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Abstract

Archetypal analysis approximates data by means of mixtures of actual ex-
treme cases (archetypoids) or archetypes, which are a convex combination
of cases in the data set. Archetypes lie on the boundary of the convex hull.
This makes the analysis very sensitive to outliers. A robust methodology
by means of M-estimators for classical multivariate and functional data is
proposed. This unsupervised methodology allows complex data to be under-
stood even by non-experts. The performance of the new procedure is assessed
in a simulation study, where a comparison with a previous methodology for
the multivariate case is also carried out, and our proposal obtains favorable
results. Finally, robust bivariate functional archetypoid analysis is applied
to a set of companies in the S&P 500 described by two time series of stock
quotes. A new graphic representation is also proposed to visualize the re-
sults. The analysis shows how the information can be easily interpreted and
how even non-experts can gain a qualitative understanding of the data.
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1. Introduction

Many econometric data are big data in the form of time series that can
be seen as functions (Tsay (2016)). In Functional Data Analysis (FDA) the
observations are functional time series or multivariate functions. Ramsay
and Silverman (2005) provide an excellent overview of FDA. FDA has been
applied in many different fields (Ramsay and Silverman (2002)), and although
it is a relatively new area of research in the business and economic sectors,
applications are beginning to proliferate in these fields (Aguilera et al. (1999);
Chen and Li (2017); Kowal et al. (2017)).

Data mining of functional time series (Fu (2011)) is as important as in
the classical multivariate version. It is desirable to understand and describe
the entire data set and to be able to extract information that is easily in-
terpretable even by non-experts. We deal with an unsupervised statistical
learning problem since only input features and not output are present. Data
decomposition techniques to find the latent components are usually employed
in classical multivariate statistics (see (Hastie et al., 2009, Chapter 14) for
a complete review of unsupervised learning techniques). A data matrix is
considered as a linear combination of several factors. The constraints on the
factors and how they are combined give rise to different unsupervised tech-
niques (Mørup and Hansen (2012); Thurau et al. (2012); Vinué et al. (2015))
with different goals. For instance, Principal Component Analysis (PCA) ex-
plains data variability adequately at the expense of the interpretability of the
factors, which is not always straightforward since factors are linear combina-
tions of the features. For their part, clustering techniques such as k-means
or k-medoids return factors that are easily interpreted. Note that data are
explained through several centroids, which are means of groups of data in
the case of k-means, or medoids, which are concrete observations in the case
of k-medoids. Nevertheless, the binary assignment of data to the clusters
diminishes their modeling flexibility as compared with PCA.

Archetype analysis (AA) lies somewhere in between these two methods,
as the interpretability of its factors is as easy as with clustering techniques
but its modeling flexibility is higher than for clustering methodologies. Vinué
et al. (2015) provide a summary table showing the relationship between sev-
eral multivariate unsupervised techniques, as do Mørup and Hansen (2012).
Stone and Cutler (1996) also showed that AA may be more appropriate than
PCA when the data do not have elliptical distributions.

AA was formulated by Cutler and Breiman (1994). In AA each ob-
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servation in the data set is approximated by a mixture (convex combina-
tion) of pure or extremal types called archetypes. Archetypes themselves
are restricted to be convex combinations of the individuals in the data set.
However, AA may not be satisfactory in some fields since, being artificial
constructions, nothing guarantees the existence of subjects in our sample
with characteristics similar to those of the archetypes (Seiler and Wohlrabe
(2013)). In order to solve this issue, the new concept of archetypoids was
introduced by Vinué et al. (2015). In Archetypoid Analysis (ADA) each ob-
servation in the data set is approximated by a convex combination of a set of
real extreme observations called archetypoids. AA and ADA were extended
to dense functional data by Epifanio (2016) and to sparse functional data
by Vinué and Epifanio (2017). In the functional context, functions from the
data set, which can be multivariate functions, are explained by mixtures of
archetypal functions.

This process not only allows us to relate the subjects of the sample to
extreme patterns but also facilitates comprehension of the data set. Humans
understand the data better when the individuals are shown through their
extreme constituents (Davis and Love (2010)) or when features of an indi-
vidual are shown as opposed to those of another (Thurau et al. (2012)). In
other words, as regards human interpretability, the central points returned
by clustering methods do not seem as good as extreme types, which are also
more easily understandable than a linear combination of data.

AA and ADA have therefore aroused the interest of researchers working in
different fields, such as astrophysics (Chan et al. (2003)), biology (D’Esposito
et al. (2012)), climate (Steinschneider and Lall (2015); Su et al. (2017); Epi-
fanio et al. (2018a)), developmental psychology (Ragozini et al. (2017)),
e-learning (Theodosiou et al. (2013)), engineering (Epifanio et al. (2013,
2018b); Millán-Roures et al. (2018)), genetics (Thøgersen et al. (2013)),
machine learning (Mørup and Hansen (2012); Seth and Eugster (2016a,b);
Ragozini and D’Esposito (2015)), multi-document summarization (Canhasi
and Kononenko (2013, 2014)), nanotechnology (Fernandez and Barnard (2015)),
neuroscience (Tsanousa et al. (2015); Hinrich et al. (2016)) and sports (Eu-
gster (2012)). AA has also been applied in market research (Li et al. (2003);
Porzio et al. (2008); Midgley and Venaik (2013)) in the multivariate context.
Despite the fact that financial time series are commonly analyzed by unsuper-
vised techniques ranging from PCA (Alexander (2001); Tsay (2010); Ingrassia
and Costanzo (2005)) to clustering (Dose and Cincotti (2005); Basalto et al.
(2007); Tseng and Li (2012); D’Urso et al. (2013); Dias et al. (2015); Ann Ma-
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haraj et al. (2010); Cappelli et al. (2013); D’Urso et al. (2014); D’Urso and
Maharaj (2012); D’Urso (2004, 2005); Alonso and Peña (2018)), including
robust versions of these (Malioutov (2013); Verdonck et al. (2011); D’Urso
et al. (2016, 2018)), to the best of our knowledge functional archetypal anal-
ysis has not been used in financial or business applications until now.

As archetypes are situated on the boundary of the convex hull of data
(Cutler and Breiman (1994)), AA and ADA solutions are sensitive to out-
liers. The problem of robust AA in the multivariate case was addressed by
Eugster and Leisch (2011). The idea is to find the archetypes of the large
majority of the data set rather than of the totality. Eugster and Leisch
(2011) considered a kind of M-estimators for multivariate real-valued data
(m-variate), where the domain of their loss function is not R+, but Rm. Re-
cently, Sinova et al. (2018) considered functional M-estimators for the first
time, where the domain of their loss function is R+. We base our proposal
to robustify archetypal solutions in the multivariate and functional case on
this last kind of loss function, which is commonly used in robust analysis
(Maronna et al. (2006)).

The main novelties of this work consist of: 1. Proposing a robust method-
ology for classical multivariate and functional AA and ADA; 2. Introducing a
new visualization procedure that makes it easy to summarize the results and
multivariate time series; 3. Applying functional archetypal analysis to finan-
cial time series for the first time, more specifically to multivariate financial
time series.

Section 2 reviews AA and ADA for the multivariate and functional case
and Section 3 introduces their respective robust versions. Our proposal is
compared with a previously existing methodology for robust multivariate AA
in Section 4, where a simulation study with functional data is also carried
out to validate our procedure. In Section 5, robust ADA is applied to a
data set of 496 companies that are characterized by two financial time series.
Furthermore, some visualization tools are also introduced in this section.
Finally, conclusions and future work are discussed in Section 6. The code in
R (R Development Core Team (2018)) and data for reproducing the results
are available at www3.uji.es/~epifanio/RESEARCH/rofada.rar.
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2. Archetypal analysis

2.1. AA and ADA in the classical multivariate case

Let X be an n ×m matrix with n cases and m variables. In AA, three
matrices are sought: a) the k archetypes zj, which are the rows of a k ×m
matrix Z; b) an n×k matrix α = (αij) that contains the mixture coefficients

that approximate each case xi by a mixture of the archetypes (x̂i =
k∑
j=1

αijzj);

and c) a k × n matrix β = (βjl) that contains the mixture coefficients that
define each archetype (zj =

∑n
l=1 βjlxl). To determine these matrices, the

following residual sum of squares (RSS) with the respective constraints is
minimized (‖ · ‖ denotes the Euclidean norm for vectors):

RSS =
n∑
i=1

‖xi −
k∑
j=1

αijzj‖2 =
n∑
i=1

‖xi −
k∑
j=1

αij

n∑
l=1

βjlxl‖2, (1)

under the constraints

1)
k∑
j=1

αij = 1 with αij ≥ 0 for i = 1, . . . , n and

2)
n∑
l=1

βjl = 1 with βjl ≥ 0 for j = 1, . . . , k.

It is important to mention that archetypes do not necessarily match real
cases. Specifically, this will only happen when one and only one βjl is equal to
one for each archetype, i.e. when each archetype is composed of only one case
that presents the entire weight. Therefore, in ADA the previous constraint 2)
is changed by the following one, and as a consequence the previous continuous
optimization problem of AA is transformed into a mixed-integer optimization
problem:

2)
n∑
l=1

βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , k.

Cutler and Breiman (1994) demonstrated that archetypes are located on
the boundary of the convex hull of the data if k > 1, although this does not
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necessarily happen for archetypoids (see Vinué et al. (2015)). However, if k
= 1, the archetype coincides with the mean and the archetypoid with the
medoid (Kaufman and Rousseeuw (1990)).

Cutler and Breiman (1994) developed an alternating minimizing algo-
rithm to estimate the matrices in the AA problem. It alternates between
calculating the best α for given archetypes Z and the best archetypes Z
for a given α. In each step a penalized version of the non-negative least
squares algorithm by Lawson and Hanson (1974) is used to solve the convex
least squares problems. That algorithm, with certain modifications (previ-
ous data standardization and use of spectral norm in equation 1 instead of
Frobenius norm for matrices), was implemented by Eugster and Leisch (2009)
in the R package archetypes. In our R implementation those modifications
were canceled and the data are not standardized by default and the objective
function to optimize coincides with equation 1.

As regards the estimation of the matrices in the ADA problem, Vinué
et al. (2015) developed an algorithm based on the idea of the Partition-
ing Around Medoids (PAM) clustering algorithm (Kaufman and Rousseeuw
(1990)). This algorithm consists of two stages: the BUILD phase and the
SWAP phase. In the BUILD phase, an initial set of archetypoids is com-
puted, while that set is improved during the SWAP phase by exchanging
the chosen observations for unselected cases and by inspecting whether these
replacements diminish the RSS. Vinué (2017) implemented that algorithm in
the R package Anthropometry with three possible initial sets in the BUILD
step. One of them is referred to as the candns set and consists of the nearest
neighbors in Euclidean distance to the k archetypes. The second candidates,
the candα set, consist of the observations with the maximum α value for
each archetype j, i.e. the observations with the largest relative share for the
respective archetype. The third initial candidates, the so-called candβ set,
are the cases with the maximum β value for each archetype j, i.e. the cases
that most influence the construction of the archetypes. Each of these three
sets goes through the SWAP phase and three sets are obtained. From these
three sets, the one with lowest RSS (often the same set is retrieved from the
three initializations) is selected as the ADA solution.

Archetypes are not necessarily nested and neither are archetypoids. There-
fore, changes in k will yield different conclusions. This is why the selection
criterion is particularly important. Thus, if the researcher has prior knowl-
edge of the structure of the data, the value of k can be selected based on
that information. Otherwise, the elbow criterion, which has been widely used
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(Cutler and Breiman (1994); Eugster and Leisch (2009); Vinué et al. (2015)),
could be considered. With the elbow criterion, the RSS is represented for
different k values and the value k is chosen as the point where the elbow is
found.

2.2. AA and ADA in the functional case

In FDA each datum is a function. In this context, the values of the m
variables in the classical multivariate context become function values with a
continuous index t, and the data set adopts the form {x1(t), ..., xn(t)} with
t ∈ [a, b]. It is assumed that these functions belong to a Hilbert space, they
satisfy reasonable smoothness conditions and are square-integrable functions
on that interval. In addition, in the definition of the inner product, the sums
are replaced by integrals.

Again, the goal of functional archetype analysis (FAA) is to approxi-
mate the functional data sample by mixtures of k archetype functions. The
difference with the multivariate case is that now both archetypes and ob-
servations are functions. In FAA, two matrices α and β are also calculated
to minimize the RSS. However, certain aspects should be highlighted. On
the one hand, RSS are now calculated with a functional norm (the L2-norm,

‖f‖2 =< f, f >=
∫ b
a
f(t)2dt, is considered) instead of a vector norm. On the

other hand, observational and archetype vectors xi and zi now correspond
to observational and archetype functions xi(t) and zi(t). In any case, the in-
terpretation of matrices α and β is the same as in the standard multivariate
case.

Functional archetypoid analysis (FADA) is also an adaptation of ADA,
changing vectors for functions. In this regard, FADA aims to find k functions
of the sample (archetypoids) that approximate the functions of the sample
through the mixtures of these functional archetypoids. Again, vector norms
are replaced by functional norms. Interpretation of the matrices is the same
as before.

In practice, the functions are recorded at discrete times. Standard AA
and ADA could be applied to the function values of m equally-spaced values
from a to b to obtain FAA and FADA. However, this approach is not compu-
tationally efficient (Epifanio (2016)). Therefore, we represent data by means
of basis functions. This reduces noise, i.e. functions are smoothed. Fur-
thermore, data observations do not have to be equally spaced, the number of
observed points can vary across records and they can be measured at different
time points. This also makes it possible to perform a more efficient analysis,
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since the number of coefficients of the basis functions is usually smaller than
the number of time points evaluated. The crux of the matter is to choose an
appropriate basis together with the number of basis elements. Nevertheless,
this issue appears repeatedly in all FDA problems. Functions of the sam-
ple should be expanded by basis functions that share common features (see
Ramsay and Silverman (2005) for a detailed explanation about smoothing
functional data). For densely observed functions, the case that concerns us,
the basis coefficients are computed separately for each function, while infor-
mation from all functions should be used to calculate the coefficients for each
function (James (2010)) for sparsely observed functions.

Let us see how the RSS is formulated in terms the coefficients bi, the
vector of length m that approximates xi(t) ≈

∑m
h=1 b

h
iBh(t) with the basis

functions Bh (h = 1, ..., m) (see Epifanio (2016) for details):

RSS =
n∑
i=1

‖xi −
k∑
j=1

αijzj‖2 =
n∑
i=1

‖xi −
k∑
j=1

αij

n∑
l=1

βjlxl‖2 =
n∑
i=1

a′iWai,

(2)

where a′i = b′i−
∑k

j=1 αij
∑n

l=1 βjlb
′
l and W is the order m symmetric matrix

with the inner products of the pairs of basis functions wm1,m2 =
∫
Bm1Bm2 .

If the basis is orthonormal, for instance the Fourier basis, W is the order m
identity matrix and FAA and FADA can be computed using AA and ADA
with the basis coefficients. If not, W has to be computed previously one
single time by numerical integration.

Let us see a toy example to illustrate what archetypes mean and the
differences compared with PCA and clustering. We use a functional version,
previously considered by Ferraty and Vieu (2003) and Epifanio (2008), of the
well-known simulated data known as waveform data (Breiman et al., 1984).
Functions x are discretized at 101 points (t = 1, 1.2, 1.4, ..., 21) such that

• x(t) = uh1(t) + (1− u)h2(t) + ε(t) for class 1,

• x(t) = uh1(t) + (1− u)h3(t) + ε(t) for class 2, and

• x(t) = uh2(t) + (1− u)h3(t) + ε(t) for class 3,

where u is uniform on [0, 1], ε(t) are standard normal variables, and hi are the
shifted triangular waveforms: h1(t) = max(6− |t− 11|, 0), h2(t) = h1(t− 4)
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and h3(t) = h1(t + 4). Note that x are mixtures of hj (j = 1, 2, 3), and
therefore hj are archetype functions by definition. The toy example has 150
waveforms in each of the 3 classes. Figure 1 shows the simulated data set,
together with the results for AA, PCA and clustering. Note that archetypes
are estimations of hj functions, the purest profiles, unlike cluster centers,
which are not so extreme and whose profiles are not as clear as those of
archetypes, since they are central points: the mean of each class. PC 1
quantifies a discriminability trade-off between classes 1 and 2, whereas PC
2 quantifies a discriminability trade-off between class 3 and the rest of the
classes. In summary, finding extreme profiles, which are easily interpretable,
is not the objective of clustering or PCA, but it is the intention of AA and
ADA, together with the expression of the data as a mixture of those extreme
profiles.

2.2.1. Multivariate functional archetypal analysis

It is common to analyze data with more than one dimension. In our
context, this means working with samples in which we analyze more than
one function for each individual, so each function describes a characteristic
of the subject.

First of all, we need to define an inner product between multivariate
functions. The simplest definition is to add up the inner products of the
multivariate functions. Therefore, the squared norm of a P -variate function
is the sum of the squared norms of the P components. Consequently, FAA
and FADA for P -variate functions is equivalent to P independent FAA and
FADA with shared parameters α and β. In practical terms, this means to
work with a composite function formed by stringing the P functions together.

Without loss of generality, let fi(t) = (xi(t), yi(t)) be a bivariate function.

So, its squared norm is ‖fi‖2 =
∫ b
a
xi(t)

2dt +
∫ b
a
yi(t)

2dt. Let bxi and byi be
the vectors of length m of the coefficients for xi and yi for the basis functions
Bh. Therefore, to compute FAA and FADA, the RSS is reformulated as:

RSS =
n∑
i=1

||fi −
k∑
j=1

αijzj||2 =
n∑
i=1

||fi −
k∑
j=1

αij

n∑
l=1

βjlfl||2 =
n∑
i=1

||xi −
k∑
j=1

αij

n∑
l=1

βjlxl||2

+
n∑
i=1

||yi −
k∑
j=1

αij

n∑
l=1

βjlyl||2 =
n∑
i=1

ax′iWaxi +
n∑
i=1

ay ′iWayi

(3)
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Figure 1: Waveform. (a) Five functions for each of the three classes, respectively. (b)
hj functions together with the data set in gray. (c) Archetypes. (d) Centers of k-means.
(e) Effect of adding and subtracting a multiple of PC 1 to the mean curve. (f) Effect of
adding and subtracting a multiple of PC 2 to the mean curve.
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where ax′
i = bx′i−

∑k
j=1 αij

∑n
l=1 βjlb

x′
l and ay ′i = by ′i−

∑k
j=1 αij

∑n
l=1 βjlb

y′
l

with the corresponding AA or ADA constraints for α and β. The union of
bxi and byi composes the observations. If the basis functions are orthonormal,
FAA and FADA are reduced to computing standard AA and ADA for the
n × 2m coefficient matrix composed by joining the coefficient matrix for x
and y components.

3. Robust archetypal analysis

The RSS is formulated as the sum of the squared (vectorial or functional)
norm of the residuals, ri (i = 1, ..., n). Here, ri denote vectors of length m
in the multivariate case or (univariate or multivariate) functions in the func-
tional case. The least squares loss function does not provide robust solutions
since it favors outliers; large residuals have large effects. M-estimators try to
lower the large influence of outliers by changing the square loss function for
a less rapidly increasing loss function. Eugster and Leisch (2011) defined a
loss function from Rm to R. However, Sinova et al. (2018) established sev-
eral conditions of the loss function ρ for functional M-estimators, the first
of which is that the loss function is defined from R+ to R and the loss is
specified as ρ(||ri||). Furthermore, ρ(0) should be zero, ρ(x)/x should tend
towards zero, when x tends towards zero, and ρ should be differentiable and
ρ′ and φ(x) = ρ′(x)/x should be both continuous and bounded, where we
assume that φ(0) := limx→0 ρ

′(x)/x exists and is finite. This last condition
is not satisfied by the standard least squares loss function ρ(x) = x2 (ρ′ is
not bounded). Details about properties of functional M-estimators, such as
their consistency and robustness by means of their breakdown point and their
influence function can be found in Sinova et al. (2018).

Sinova et al. (2018) also analyzed the common families of loss functions.
We follow the ideas of Sinova et al. (2018) and the Tukey biweight or bisquare
family of loss function (Beaton and Tukey (1974)) with tuning parameter
c is considered, since this loss function copes with extreme outliers well.
Therefore, RSS in equations 1, 2 and 3 are replaced by

∑n
i=1 ρc(||ri||), where

‖ · ‖ denotes the Euclidean norm for vectors, the L2-norm for univariate
functions and corresponding norm for P -variate functions, and ρc(||ri||) is
given by

ρc(||ri||) =

{
c2/6 · (1− (1− ||ri||2/c2)3) if 0 ≤ ||ri|| ≤ c
c2/6 if c < ||ri||

(4)
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For the tuning parameter c, we follow Cleveland (1979), as did Eugster
and Leisch (2011), and c = 6me with me being the median of the residual
norms unequal to zero, although other alternatives are analyzed in the simu-
lation study. From the computational point of view, we only have to replace
RSS with this new objective function in the previous algorithms. It only
depends on the norm of the residuals, so in the functional case, it can be
expressed in terms of the coefficients in the basis and W, and no integration
is needed.

Note that ρc is not scale equivariant, i.e. the results depend heavily on the
units of measurement, which is why in both the real case (Maronna et al.,
2006) and the functional case (Sinova et al., 2018) the tuning parameter
should take into account the distribution of the data (the residuals in our
case), in particular certain percentile of this distribution. Theoretically, the
tuning parameter should be chosen such that the loss function is well adapted
to the data (Sinova et al., 2018), but in practice there is no one gold standard
method for selecting the tuning parameter.

Another possibility would be to use the Huber family of loss functions
(Huber (1964)) that depends on a tuning parameter. For example, this loss
function was used by Chen et al. (2014) and Sun et al. (2017), where the
tuning parameter was manually set and no suggestion was given about its
selection. An important difference between Huber and the bisquare family is
that residuals larger than c contribute the same to the loss in this last family,
which is not the case with the Huber family. For that reason, the bisquare
family can better cope with extreme outliers.

4. Simulation study

4.1. Multivariate data

To compare the performance of our proposal, the same procedures and
data set, known as ozone, examined by Eugster and Leisch (2011) are consid-
ered. The data, which are also used as a demo in the R library archetypes,
consist of 330 observations of 9 standardized variables that are related to
air pollution. We create a corrupted data set by adding a total of 5 out-
liers, as Eugster and Leisch (2011) did. Table 1 shows the percentiles of 3
archetypes (A1, A2 and A3) extracted in four situations: a) original AA with
the original data set before adding the outliers (AAO), this solutions plays
the gold standard reference role; b) original AA with the corrupted data set
(AAC); c) robust AA by Eugster and Leisch (2011) with the corrupted data
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Table 1: Percentiles profiles in four situations for the ozone data set (see text for details).

Situation AAO AAC RAA-EL RAA-ME
Variable A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3
OZONE 12 89 12 3 100 70 12 99 81 3 97 12
500MH 3 92 65 6 100 54 7 99 73 3 99 50
WDSP 96 43 5 63 100 27 43 99 27 78 78 8

HMDTY 56 82 11 19 100 45 20 99 56 45 97 11
STMP 4 93 22 5 100 66 10 99 80 5 98 16

INVHT 100 14 63 99 100 4 70 99 5 99 41 56
PRGRT 92 64 2 36 100 36 34 99 40 79 78 2

INVTMP 1 93 49 5 100 75 9 99 84 3 97 40
VZBLTY 77 15 77 87 100 9 76 99 9 76 38 76

set (RAA-EL); d) our proposal of robust AA with the corrupted data set
(RAA-ME).

At a glance it can be seen that the archetypes returned by our proposal
are the most similar to the original ones. To corroborate it, the Frobenius
norm of the difference between the gold standard reference and the different
alternatives applied to the corrupted data set has been computed with the
following results for each situation: AAC 206.3; RAA-EL 221.3; RAA-ME
64.5. Our proposal provides the solution with the smallest difference with
respect to the gold standard reference, while the robust AA solution by Eug-
ster and Leisch (2011) provides a greater difference than the non-robust AA
solution. For both AAC and RAA-EL one of the archetypes (A2) is built
entirely of a mixture of the added outliers, which is not the case with our
proposal (0.07 is the only β weight for the outliers). Therefore, a more robust
solution is achieved with our proposal.

We have also analyzed the influence that the tuning parameter has on
the results. Instead of c = 6me, we consider the following alternatives: c =
Pj, with j = 25, 50 and 75, representing the 25th, 50th and 75th percentiles
of the residual norms unequal to zero, and the same but multiplied by 6, i.e.
c = 6 Pj. Table 2 shows the Frobenius norm of the difference between the
gold standard reference and RAA-ME computed using the different values of
c. The same results are obtained if we use c = 6P25 and our selection, c =
6P50, but they are worse if c = 6P75 is used; even so the result continues to
be better than that for RAA-EL and similar to AAC. A slight improvement
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Table 2: Frobenius norm of the difference between AAO and RAA-ME for different c.
Multiplicative Percentile
Factor 25th 50th 75th
1 155.37 155.37 63.38
6 64.5 64.5 211.79

is achieved using c = P75, but if we use c = P25 or c = P50, the results are
worse, although better than those obtained by using AAC and RAA-EL. So,
except for one case, c = 6P75, where the results are similar to those without
robustifying, we obtain more robust results for all the c considered.

4.2. Functional data

To check the robustness of our proposal, we now consider a set of n = 100
functions that are generated from the following model, which was analyzed
previously by Febrero et al. (2008), Fraiman and Svarc (2013) and Arribas-
Gil and Romo (2014) for functional outlier detection procedures. n−dcr · ne
are generated from X(t) = 30t(1− t)3/2+ε(t), whereas the remaining dcr · ne
functions are generated from this contamination model: 30t3/2(1− t) + ε(t),
where t ∈ [0, 1] and ε(t) is a Gaussian process with zero mean and covariance
function γ(s, t) = 0.3 exp{− |s− t| /0.3}. The functions are measured at 50
equispaced points between 0 and 1. A total of 100 simulations have been
run with two contamination rates cr = 0.1 and 0.15. Original and robust
ADA have been applied with k = 2 archetypoids. With cr = 0.1, 10% of
the times one outlier belongs to the solution for original ADA, while no
outlier is included as an archetypoid for robust ADA. With cr = 0.15, 78%
of the times one outlier belongs to the solution for original ADA, while this
percentage was only 32% for robust ADA. Therefore, our proposal provides
robust solutions.

Let us analyze the influence that c has on the results. Table 3 shows the
percentage of times one outlier belongs to the robust ADA solution for differ-
ent c values. It seems that, for these data, a multiplicative factor of 1 gives
more robust results than if we used a multiplicative factor of 6. Nevertheless,
even with a multiplicative factor of 6 and for all the percentiles considered,
the results are more robust than those obtained using the original ADA.

Let us visually compare the solutions obtained for one of the simulation
with cr = 0.1, i.e. with 10 outliers, when an outlier is selected as an archety-
poid by the original ADA algorithm. Remember that no outlier is selected
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Table 3: Percentage of times one outlier belongs to the robust ADA solution for different
c and cr.

cr = 0.1 cr = 0.15
Multiplicative Percentile Percentile
Factor 25th 50th 75th 25th 50th 75th
1 0 0 0 0 1 2
6 0 0 2 8 32 52

as an archetypoid with our robust proposal. In Figure 2, we compare those
solutions with the solutions obtained by PCA and robust PCA, as developed
by Hubert et al. (2005) and Engelen et al. (2016) and implemented in the
function robpca from the R package rospca (Reynkens, 2018). PC 1 is nearly
zero in the first half of the interval, but 0.2 in the second half of the interval.
This result is highly influenced by the outliers. The two archetypoids with
the original ADA return a similar base as with PCA. However, the robust
versions of PCA and ADA return results that are similar to each other, but
different from their respective non-robust versions. In both cases, the robust
version returns solutions that are like a band (López-Pintado and Romo,
2009) of the non-contaminated data. The robust PC 1 is nearly constant
(-0.15) along the entire interval. Depending on the multiple considered the
band covering the data is more or less wide.

The previous comparison is qualitative. To make a quantitative compar-
ison we can take into account that outliers can be detected by their large
deviation from the robust fit, as obtained with the function robpca. For the
ADA methodology, we propose to compute the robust archetypoids with c
= P50 because it is conservative and ensures a more robust solution without
outliers as archetypoids. Then, we compute ||ri|| and a box plot is applied to
this distribution to detect the outliers. We call this methodology RADAB.
Furthermore, we also consider the method by Hyndman and Ullah (2007)
(ISFE), who use integrated square forecast errors and robust principal com-
ponent analysis to detect outliers, with the function foutliers and the option
HUoutliers from the R package rainbow (Shang and Hyndman, 2016). Ta-
ble 4 shows the results (True Positive Rate, TPR, False Positive Rate, FPR,
and Matthews correlation coefficient, MCC) for different cr values. robpca
has the highest TPR, but at the expense of having the highest FPR and the
lowest MCC. With no outlier (cr =0), ISFE has the lowest FPR, but FPR is
smaller for RADAB with cr = 0.1 and cr = 0.15. On the other hand, RADAB
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Figure 2: Simulated model with 10 outliers. Data are shown in gray and outliers in black.
(a) Effect of adding and subtracting a multiple of PC 1 to the mean curve. (b) Effect of
adding and subtracting two different multiples of robust PC 1 to the center curve (the
multiple is 2 for blue functions and 5 for red and purple functions). (c) Archetypoids with
the original ADA algorithm. (d) Archetypoids with the proposed robust ADA algorithm.
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Table 4: Mean and standard deviation, in brackets, of TPR (percentage), FPR (percent-
age) and MCC for different cr.

Method cr = 0 cr = 0.05 cr = 0.1 cr = 0.15
FPR TPR FPR MCC TPR FPR MCC TPR FPR MCC

robpca 10.75 (2.94) 100 (0) 8.89 (2.69) 0.59 (0.06) 100 (0) 7.69 (2.36) 0.74 (0.06) 100 (0) 5.94 (2.08) 0.84 (0.05)
RADAB 4.82 (2.14) 99.40 (4.45) 3.00 (1.98) 0.80 (0.10) 99.0 (7.18) 1.58 (1.66) 0.93 (0.09) 97.93 (10.58) 0.52 (0.89) 0.98 (0.03)
ISFE 2.99 (2.0) 86.00 (29.75) 2.94 (1.84) 0.70 (0.26) 84.90 (30.99) 2.71 (1.77) 0.78 (0.26) 77.13 (33.10) 2.41 (1.85) 0.75 (0.29)

reports excellent results with TPR, with nearly 100% for TPR, which is not
the case with ISFE. In fact, the maximum for MCC is achieved with RADAB
in all the cases.

5. Application

When dealing with time series, the theoretical complexity of many of
the statistical methods available for analysis leads to periodic summaries of
the data series being commonly used in practice. Furthermore, many of the
techniques, such as the classic Box-Jenkins theory (Box and Jenkins (1976)),
involve verifying a set of quite restrictive hypotheses, such as stationarity,
equally-spaced observations or belonging to a specific kind of well-known
processes. What makes our proposal attractive is not only the lack of these
restrictive hypotheses (it could also be applied to sparsely measured time
series), but also the data speak for themselves and the results can be inter-
preted easily by non-specialists. It also allows them to be visualized, which is
an important task (Peng (2008)). To illustrate these claims, robust bivariate
FADA is applied to the company stock prices as detailed below.

5.1. Data

We consider a data set from QuantQuote (2017), which is composed
of a collection of daily resolution data with the typical open, high, low,
close, volume (OHLCV) structure. This collection runs from 01/01/1998 to
07/31/2013 for 500 currently active symbols in the S&P 500. In addition,
the aggregate S&P 500 index OHLCV daily tick data (Yahoo (2017)) have
been added to the data set. The length of this time series has been selected
so that its range coincides with that of the QuantQuote disaggregated se-
ries. We have also collected information from ALPS Portfolio Solutions
Distributor, Inc. (2017), which classifies stocks on the S&P 500 index within
ten major sectors, namely: Consumer Discretionary (CD), Consumer Sta-
ples (CS), Energy (E), Financials (F), Health Care (HC), Industrials (I),
Materials (M), Real Estate (RE), Technology (T), and Utilities (U).
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We are interested in extracting financially relevant information. With
regard to investments, and more specifically to portfolio theory, it is widely
accepted that the two key variables are risk and profitability (Markowitz
(1952)). On the one hand, we have chosen as a measure of profitability in
a time t the aggregate returns over a period of length N, rN . So, for each

price series, si, i = 1, ..., 501 rN
si(t) =

X
si
t −X

si
t−N

X
si
t−N

where Xsi
t is the value of the

stock i at the time t. In our case, we have chosen N = 250, approximately
the number of days that stock markets remain open in a year. On the other
hand, we have chosen as a measure of volatility the beta or β coefficients,
which are widely used in portfolio theory. This is defined for a particular

stock si in a time t as βsiN (t) = Cov(rN
si (t),rN

index(t))
V ar(rNindex(t))

where rN
si(t) stands for

the aggregated returns of si in time t over the last N days and rN
index(t)

are the returns of the aggregated S&P 500 index in the same period. To be
consistent, we perform the calculations with a time frame of 250 days.

Although FDA can handle missing data well, as explained previously, our
sample presents a different problem: some stocks do not exist throughout
the entire time series. This is not because we have missing data, but because
the companies were founded or were first listed on the stock exchange after
01/01/1998, i.e. the domains of the functions are different. Here we propose
an alternative to deal with this problem, trying to maximize the size of
our sample and minimize the stocks that must be discarded by taking into
account observations since 2000-01-01 and dropping the stocks with more
than 20% missing values. In this way, only four companies from 500 are left
out.

The following step is to transform discrete data to functional data. The
cubic B-spline basis with equally spaced knots has been considered because
the series are not periodic. As regards the number of bases m, as suggested
by Ramsay and Silverman (2005), we computed an unbiased estimate of
the residual variance using 4 to 22 bases and selected m = 13, which is the
number of bases that makes decreasing the residual variance substantially. In
summary, for each stock si, both variables, return and beta coefficient in a 250
day time frame, could be expressed as the functions: rsi250(t) =

∑13
h=1 a

si
h φh(t)

and βsi250(t) =
∑13

h=1 b
si
h φh(t) where asi stands for the vector of coefficients on

the basis functions for r250(t) corresponding to the particular stock si and, in
the same way, bsi stands for the vector of coefficients for β250(t) corresponding
to the particular stock si, and φh are the B-splines basis functions. Therefore,
after smoothing, the original data set of dimensions 496×3422×2 is reduced
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Table 5: Archetypoids for different k values. We use the same symbols for company names
as ALPS Portfolio Solutions Distributor, Inc. (2017). The abbreviation of the economic
sector to which each company belongs appears in parentheses.
k A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
3 ALTR (T) LNC (F) WEC (U)
4 ALTR (T) LNC (F) NUE (M) GIS (CS)
5 ALTR (T) HIG (F) NUE (M) GIS (CS) KIM (RE)
6 BRCM (T) IPG (CD) NUE (M) GIS (CS) KIM (RE) DNR (U)
7 AKAM (T) C (F) WMT (CS) HRL (CS) BXP (RE) TER (T) SWN (E)
8 AKAM (T) RF (F) NUE (M) GIS (CS) EQR (RE) XLNX (T) NBR (E) CVC (CD)
9 AKAM (T) MS (F) X (M) SO (U) AIV (RE) XLNX (T) SWN (E) IPG (CD) BRKB (F)
10 AKAM (T) MS (F) ATI (M) FLIR (T) KIM (RE) XLNX (T) EOG (E) GCI (CD) CMCSA (CD) GIS (CS)

to 496 × 13 × 2. As both functions are measured in non-compatible units,
each functional variable is standardized before analysis by standardizing the
coefficients in the basis as explained by Epifanio (2016). This data set was
analyzed in a non-robust way by Moliner and Epifanio (2018), using the
Fourier basis.

5.2. Robust bivariate FADA

Table 5 shows the companies obtained as archetypoids for different k
values. When k increases, the number of sectors represented in the set of
archetypoids increases too. Since archetypoids are not nested, archetypoids
may not coincide at all when the k value varies. However, we find a nested
structure in the order in which sectors appear, and in fact, some companies
remain when k increases, such as AKAM or XLNX.

In the interests of brevity and as an illustrative example we analyze the
results of k = 4, which is the value selected by the elbow criterion. We include
a brief description of the data-driven selected companies based on the infor-
mation in ALPS Portfolio Solutions Distributor, Inc. (2017): Altair Engi-
neering Inc. (ALTR), together with its subsidiaries, provides enterprise-class
engineering software worldwide; Lincoln National Corp.(LNC) is a holding
company. Through subsidiary companies, the company operates multiple in-
surance and investment management businesses; Nucor Corporation (NUE)
manufactures and sells steel and steel products in the United States and in-
ternationally; General Mills, Inc. (GIS) is a leading global food company. Its
brands include Cheerios, Annie’s, Yoplait, Nature Valley, Fiber One, Haagen-
Dazs, Betty Crocker, Pillsbury, Old El Paso, Wanchai Ferry, Yoki and others.

Figure 3 shows the functions of each variable for the 4 archetypoids. It
can be seen that GIS is a company that, in comparison with the rest of the
archetypoids, presents low and constant values for both variables. Looking at
ALTR, it presents the highest returns and volatilities at the beginning of the
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Figure 3: r250 and β250 functions of the 4 archetypoids.

time series probably as a result of the .com bubble. LNC presents the typi-
cal profile of a financial company, with moderate profitability and volatility
during the first three quarters of the time series. Once the crisis broke out
in 2007, volatility shot up to unprecedented levels while profitability plum-
meted. Finally, NUE is characterized by having bell-shaped functions, that
is, with relatively low values at the extremes of the temporal domain and
higher values at the center.

What makes this technique very interesting is that the companies are
expressed as mixtures of those extreme profiles through the αij values. For
a visual overview of the S&P 500 stocks, we propose the following procedure
that provides a data-driven taxonomy of the S&P 500 stocks. The idea
is to group together companies that share similar αij profiles. A simple
method to do this is to establish a threshold U , so that if the weight of an
archetypoid for a given individual is greater than U , we will say that this
subject is in the cluster generated by this archetypoid. If we repeat this
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process for each archetypoid, we will generate 4 “pure” clusters of subjects,
i.e., clusters of subjects that are represented mostly by a single archetypoid.
To take this a little further, this process is repeated with combinations of
two archetypoids. Thus, we will group in the same cluster the individuals
whose sum of α weights for two concrete archetypoids is greater than U , thus
generating

(
4
2

)
= 6 additional clusters. In this case, it might happen that for

a given subject, there is more than one combination of archetypoids whose
sum exceeds U . So as not to complicate the graphic representation, we will
classify these subjects generically as mixtures, even though these mixtures
will be composed of different sets of archetypoids.Note that we do not carry
out a clustering method, but we form clusters according to the alpha values.

Figure 4 condenses all the information extracted by means of a network
that is built through an adjacency matrix that gathers the cluster informa-
tion. The smaller U is, the larger the number of companies that belong to
any cluster, and vice versa. We have chosen a value of U = 0.8, which is
high but not so much, i.e. U = 0.8 is a breakeven between having a consider-
able number of companies, but at the same time not too many to be able to
read the graphic representation concisely. Archetypoids are highlighted with
a gray square, the lines and color codes allow us to differentiate the struc-
ture of the clusters, and different sectors are represented through different
geometrical shapes.

Starting with the pure clusters we see that NUE generates a small hetero-
geneous group with 3 other companies. GIS is the archetypoid that generates
the largest cluster on its own. Most of the companies in this cluster belong
to the C. Staples sector, although we also find some from the Utilities sector.
LNC generates a small cluster with seven other companies. Five of them,
Bank of America Corp (BAC) and Hartgord Financial Services Group INC.
(HIG), American International Group Inc (AIG), Fifth Third Bancorp (FITB
) and XL Group Ltd (XL) belong to the same sector and have similar profiles.
The other two are Gannett Co. Inc. (GCI) related to the publishing industry
and Host Hotels and Resorts Inc (HST), a real estate investment trust. For
its part, ALTR generates a larger cluster in which 10 other companies are
included. Most of these companies belong to the Technology sector.

Regarding mixed clusters, we will point out some general characteristics,
since detailing all the relationships shown in Figure 4 would be too extensive.
NUE and GIS form the largest cluster for this level of U . Focusing on this,
the NUE-GIS cluster has just a few companies from the C. Staples sector,
since these companies are mainly classified in the cluster generated by GIS
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alone. Many of the companies classified in the NUE-GIS cluster belong to
the Utilities, Energy and Health sectors. It could be said that the common
feature of the companies in this cluster is that they are not very sensitive to
the economic cycle.

The following most important clusters according to their size are LNC-
GIS and ALTR-GIS. The LNC-GIS cluster is certainly heterogeneous in
terms of the sectors that comprise it. However, it can be seen that the
majority of Financial and Real Estate companies are part of this group.

The third largest cluster is formed by ALTR-GIS and is quite homoge-
neous. The majority of the companies in this group belong to the technology
sector. If we look at the other two clusters in which ALTR intervenes we
see that this feature is repeated. Both ALTR-NUE and ALTR-LNC have a
large presence of technology companies and, what is more, we do not find
technological companies outside these groups.

The last cluster is formed by LNC-NUE. It is formed by 14 companies
and the sector that appears the most times is the C. Discretionary sector.

Now we analyze the composition of the sectors managed by market ana-
lysts to evaluate the performance of the results qualitatively. Figure 5 shows
the normalized relative weight of archetypoids in each of the ten sectors. It
can be seen that each archetypoid represents the component with the great-
est weight of the sector to which it belongs. Thus, LNC accounts for more
than 45% of the financial sector, GIS represents almost 80% of the weight
of the C. Staples sector and in the technology sector, the weight of ALTR
exceeds the weight of the other three archetypoids.

But it is not only interesting to analyze the weights of the most relevant
components. The composition of the mixtures also gives clues about the
similarities and dependencies between the different sectors. For example, if
we compare Consumer Discretionary sector with Consumer Staples sector, we
see that the weights keep a proportion that we would expect. For example,
the companies that manufacture durable goods, which are included in the
Consumer Discretionary sector, have a direct relationship with those that
provide the investment to finance these purchases represented by the LNC
archetypoid, which is why that archetypoid has higher weight in this sector.
On the other hand, companies that provide basic or non-durable goods, which
belong to the Consumer Staples sector, have a minor relationship with the
financial sector. It may be obvious, but it is worth emphasizing that, by
definition, non-durable goods are those that are purchased without resorting
to financing. Instead, this sector has a great similarity with the Utilities
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sector (distributors of electricity, water, gas, etc.). This makes economic
sense, since basic goods and services distributed by companies in the Utilities
sector have similar demand curves. In other words, in the expansive cycles
of the economy, consumers decide to increase their investments in goods that
require financing such as a car, a washing machine or a computer. However,
households’ spending on electricity, water, gas or telecommunications will
remain relatively constant, as will spending on basic products such as bread,
milk, oil, soap and toothpaste.

Regarding the composition of the energy sector (extractors of oil, gas
etc), the small weight of the technological archetypoid is noteworthy. This
may point to the weak relationship between the technologies used in each
sector. On the one hand, the Energy sector carries out activities where heavy
machinery and mechanical operations in general (drilling, mining, extraction
etc.) are fundamental. This is completely opposite to the dynamics that
prevail in the technological universe, where the main elements are computer
applications, digital technology and patents.

The Industrials and Materials sectors have similar profiles, which shows
the strong interrelation between them. Regarding the Real Estate sector, we
see how the LNC archetypoid, belonging to the financial companies sector,
has the greatest weight outside its own sector. The relationship between
these two sectors is also evident. Finally, we can say that the Utilities and
C. Staples sectors are in some way the purest, in the sense that the weight
of the dominant archetypoid of this sector is greater than the weight of the
other three archetypoids all together.

6. Conclusion

This paper introduces robust archetypal analysis (AA and ADA) for mul-
tivariate data and functional data, both for univariate and multivariate func-
tions. A simulation study has demonstrated the good performance of our
proposal.

Furthermore, the application to the time series of stock quotes in the
S&P 500 from 2000 to 2013 has illustrated the potential of these unsuper-
vised techniques as an alternative to the commonly used clustering of time
series, which are usually described by complex models. Understanding the
results of these or other statistical learning models is not always an easy task.
Additionally, if these results have to be explained to a public with little or no
mathematical knowledge, things can be even worse. In this regard, ADA is
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particularly suitable since its results can be interpreted in a very simple way
by any non-expert person. For instance, anyone with minimal knowledge of
investments understands what we mean if we say that a certain stock behaves
like a mixture of Nucor Corporation and Lincoln National stocks. Another
advantage of the applied model is that the functional version of archetypoid
analysis (FADA) allows us to condense vectors of observations of any length
into a few coefficients, which provides an improvement in computational effi-
ciency and makes this method highly recommended when working with long
time series.

With regard to the financial conclusions, in the first place, it has been seen
that when we increase the number of chosen archetypoids, the Technology
sector appears repeatedly while other sectors do not appear. Therefore, there
are companies within this sector that exhibit very different behaviors, such
as XLNX, FLIR and AKAM.

Furthermore, we have proposed a visual representation of the companies
through the definition of clusters based on the mixtures obtained. Finally,
we have analyzed the sectors according to the normalized relative weight of
archetypoids that compose each sector and we have seen that some sectors
present certain similarities. It is worth mentioning that sectors like Con-
sumer Discretionary, Materials or Industrials offer better opportunities for
diversifying risks, since their composition is more heterogeneous. On the
other hand, sectors such as Utilities or Consumer Staples present more ho-
mogeneous structures, where the weight of the dominant archetypoids of the
sector can exceed 70%.

As regards future work, from the mathematical point of view, an open
question, both in the real and functional case, is the selection of the tuning
parameter of the loss functions. The research line of using robust archetypal
analysis for outlier detection is another open path. Another open problem
is the extension of archetypal analysis to mixed data (functional and vector
parts). An appropriate definition of the inner product is needed since func-
tional and vector parts will not be measured in directly compatible units.
Nevertheless, applications, even beyond econometrics, are the main direction
of future work. Even so, the application of these models to the world of
finance is still a relatively unexplored field. The application of models with
functional data allows us to take into account variables collected with differ-
ent frequencies, such as daily quotes, quarterly balances or annual results,
which makes these models especially suitable for financial time series.

Taking this into account, a future development may be to extend the
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implementation of the bivariate model to a P -variable model that makes it
possible to work with a large amount of data from each company. From a
financial point of view, it may be possible to develop investment strategies
using the results shown here to improve performance and reduce the risk of
investment decisions. In fact, an interesting open problem to study is whether
the estimated archetypoids may be useful for constructing small portfolios of
stocks or a variety of small (i.e., k stock) portfolios.
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