «face up» if the impact was from the front.

In the state «Ball's Countdown Reaches 0», only one of these two animations (face up) will
be displayed.

With these animations, many effects will be displayed depending on the situation of the
match, like the Explosion Sound, the Explosion Particles or the Field in Fire Particles.

3.5.6 SkyBox

One of the ways to achieve a "time course" effect is by changing the background of
the game.

To achieve this effect in the game, 10 SkyBox have been imported and saved in a vector in
the SkyBoxManager class. During the course of the game, every certain time interval, a call
to this manager will be done in order to change the current SkyBox.

The SkyBox that have been included give the sensation of the course of an entire day:
Noon, dusk, night, dawn and day.

3.5.7 Post-processing

In order to create a final scene with the right color and lighting ratio, the use of post-
processing is a fundamental tool that allows global adjustments to the final result quickly.

In this project several post-processing profiles will be used depending on whether it is day or
night, so that the colors of the scene are coherent and compatible with the lighting.

3.6 Assets
The assets used in this project are as follows:
o Camera effects: Package EZ Camera Shake [A2].
e Particle systems: Cartoon FX [A3] and Simple FX [A4].

e Shader Graphs: UnityTechnologies example library [A5] and Brackeys shader graph
tutorial [A6].

e Animations: Mixamo’s webpage [A7].

e SkyBox: Farland Skies collection [A8][A9].

3.7 Summary Table

The following table shows the different events that can occur within the different
states of the game and the effects that will be displayed as a consequence. There is also a
column in charge of marking the transition to another state because of an event.

27

State Event Effect Type Transition
Not Started |Place the ball Ball positioning Particle system
particles (Red)
Ball positioning Particle system
particles (Blue)
Ball positioning Sound effect
sound
Place the characters |Dissolve shader Shader effect
Start the countdown Start game sound Sound effect
Time to change Skybox change Skybox
skybox
Time to change post- |Post-processing Post-processing
processing change
Time to start raining [Rain particles start |Particle system
Time to end Raining |[Rain particles end. |Particle system
The characters move Run particles Particle system
Running animation |Animations
Character hits the air Hit air sound Sound effect
Hitting animation Animations
Character hits the ball Medium shaking Camera effect Running
Hitting animation Animation
Hit ball sound Sound effect
Wave ground hit Shader effect
shader
Hit ball particles Particle system
Running Ball moves None None
Ball hits a wall Soft shaking Camera effect
Hit wall particles Particle system
Hit wall sound Sound effect
Ball hits a player Hard shaking Camera effect End Point

Explosion particles

Particle system

Explosion sound

Sound effect

Falling animation Animation
Dissolve shader Shader effect
Time to change Skybox change Skybox

28

skybox

Time to change post-
processing

Post-processing
change

Post-processing

Time to start raining

Rain particles start

Particle system

Time to end raining

Rain particles end

Particle system

Ball’'s countdown is
near to O

Ball trail particles

Particle effect

Ball’'s countdown Explosion sound Sound effect End Point
reaches 0
Explosion particles [Particle system
Field in fire particles Particle system
Falling animation Animation
Global countdown End game sound Sound effect End Game
reaches 0
The characters move Run particles Particle system
Running animation Animation
Character hits the ball Medium shaking Camera effect
Hit ball sound Sound effect
Hitting animation Animation
Wave ground hit Shader effect
shader
Hit ball particles Particle system
Character hits the air Hit air sound Sound effect
Hitting animation Animation
End Point Ball disappears None None
Place the ball Ball positioning Particle system
particles (Red)
Ball positioning Particle system
particles (Blue)
Ball positioning Sound effect
sound
Place the characters |Dissolve shader Shader effect
The characters move Run particles Particle system
Running animation Animation
Character hits the air Hit air sound Sound effect
Hitting animation Animation
Non activity time None None Start Point

29

Start Point

Time to change
skybox

Skybox change

Skybox

Time to change post-
processing

Post-processing
change

Post-processing

Time to start raining

Rain particles start

Particle system

Time to end raining

Rain particles end.

Particle system

The characters move

Run particles

Particle system

Running animation

Animation

Character hits the air

Hit air sound

Sound effect

Hitting animation

Animation

Character hits the ball

Medium shaking

Camera effect

Running

Hitting animation

Animation

Hit ball sound

Sound effect

\Wave ground hit
shader

Shader effect

Hit ball particles

Particle system

End Game

Show the winner (if

not draw)

Camera traveling

Camera effect

30

Table 2.

A summary of the relations between events, effects and states.

Chapter 4:
Implementation

4.1 Ball movement

The main idea of the game consists in a ball that will be bouncing constantly between
the walls of the scene, gaining speed little by little. The ball must always be at the same
height, only moving in its horizontal plane.

The first attempt of making this system was building scenario formed by boxes with box
colliders an then moving the ball inside.

A script for the movement of the ball was programmed, which changes its direction when a
wall was detected.

At low speeds the system worked well, as expected. The ball bounce correctly between the
walls. But when the speed started to raise the ball escaped from the box soon. At high
speeds the ball could «jump» the collider.

The size of the box collider was changed, but this only delays the problem, because the ball
will increase its speed and this problem will happen sooner or later. Moreover, the size of the
colliders was unnecessary big, and this system gives complications with the corners, where
there are zones out of the colliders.

Also, this method worked with a ball that never changes its rotation, only was moved around
the horizontal plane and this would make more difficult to put some effects in the future, so |
started to work in the second system.

This time the ball will always follow its forward direction [5]. This direction will always be its
advance direction, so to change the direction of the ball it is necessary to change the rotation
of the ball, as the instruction for the ball will always be «go forward».

Then, another scene was built, now with planes. | tagged these planes with the tag «wall»
(this will make sense later).

A void GameObiject linked with the ball was also included. This GameObject will mark at
every moment the next position that the ball will have, taking in consideration the direction
and the speed of the ball.

What is happening now in the game is that the ball goes forward always in its forward
direction. Every frame a Raycast [6] is thrown in the forward direction. This Raycast will hit
one of the four walls.

Then these data are evaluated:

- The distance between the ball and its next position is computed using
Vector3.Distance [7].

-The distance between the ball and the point where the Raycast hit the wall is
computed.

31

Then, these two magnitudes are compared. This can result in one of these two situations:

1. The distance between the ball and the wall is bigger than the distance between the ball
and its next position. The ball will continue in the game field and it will no hit the wall yet.

2. The distance between the ball and the wall is smaller than the distance between the ball
and its next position. This means that the ball will hit the ball, so we must make some
adjustments.

When the ball is going to collide with the wall, the ball is put at the point of contact between
the Raycast and the wall.

Also, the ball must be oriented, changing its rotation to let the ball continue moving forward
with a new direction in the next frame. For this sake, the function of Vector3.Reflect [8] is
used. This method uses the normal of the plane and compute the reflected vector of an
incident vector. | use this reflected vector as the new direction vector and forward vector of
the ball, so | rotate the ball to face this direction.

In the next image (see figure 14) we can see the ball with the 3 vectors: forward vector,
normal vector to the plane and reflected vector. Also, the small circle inside the ball is the
next position. As the speed in this picture is small, the next position is near.

Figure 14.

A frame of an early phase of the game that shows the vectors used in the bounce against a wall and the «next
position» point.

In the figure 15 we can see how the next position point is further (as the speed of the ball is
bigger) and is out of the field. We can see how in the figure 16 the ball is oriented, placed
correctly and the next position of the ball is in the field.

32

Figure 15.

A frame of an early phase of the game that shows the previous moment of the bounce.

Figure 16.

A frame of an early phase of the game that shows the correct alignment of the ball after the situation of figure
15.

With this second method, the issue with the corners is also solved, making the ball bouncing
correctly even at extreme conditions. Now the ball can reach speed levels much higher than

33

the previous system with ease.

Also, the use of the forward vector in the direction of the ball will be used by other functions
of the game, like choosing an animation. This will be explained in the next point.

4.2 Character Animations

The characters of the game have different animations that will be shown in the
match. These animations are Idle, Running, Hit and the Win animation.

Furthermore, with the aiming of gain a better visual response, | included two different
animations for the event «Ball hits a player»: one for a frontal hit and the other for a hit from
behind.

To choose between one and another | calculate in the moment of the collision the difference
between the forward angle of the player and the forward angle of the ball. With this angle it is
possible to choose the correct animation and activate the corresponding trigger of the
animation machine.

4.3 Use Of Managers

In order to have the different effects of the game locatable, isolated and easy to
modify, empty GameObjects are induced in the game with the necessary scripts and
references to act like a manager.

When an effect is needed, the different GameObjects in the game will have access to these
managers and will call the adecuate public functions of them.

This way is easy and fast to access the parameters of the effects and modify them if it is
necessary.

4.3.1 Particles Manager
It groups all the particle effects of the game, triggering them when it is necessary.

In some cases the particle manager only plays the system, like in the event of positioning the
ball at its initial point, because these points are static.

In contrast, sometimes it must move the particles to another position before play them, like in
the event «Ball hits player», because this point varies all the time.

4.3.2 Sound Manager

The sound manager has all the sounds of the game and will receive calls of other
scripts and play the sound that is needed.

4.3.3 SkyBox Manager

This manager will save in a vector the different SkyBox that will appear during the
game.

34

When this manager receives a call from another script ordering a change, it will increase by
1 the position of the vector that are currently in and load the SkyBox from that position.

This effect in the game will be accompanied by the use of post-processing, which will ensure
that the scene is seen correctly at night.

4.4 The speed in the game

The ball of the game not will only go bouncing and being hit during the match without
changes, it will increase little by little its speed.

With each hit of one player to the ball, its speed will grow, making every second in the same
round hardest than the previous one.

This game mechanic is implemented in order to increase the difficulty curve, avoiding rounds
too long or too short.

4.5 Shader Graph

The use of shaders is a powerful tool in the video game development world. Shaders
have a lot of potential and can be used in many ways.

Since the beginning of the project, the use of shaders was considered as a fundamental part
of the game, making use of them for the environment and also the kinesthetic effects.

Firstly, | started a learning process and a period of adaptation in order to use my shader
knowledge in the development of shaders in the engine Unity3D.

But this process was interrupted when | found a new functionality in which Unity’s team were
working: Shader Graph.

This new functionality was in the beta version of Unity 2018 by the moment of its integration
in the project, but the final version was released in June, when the project was updated
again.

With shader graphs it is easy to design different shaders fastest, since it allows the user the
experimentation of different effects by making little adjustments. Also, it makes easier to
modify specific values of a particular effect.

This system works using nodes and allows combination between different characteristics of
the material (see figure 17).

35

ShaderExample

Figure 17.
An example of Shader Graph that gives a rugged effect.

It is possible to create a shader graph and assign it to two different materials. This makes
possible to have two materials with similar effects, but with different properties’s values (like
color or texture tiling and offset), giving as a result a lot of interesting results.

In this project, shader graphs are used for the scene design and as a kinesthetic effect.

4.5.1 Scene design

For the scene design it was necessary to maintain an aesthetic coherence between the
player’s colors and their side of the map.

4.5.1.1 Wall design

The walls are organised in two different layers in order to give a better result and
making the development of the shader graph easier to design.

The first uses a material that emulates a transparent grid of hexagons. These hexagons do
not move through the wall, they are static. In order to avoiding dynamism to the scene, the
shader of this first wall’'s material includes a noise function that is responsible for making
holes on the surface in a random pattern through time. This gives the walls a «non static»
property, that make the scene more dynamic.

Also, for this first layer it is used one shader graph in two different materials, each one with
different colors (red and blue).

36

The second layer is located behind the first. This second layer serves to add color to the field
and serves as a base for the first layer. Also, it uses larger hexagons that move slowly,
producing small transparencies. It also includes little changes of color in order to produce a
hologram effect (see figure 18).

Both the first and the second layer are located and programmed so that the patterns of the
hexagons are coherent between the bottom walls and the side walls.

4.5.1.2 Central Wall Design

The central wall uses a material that is managed by the same shader graph as the
background walls, but which parameters are modified so that it has a different hologram
effect.

It is endowed with tones between red and blue to maintain the colors of the scene. Also
includes hexagonal patterns that move faster than the bottom walls and produce
transparencies that change in size over time (see figure 18).

v
=l -
Al

Figure 18.

The final design of the walls in the game.

4.5.2 Initial kinematic

In order to make a kinematic with the presentation of the characters, a shader with an
effect of «formation» was needed.

First, there were created some materials with the same colors as the ones that uses the
characters of the game. These materials are configured to use a shader that produces a
border and leaves the top of that border transparent.

Then, a coroutine is used [9] in order to increase little by little the value of the border,
making the character appear from the feet to the head.

The materials of these scenes are duplicated for making color adjustments on the border in

37

each character, using blue and red colors.

Also, a camera movement has been developed. The camera turn around of a point of
interest which will be moving in order to give a circular view of all the character.

Furthermore, the character will be playing a dance animation that will match with the
background music, giving this kinematic a feeling of joy.

Making adjustments in the camera script movement, the kinematic will move through
different paths in each scene.

4.5.3 Disolve effect

During the game, when a player is hit by the ball of his field explodes, he performs a
«be hit» animation that ends in the ground without being able to move until he is placed back
at the starting point.

In order to not produce this transition abruptly, it implements a modification of an existing
dissolving shader [10] to make the character disappear and appear little by little.

The shader graph allows the election of the dissolve color. The colors are chosen to match
with the character ones.

In this way, when a player is on the ground, a dissolution process will start, also carried out
by a coroutine, until the character is completely invisible. Then it will be placed at the starting
point and will start to «generate» using an opposite coroutine (see figure 19).

This results in a better transition between rounds and the «popping» effect is avoided when
the player is placed.

Figure 19.

The dissolve shader making the player appears. The beginning (left) and the end of the process (right).

38

4.5.4 Ball colors

The first idea was the inclusion of the dissolution effect for the ball at the end of a round too.
However, due to the particles of the explosion, this effect is difficult to see. For this reason
the shader graph used in the ball will be used for the purpose of highlighting the colors of the
ball.

The ball may be using three different materials, which correspond to three situations:

-The ball has not been hit: The game is in the a starting round or starting match state.
This situation is represented with the yellow color.

-The ball has been hit by the blue player: It will change its material to a blue one.
-The ball has been hit by the red player: It will change its material to a red one.

These three materials will be managed by one shader graph that will produce a Fresnel
effect [11] on the ball, together with a light emission effect.

4.6 Post-processing

In order to give a better final aspect of the game, the post-processing functionality of
Unity has been included.

Thanks to this functionality, it is possible to make adjustments of color, brightness, saturation
and contrast of the final scene in a few steps.

This effect is also included in the initial kinematic, in which this effect adds a slight distortion
of the lens, a correction of color to match the color of the player, a noise effect and also a
variation of the bloom values.

Furthermore, a hexagonal pattern texture has been added in the kinematic to keep this
geometric shape consistent throughout the game.

The post-processing effect is also used through the match when the «night time» starts.

To make consistent the colors and the illumination, another post-processing has been
created. This profile gives the scene a dark blue effect and decreases the brightness and the
contrast of the scene, making the night more credible.

4.7 Scene Transition

To make the change between scenes in the initial kinematic and the transition to the
game scene, a smooth transition between scenes has been implemented, adding an object
to the scene that will be in charge of managing this effect.

This is done by animating a black image so that its alpha value increases, making it go from
completely invisible to leaving the screen black.

Then the scene change is made for the next one, which will also have an object that allows
the change of scenes. This object will produce another fading of the completely black image
to be transparent, making the transition smoother.

39

4.8 Audio Implementation

In order to create an effective kinesthetic in the game, a collection of sound effects
that accompany the action of the game have been selected and are complemented with
other effects like particles and camera effects.

However, some of the sounds that are used in the game are associated with situations that
occur very frequently throughout a game, so listening to them continuously can cause a
repetitive feeling to the player.

To avoid this problem there are two possible solutions:

e The first one is to look for a wider collection of sounds and randomly reproduce them
when playing a sound effect.

e The second one is the one that has been implemented in this project, the
modification of the pitch [12] when it comes to playing a sound.

When playing a certain effect, the sound manager implements a function that, before playing
a sound, changes its pitch in a range that we have previously delimited in the inspector. This
way, with a smaller amount of sound effects, a greater variety of effects are achieved and
the repetition of a sound is prevented.

4.9 Limitations

The shader graph is a system that was included in the beta version of Unity 2018
and, although the version is already stable and has been published, the shader graphs have
some errors that are difficult to solve until arrangements are made.

One of the main problems | have had is when producing transparencies in the models,
because although they are not visible to the camera, the shadows are still calculated as if
the objects were visible, producing undesirable effects (see figure 20).

The Unity team reported that these errors are being monitored and are working to solve
them, so those visual errors of the project will be solved in subsequent versions of Unity.

Figure 20.

Example of the errors in the shadow calculation of transparent objects.

40

Chapter 5:
Results

5.1 Code and Executable
The code of the project can be downloaded at the following link:

<https: ithub.com/al315581/TFG1l.git>

The executable of the game can be downloaded at this link:

<https://drive.google.com/file/d/10t3YykV6ixYopCUOjciyfdcP3Se3c9P9/view?usp=sharing>

5.2 Screenshots and Video
o Figures

The game has been created following the initial development scheme, developing
first a quick game and adding the effects later.

Figure 21 shows the final aspect of the game, where we can appreciate the HUD
typography, the colors used, the main SkyBox, the main characters and the effect caused by
the shaders on the walls. In addition, this image allows to observe the effect of the particles
of the ball in its initial point.

Figure 21.

The final result of the game. Also, the «place the ball» particle effect.

41

https://github.com/al315581/TFG1.git

In the figure 22 it can be seen the result of the shader effect that indicates the player that the
hit was successful and the ball will go directly into the other player’s field. Also, the particle
system of «field in fire» can be seen in the right figure, alongside one different SkyBox.

Figure 22.

«Wave ground shader» (left) and «field in fire particles» (right).

Figure 23.

«Ball hits wall» particles (left) and «player hits ball» particles (right).

42

In the figure 23 it can be seen the particle systems «ball hits wall» and «player hits ball».
Also, the two particle systems in charge of the «ball hits wall» can be differentiated clearly

(the spears and the smoke).

The figure 24 shows the previous moment of the collision between the ball and the player in
the left figure. In this figure it can also be seen the «ball trail particles». The right figure is a
frame of the explosion particle system played when the ball hits a player.

Figure 24.
The «ball trail particles» (left) and the «ball hits player» particles.

In the figure 25 the rain particles can be appreciated. Also, the night post-processing is
active, changing the colors of the game.

Figure 25.

Rain particles and night post-processing.

43

The figure 26 shows a frame of the initial kinematic and finally, the figure 27 shows the title
scene of the game.

Figure 26.

A frame of the initial kinematic.

Figure 27.

The title scene of the game.

e Video

The video showing the gameplay, mechanics and kinesthetic elements can be seen in this
link:

<https://youtu.be/2BVJIH-vq-8>

44

https://youtu.be/2BVJIH-vq-8

In this section of the document the project's objectives are going to be evaluated in

order to discuss if they have been successfully completed, as well as future extensions that
could be included in this project.

6.1 Project Objectives

Once the project has been finalized, it is time to analyze which of the main objectives

that were marked at the beginning of the development have been completed:

Develop a video game inspired by classic gameplay that provide the player with a
dynamic and fun gameplay thanks to the kinesthetic elements.

The control system and the structure of the game were initially designed with the
main idea of providing a fun game full of kinesthetic elements. These objectives have
been completed successfully, as well as having expanded the collection of effects
during the development of the project itself.

Implement different kinesthetic elements in Unity making use of shaders, particles,
camera movements, sound effects and animations.

Through the search for information and continuous learning, a large number of
effects have been developed, making use of shaders, particles, camera movements,
sound effects, animations, post-processing and SkyBox modifications.

In addition, new effects have emerged that were not part of the main design, but
were later included, such as the inclusion of wall shaders.

Offer a fun scenario to allow 2 players to compete on ability and reflexes.

This objective has been a fundamental part of the development of the game and was
the first objective to be fulfilled, since first the game space was designed in a basic
way and little by little it was completed by adding effects until it became what it is
now.

6.2 Future Work

The study and implementation of the effects of kinesthetics in a video game has turned out
to be a topic that is becoming more interesting as you learn more about it.

During the development of this project, it has been possible to discover «small details» that
video games hide and are not properly appreciated by the players.

45

It is important to highlight the importance of the kinesthetic elements in the final result of a
video game, because they convey a pleasant sensation when experiencing them. Also a
video game can be monotonous and less fun if these elements are not incorporated

correctly.

For this reason, this project could evolve even further by learning new forms of kinesthetics:

1) Virtual:
o Through the study of new ways of transmitting feedback to the user.
o Through a more detailed study of the animations of the characters.

o Through the implementation of different shaders.

2) Physic:
o Through new ways of control the game, making use of special controls.

o Through the use of virtual reality glasses.

Thanks to the study of the kinesthetic elements of a video game, it is evident that each field
that composes it is very wide and could easily result in a thesis by itself.

46

[1] Pong Gameplay,

<https://www.youtube.com/watch?v=fiShX2pTz9A> (last visited February 2018).

[2] Mario Tennis Gameplay,

<https://www.youtube.com/watch?v=HRgdHO0s2k-Y> (last visited February 2018).

[3] Lethal League’s Trailer,

<https://www.youtube.com/watch?v=j78X5LIuM5U> (last visited February 2018).

[4] Lerp Function,

<https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html> (last visited March 2018).
[5] Forward Vector,

<https://docs.unity3d.com/ScriptReference/Transform-forward.html> (last visited March
2018).

[6] Raycast in Unity,

<https://docs.unity3d.com/ScriptReference/Physics.Raycast.html> (last visited March 2018).
[7] Vector3.Distance,

<https://docs.unity3d.com/ScriptReference/Vector3.Distance.html> (last visited March 2018).
[8] Vector3.Reflect,

<https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html> (last visited March 2018).
[9] Coroutines,

<https://docs.unity3d.com/Manual/Coroutines.html> (last visited February 2018).

[10] Brackey’s GitHub,

<https://github.com/Brackeys/Shader-Graph-Tutorials> (last visited April 2018).

[11] Fresnel Effect,

<https://docs.unity3d.com/Manual/StandardShaderFresnel.html> (last visited April 2018).
[12] Audio pitch,

<https://docs.unity3d.com/ScriptReference/AudioSource-pitch.html> (last visited April 2018).

47

https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html
https://docs.unity3d.com/ScriptReference/AudioSource-pitch.html
https://docs.unity3d.com/Manual/StandardShaderFresnel.html
https://github.com/Brackeys/Shader-Graph-Tutorials
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/ScriptReference/Vector3.Distance.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Transform-forward.html
https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html
https://www.youtube.com/watch?v=j78X5LluM5U
https://www.youtube.com/watch?v=fiShX2pTz9A

Assets

[A1] Controller Figure,

<https://es.m.wikipedia.org/wiki/Archivo:360_controller.svg> (last visited June 2018).
[A2] EZ Camera Shake,

<https://assetstore.unity.com/packages/tools/camera/ez-camera-shake-33148> (last visited
April 2018).

[A3] Cartoon FX,

<https://assetstore.unity.com/packages/vfx/particles/cartoon-fx-free-109565> (last visited
April 2018).

[A4] Simple FX,

<https://assetstore.unity.com/packages/vix/particles/simple-fx-cartoon-particles-67834> (last
visited April 2018).

[A5] Unity Shader Graph Example,

<https://github.com/UnityTechnologies/ShaderGraph_ExampleLibrary> (last visited June
2018).

[A6] Brackeys Shader Graphics,
<https://github.com/Brackeys/Shader-Graph-Tutorials> (last visited June 2018).
[A7] Mixamo's Webpage,

<https://www.mixamo.com/#/> (last visited June 2018).

[A8] Farland Skies simple,

<https://assetstore.unity.com/packages/2d/textures-materials/sky/farland-skies-simple-
cumulus-62565> (last visited April 2018).

[A9] Farland Skies cloudy,

<https://assetstore.unity.com/packages/2d/textures-materials/sky/farland-skies-cloudy-
crown-60004> (last visited March 2018).

48

https://assetstore.unity.com/packages/2d/textures-materials/sky/farland-skies-simple-cumulus-62565
https://assetstore.unity.com/packages/2d/textures-materials/sky/farland-skies-simple-cumulus-62565
https://www.mixamo.com/#/
https://github.com/Brackeys/Shader-Graph-Tutorials
https://github.com/UnityTechnologies/ShaderGraph_ExampleLibrary
https://assetstore.unity.com/packages/vfx/particles/simple-fx-cartoon-particles-67834
https://assetstore.unity.com/packages/vfx/particles/cartoon-fx-free-109565
https://assetstore.unity.com/packages/tools/camera/ez-camera-shake-33148
https://es.m.wikipedia.org/wiki/Archivo:360_controller.svg

