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HIGHLIGHTS 

 

 R454C and R455A have similar properties to R404A and low global warming potential. 

 The experimental operation and performance of these mixtures and R404A are 

compared. 

 The average alternatives cooling capacity is comparable to that of R404A. 

 The R454C and R455A energy performance is higher than that of R404A. 

 An internal heat exchanger does not provide significant benefits to R454C and R455A. 
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Abstract 

 

This article presents an analysis of the feasibility of R454C and R455A, two new low global 

warming potential (GWP of 148) refrigerants, in vapor compression refrigeration systems as 

alternatives to R404A for warm countries. R454C and R455A can be the most viable low GWP 

options to perform a direct replacement of R404A because of the similar characteristics. They 

only present meaningful differences in flammability, critical temperature, temperature glide and 

vapor density. The analysis is based on an experimental comparison of R404A with R454C and 

R455A, using a fully instrumented experimental setup equipped with Internal Heat Exchanger 

(IHX) at condensation temperatures that represent operating conditions of warm countries. The 

experimental results show that cooling capacity of the replacements is slightly lower than 

R404A, being the Coefficient of Performance (COP) of the new mixtures 10-15% higher than 

that of R404A, especially at higher condensation temperatures. The results also show that the 

adoption of an IHX is not recommended with the alternatives due to the discharge temperature 

increase and the low energy performance benefit. 
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greenhouse effect; refrigeration; vapor compression system; HFO/HFC mixtures; energetic 

performance; internal heat exchanger 

 

Nomenclature 

COP coefficient of performance, - 

cp specific isobaric heat capacity, kJ kg
−1
 K

−1
 

DP differential pressure, kPa 

 ̇  power consumption in the motor-compressor set, kW 

 ̇    refrigerant mass flow rate, kg s
-1
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PR compressor pressure ratio, - 

Q heat transfer, kW 

SCD subcooling degree, K 

SHD superheating degree, K 

T temperature, °C 

ɛIHX heat exchanger effectiveness, % 

η compressor efficiency, - 

 

Subscripts 

Glo global 

in inlet of the component 

k condensation or condenser 

L liquid phase 

o evaporation or evaporator 

out outlet of the component 

V vapor phase 

vol volumetric 

 

Abbreviatures 

IHX internal heat exchanger 

GHG greenhouse gas 

GWP global warming potential, measured in kg of CO2-eq. 

HFC hydrofluorocarbon 

HFO hydrofluoroolefin 

IHX internal heat exchanger 

ODP ozone depletion potential 

ON internal heat exchanger activated 

PID proportional-integrative-derivative 

sat liq saturated liquid 

sat vap saturated vapor 

TXV thermostatic expansion valve 

VFC variable frequency controller 

 

1. Introduction 

 

The average Earth temperature will be increased by 5 °C by 2100 if the emission of Greenhouse 

Gasses (GHGs) follows such market predictions. This phenomenon would produce irreversible 

and negative effects on global climate, as multiple natural disasters [1]. Given the contribution 

of vapor compression refrigeration systems to the global warming [2], the European Union has 

approved the EU Regulation No 517/2014 and established controls and regulations for 

HydroFluoroCarbons (HFCs) management [3]. 
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Commercial refrigeration [4] is one of the sectors pointed out by this regulation because of the 

high accidental leakage ratio, the high amount of refrigerant required and the high global 

warming potential (GWP) of the refrigerant most commonly used, R404A [5,6]. R404A has 

good thermophysical and transport properties to operate at low and medium evaporating 

temperatures, but its GWP is 3922 (3922 times the GWP of CO2 based on a 100-year time 

horizon) [8]. Due to the recently imposed restrictions, the most relevant chemical companies are 

developing alternatives to R404A [8]. These alternatives should be chosen considering different 

factors such as low environmental degradation, safety, and adaptation to required operating 

temperatures [9]. 

 

Furthermore, Kigali Amendment to the Montreal Protocol established that HFC consumption 

should be drastically reduced during the coming decades to avoid 0.5 °C increase in the global 

mean temperature by 2100. The parties also recognized that warmest countries require special 

measures because the higher ambient temperatures increase the electricity consumption of 

refrigeration systems [10,11]. Beshr et al. [12] demonstrated that the required reduction of GHG 

emissions in refrigeration could only be reached by using very low GWP fluids. 

 

The low GWP alternatives to HFCs in vapor compression systems can be categorized into 

natural and synthetic refrigerants. Natural refrigerants are the hydrocarbons (i.e. R290, R600a or 

mixtures) [13], ammonia (R717), CO2 (R744) [14] and water. These refrigerants require the 

highest initial investment cost and presents higher flammability, toxicity or pressure. On the 

other hand, synthetic refrigerants include pure fluids, but also mixtures with lower GWP than 

commonly used HFCs [15]. Three subgroups can be differenced in lower GWP synthetic 

alternatives to R404A: HFC mixtures, A1 HFO/HFC mixtures, and A2L HFO/HFC mixtures. 

 

HFC mixtures are mainly composed by R407 series refrigerants and R410A. Bortolini et al. [16] 

recommended R410A for mid-temperature systems because of the higher Coefficient Of 

Performance (COP). For low-temperature systems, R407F resulted in comparable COP to 

R404A and increased the cooling capacity. For a set point temperature of 0 °C and a leakage 

rate of 10%, Cascini et al. [17] also found that R410A results in the best environmental 

performance but above this leakage rate, and depending on the set point temperature, R407F is 

the most appropriate option. In current marine refrigeration systems for passenger ships, Pigani 

et al. [18] concluded that R407F substitution shows an excellent compromise of efficiency, 

volumetric cooling capacity, GHG emissions, and safety. Llopis et al. [19] found that the use of 

R407H in R404A low-temperature systems gives an increase in evaporator performance, 

reduction of the compressor and overall system power consumption and acceptable discharge 

temperature. 

 

The HFC/HFO mixtures include HFCs seen in other mixtures, like R134a or R32, and the 

hydrofluoroolefins (HFOs) R1234yf and R1234ze. The final flammability classification and 

GWP value depend on the percentage of higher GWP A1 refrigerants and lower GWP A2L 

refrigerants. Wang and Amrane [20] have identified several alternatives with lower GWP that 
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can be a good alternative for drop-in and light retrofit replacement of HFCs. Mota-Babiloni et 

al. [21] proposed six HFO and HFC mixtures that presented greater performance than R404A. 

A1 HFC/HFO mixtures are those considered “no flame propagation” and “lower toxicity” 

refrigerants [22]. Three A1 HFC/HFO mixtures have been studied for stationary refrigeration 

systems: R448A and R449A, and R452A. Mota-Babiloni et al. [23], used R448A in a medium 

capacity refrigeration test bench and presented lower cooling capacity than R404A but higher 

COP. In measurements from an indirect supermarket refrigeration system [24], R449A also 

showed lower cooling capacity and comparable COP to R404A. However, Sethi et al. [25] 

showed that in a walk-in freezer/cooler, R448A matches the capacity with 4 to 8% higher COP 

compared to R404A. Vaitkus and Dagilis [26] obtained poor results for R448A compared to 

R507A (refrigerant with thermodynamic behavior comparable to R404A) in a eutectic 

refrigerating system. R452A, in transport refrigeration, achieved an emission reduction of 11 

and 12% compared to R404A for medium and low evaporation temperatures, respectively [27]. 

Kedzierski and Kang [28], in a micro-fin tube, obtained an 8% larger convective boiling heat 

transfer coefficient for R449A than R448A (but between 26 and 48% lesser than R404A). 

Righetti et al. [29] reviewed the state of the art of the two-phase heat transfer (boiling and 

condensation). Despite the promising energetic results, A1 HFC/HFO mixtures are only 

acceptable at the medium-term because the GWP value (above 1250) is not low enough to stop 

climate change. 

 

A2L HFC/HFO mixtures are those considered “lower flammability refrigerants with a 

maximum burning velocity of ≤ 10 cm s
-1
” and “lower toxicity” refrigerants [22] that results in 

GWP values below 150. They could be used in hermetically sealed equipment, walk-in 

coolers/freezers, secondary systems or condensing units, among others. Recently, the new 

mixtures R454C, R455A, R457A, and R459B have been identified as low GWP candidates to 

replace R404A [30]. Unlike A1 HFC and HFC/HFO mixture alternatives to R404A, A2L 

HFC/HFO mixtures have not been yet widely studied, and only a few reports are available with 

results published in limited conditions, neither of them in scientific papers. The Air-

Conditioning, Heating, and Refrigeration Institute published dew point-based results of 

compressor calorimeter tests of R454C [31] and R455A [32] in R404A reciprocating 

compressors. Sethi et al. [25] used R455A in a R404A selfcontained freezer, and the 24-h 

energy consumption was 6% lower with the alternative. Minor et al. [33] reported similar 

energy consumption between R404A and R454C in a reach-in freezer. 

 

Recently developed low GWP synthetic mixtures alternatives to R404A could offer low 

electricity consumption for warm climates, but the knowledge about their behavior is still 

limited [34]. Therefore, this paper presents an experimental analysis of the operation of R454C 

and R455A, two recently developed GWP<150 mixtures to replace R404A, in commercial 

refrigeration systems. Due to the special necessities of warm climates, the operating conditions 

have been selected according to their ambient conditions for food freezing and conservation. 

The analysis is based on different aspects and using experimental results to provide reliable data 
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about the operation of these low GWP alternatives. The influence of the Internal Heat 

Exchanger (IHX) on the system is also studied. 

 

2. Characteristics of the proposed A2L HFC/HFO mixtures 

 

The low GWP refrigerants considered in this paper to replace R404A are the mixtures R454C 

and R455A. Table 1 shows the main information of these fluids that it is used to compare some 

of their characteristics used to predict the possible behavior of them in refrigeration systems. 

The thermodynamic and transport properties have been calculated using REFPROP software 

[35]. 

 

Table 1. Properties of A2L HFO/HFC mixtures and R404A 

Refrigerant R404A R454C R455A 

Composition, mass percentage 

R125: 44% 

R143a: 52% 

R134a: 4% 

R32: 21.5% 

R1234yf: 78.5% 

R744: 3.0% 

R32: 21.5% 

R1234yf: 75.5% 

Developer Various Chemours Honeywell 

Safety classification [22] A1 A2L A2L 

Critical temperature, °C 72.04 88.47 87.53 

Critical pressure, kPa 3728.8 4553.4 4821.8 

Normal boiling point, °C -46.22 -45.56 -52.02 

Temperature glide a, K 0.75 7.80 12.85 

Molecular weight, g mol
-1

 97.6 87.5 90.8 

Latent heat of vaporization a, kJ 

kg
-1

 

201.1 227.5 239.6 

Liquid density b, kg m
-3

 1150.0 1136.3 1128.8 

Vapor density b, kg m
-3

 30.32 20.43 20.98 

Liquid cp
 b, kJ kg

−1
 K

−1
 1.388 1.410 1.433 

Vapor cp
 b, kJ kg

−1
 K

−1
 1.001 0.975 0.975 

Liquid thermal conductivity b, 

mW m
−1
 K

−1
 

73.11 86.16 87.99 

Vapor thermal conductivity b, 

mW m
−1
 K

−1
 

12.86 11.90 12.05 

Liquid viscosity b, µPa s 179.3 174.4 170.6 

Vapor viscosity b, µPa s 11.01 10.92 11.07 

ODP 0 0 0 

AR4 GWP 3922 148 148 
a
 at 100 kPa 

b
 at 0°C 

 

2.1. Composition 

 

Both R404A replacements, R454C and R455A, show very similar composition, being the base 

of the composition the HFO R1234yf (A2L and GWP of 0.4) in a proportion of 75.5 and 78.5%, 

used to maintain the GWP below the threshold of 150. Then, the new mixtures use 21.5% of the 

HFC R32 (A2L and GWP of 675). In the case of R455A, the mixture is completed using a small 

percentage of the natural refrigerant R744 (A1 and GWP of 1). 
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2.2. Security 

 

ANSI/ASHRAE 34 [23] classifies R454C and R455A in the 2L flammability group since the 

main components of these mixtures, R1234yf and R32, are also included in this group. The 

small percentage of R744 in R455A, an A1 refrigerant, does not affect its final security 

classification. Therefore, these fluids exhibit flame propagation when tested at 60 °C and 101.3 

kPa, have a maximum burning velocity below 10 cm s
-1

 when tested at 23 °C and 101.3 kPa, the 

lower flammability limit is greater than 0.10 kg m
-3

 (3.5% in air by volume), and the heat of 

combustion of less than 19 kJ kg
-1

. Additional information about the component flammability 

can be found in [36]. In the event of leakage, the flammability of the component R32 has been 

considered very low under the general operating conditions of wall-mounted air conditioners 

[37]. Additionally, R455A possesses a flammability range of 1.1% at 23 °C, that can be 

considered narrow compared to pure HFOs or other HFO/HFC mixtures [38]. In the same way, 

all the replacement refrigerants are included in the toxicity group A “lower toxicity”. Therefore, 

their toxicity has not been identified at concentrations less than or equal to 400 ppm by volume. 

 

2.3. Operation 

 

The critical temperature of R404A is approximately 16 °C lower than the alternatives. Thus, a 

better performance of the system with the R404A alternatives at warm ambient temperatures is 

expected [39]. Besides, attending to the pressure-temperature relationship (Figure 1), it is seen 

that the operating pressures of the alternatives are bellow R404A, so the same security devices 

and adjustments can also be used for these new refrigerants when operating at similar 

temperature ranges. 
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Figure 1. Pressure-temperature diagram for R404A and the two low GWP alternatives 

 

The normal boiling point of the alternatives is below the lower temperature expected in low 

temperature refrigeration applications (food freezing), -52 °C for R455A, and -45.6 °C for 

R454C. Therefore, the proposed refrigerants can be used at similar R404A evaporation 

temperatures for commercial refrigeration systems. 

 

It was common to give priority to azeotropic or near-azeotropic refrigerants as R404A (R507A) 

in commercial refrigeration systems. However, in the fourth generation of refrigerants, this 

requisite is not going to be very strict, and the non-azeotropic behavior is tolerable (7.8 and 12.9 

K of temperature glide for R454C and R455A, respectively), trying to have a benefit from this 

behavior in heat exchangers. The pinch point analysis in the adaptation of alternative 

refrigerants to the existing systems is going to become very relevant. Besides, the glide can 

introduce a mass transfer resistance that reduces the heat transfer coefficients in the evaporator 

and the condenser [27, 40, 41]. It produces additional irreversibility due to interactions between 

the components that reduce the thermodynamic effectiveness [42]. 

 

POE type lubricant oils, plastics and elastomers compatibility, water solubility and dielectric 

properties of R454C are comparable to R404A [34]. Karnaz [43] found that R455A is fully 

miscible with POE32 lubricant from 0 to 40% lubricant concentration at temperature 

measurements from 65 to -60 °C. 

 

2.4. Thermodynamic and transport properties 
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The liquid density is slightly lower, and therefore, the amount of refrigerant charge is going to 

be like that of R404A, and it is recommended to perform the initial charge at 85% of the 

previous baseline value in case of retrofit or drop-in substitution. The greatest difference is 

present in vapor density that reduces the mass flow rate and depending on the refrigerating 

effect, could also produce lower cooling capacity and higher time-on of the refrigeration system. 

The alternatives vapor density reduction is around 32% compared to that of R404A. 

 

Besides, the specific heat capacity in the liquid phase is slightly higher, and that property in the 

vapor phase is slightly lower, so a great influence on heat transfer performance and heat 

exchanger design is not expected based on the analysis of these properties. The effects observed 

in the liquid phase and the vapor phase regarding the thermal conductivity property are 

opposite. While that of liquid is between 18 and 20% around higher, that of vapor phase is 

approximately 7% lower. Considering that liquid fluid properties dominate in condensation heat 

transfer; liquid viscosity can compensate the negative effect of glide on alternative refrigerants 

thermal performance. 

 

The difference observed in viscosity between R404A, and the alternative refrigerants cannot be 

considered great enough to influence the heat transfer and pressure losses. The vapor viscosity 

of the alternatives is comparable to that of R404A, and the reduction in liquid viscosity is only 3 

and 5% for R454C and R455A, respectively. 

 

2.5. Environmental effects 

 

All the refrigerants accomplish with the requisite of not being harmful to the ozone layer since 

they do not have chlorine atoms in the molecule. Additionally, the very low GWP values of the 

alternative refrigerants can reduce the direct contribution substantially to the greenhouse effect 

in the case of accidental leakage. The GWP value of the alternative refrigerants is 148 

(approximately 4% of that shown by R404A). 

 

Considering only the GWP value, the environmental benefit could be very clear. However, the 

greenhouse gas liberation of fossil fuels burning for electricity generation must be accounted to 

calculate the total contribution to the greenhouse effect [44]. In the following, the methodology 

followed to obtain the experimental performance of the system using R404A and its alternatives 

is described. The energetic performance of the refrigeration system will help to conclude about 

the feasibility of the substitution of R404A using low GWP alternative refrigerants. 

 

3. Experimental setup 

 

Figure 2 shows the schematic representation of the experimental setup used to study the 

behavior of the refrigerants in vapor compression systems. This scheme contains all the main 

components, sensors and instrumentation; and the most relevant secondary components, 

necessary for a correct operation of the setup. 
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Figure 2. Schematic representation of the experimental setup. 

 

The vapor compression circuit consists of a Bitzer V open type reciprocating compressor (2 

cylinders, 681 cm
3 

and 573±2 rpm at 50Hz), which is driven by a 7.5 kW variable frequency 

drive; a SWEP B25Tx20 plate evaporator (20 plates and heat transfer area of 1.13 m²); a 

COFRICA RS25 shell and tube condenser (two passes and external heat transfer area of 2.87 

m
2
), and a Danfoss TS2 Thermostatic Expansion Valve (TXV). Additionally, a tube-in-tube 

countercurrent IHX can be activated through a set of electronic and manual valves. The main 

components of the circuit and the refrigerant lines are insulated using flexible elastomeric foam. 

 

Besides, two secondary circuits enable the simulation of the heat source (heat removal circuit) 

and the heat sink (heat load circuit): 

 The heat load circuit uses a commercial propyleneglycol/water brine that is heated 

through a set of 16 kW nominal power resistances controlled by a PID module. These 

resistances are in 100 litres insulated tank. The flow of the secondary refrigerant can be 

controlled using a variable frequency pump. The tubes of this circuit are insulated. 

 The heat removal circuit uses water as the secondary fluid that it is cooled using a 

combination of 7.9 kW chiller and variable frequency dry cooler. The flow rate can be 

reduced using a manual balancing valve. 
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K type thermocouples and pressure transducers are located before and after each main 

component of the vapor compression and secondary circuits. Both parameters are used to 

calculate the thermodynamic states of the refrigerant using the latest available version of the 

software REFPROP [34]. The measuring instrumentation also includes a Coriolis mass flow 

meter for the refrigerant, two electromagnetic volumetric flow meters for the secondary circuits, 

a differential pressure transducer at both sides of the IHX, and the motor-compressor power 

consumption measurement from the frequency inverter. Table 2 summarizes the characteristics 

of the measurements. 

 

Table 2. Measured parameters and details of the sensors 

Measured parameters Sensor Maximum 

reading 

uncertainty 

Range 

Temperatures K-type thermocouples ±0.3 K [-40,100] °C 

Pressures Piezoelectric pressure 

transducers 

±7 kPa [0,400] kPa 

Mass flow rate Coriolis mass flow meter ±0.22% [0,0.756] kg s
-1

 

Power input to the 

motor 

Frequency inverter output ±0.45 kW [0,7.5] kW 

Compressor rotation 

speed 

Capacitive sensor ±1% [0-700] rpm 

Pressure drops in the 

IHX 

Differential pressure 

transducers 

±0.01 kPa Liquid [0,60] kPa 

Vapor [0,100] kPa 

 

4. Methodology and experimental tests 

 

The methodology proposed is based on the analysis of cooling capacity, the COP and discharge 

temperature obtained from the experimental tests carried out in the vapor compression test 

bench presented above where the evaporation and condensation temperatures are varied in the 

range of conditions for frozen and chilled food observable in warm countries. This analysis has 

also been extended to the convenience of the adoption of an IHX, evaluating the same energetic 

parameters from experimental tests. 

 

The middle condensation temperatures (Tk), are 32.0, 39.5 and 47.0 °C, and the targeted middle 

evaporation temperatures (To), are –30.0, –21.5 and –13.0 °C. Both operating temperatures were 

calculated considering the temperature glide in heat exchangers. Therefore, the average vapor 

quality is used: (qualities of 0.5 and 0.67 for the condenser and evaporator, respectively), and 

the average of the inlet and outlet pressures. The highest evaporation and lowest condensation 

temperature condition has not been tested due to secondary circuits limitation. 
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The condensation temperature is fixed, and the deviation was always below the thermocouple 

uncertainty. The evaporator superheating degree was adjusted using the TXV screw to be 

approximated to 7.5 K, and the condenser subcooling degree was set at intermediate conditions 

at 2.5 K optimizing the refrigerant charge. Table 3 summarizes the resulting values for the 

operating conditions. Extended information about the operating temperatures calculation is 

available in [22]. 

 

Table 3. Operating conditions summary 

Tk, °C 47 39.5 32 

Fluid To, °C SHD, 

K 

SCD, 

K 

To, °C SHD, 

K 

SCD, 

K 

To, °C SHD, 

K 

SCD, 

K 

R404A -12.9 7.6 2.1 -13.0 7.6 2.0    

-22.5 7.3 2.5 -21.6 7.1 2.2 -21.7 7.7 2.3 

-30.4 7.2 2.7 -30.3 7.9 2.4 -30.3 7.4 2.6 

R454C -12.8 7.4 1.8 -13.1 7.6 1.0    

-21.7 7.4 2.2 -21.8 7.8 2.4 -21.5 7.3 1.6 

-29.8 7.5 3.1 -29.7 7.8 2.5 -29.7 7.3 1.9 

R455A -12.8 7.4 1.7 -14.8 7.3 2.1    

-21.8 7.3 2.4 -21.8 7.7 2.5 -25.3 7.6 2.1 

-30.4 7.7 2.4 -30.4 7.6 3.1 -29.9 7.3 2.5 

 

The tests are carried out in steady-state conditions, recording them for 20 minutes and the 

period between measurements is 0.5 seconds. Then, the most stable 5 minutes period of each 

test is selected to extract its average values. Each condition is repeated three times, and the 

standard deviation of condensation temperature was always below 0.51% and that of the 

evaporation temperature, below 1.04%. 

 

In the evaporator and condenser, the flow rate measurement deviation was within ±5% of the 

specified one. Then, the maximum variation of the secondary fluid temperature at the outlet of 

both heat exchangers was less than 0.3 °C. Besides, the voltage measurements of the electrical 

machines have a tolerance of no more than ± 10%, and the frequency measurements must have 

a tolerance of greater than ±1% [45]. Furthermore, both the evaporation and condensation 

pressures are within a range of ±2.5 kPa and the refrigerant mass flow rate within ±0.0005 kg s
-

1
. 

 

The performance of the vapor compression system using R404A and the two alternatives, 

R454C and R455A, is analyzed in detail through different energetic and operating parameters. 

Then, the influence of the IHX on the different refrigerants is also studied. 

 

5. Experimental results and discussion 

 

5.1. Cooling capacity 
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The experimental cooling capacity is calculated using Equation (1) (the maximum uncertainty 

for the averaged data is ±0.70%, the method for determining this uncertainty propagation is 

described by Taylor and Kuyatt [46]). The refrigerant mass flow rate is directly measured; the 

evaporator outlet enthalpy uses the pressure and temperature outlet evaporator measurements, 

but that at the inlet is based on the measurements at the TXV inlet, assuming isenthalpic 

expansion. 

 

 ̇   ̇   (        )  (1) 

 

Figure 3 presents the experimental cooling capacity of R404A, R454C, and R455A at the 

different tested evaporation and condensation conditions. The cooling capacity of the 

refrigerants is greater at higher evaporation temperatures and lower condensation temperatures 

because the increase of the mass flow rate and the refrigerating effect (this term is calculated as 

the enthalpy difference at the evaporator), considering comparable superheating and subcooling 

degree conditions. The cooling capacity values of the alternative refrigerants are close to those 

of R404A and, following the trend seen in mass flow rate and refrigerating effect, they are 

benefited from higher condensation temperatures. However, at the lower and intermediate 

condensation temperatures, the alternatives show slightly lower cooling capacity results. 

 

Figure 3. Experimental results for the cooling capacity 

 

The mass flow rate (Figure 4) increase is highly dependent on the suction density and hence, 

depends on the evaporation temperature and superheating degree (approximately constant). This 

parameter grows at lower compression ratios (higher evaporation and lower condensation 

temperatures) because of the volumetric efficiency increase (Table 4). The relative average 
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mass flow reduction compared to R404A is 21% and 23% considering R454C and R455A. The 

global efficiency values presented in Table 4 are calculated considering the product of the 

measured mass flow rate and the isentropic compression work divided by the measured electric 

power consumption of the compressor. 

 

Table 4. Experimental pressure ratios and compressor volumetric and global efficiencies 

Tk, °C 47 39.5 32 

Fluid PR, - ηvol, - ηGlo, - PR, - ηvol, - ηGlo, - PR, - ηvol, - ηGlo, - 

R404A 5.46 0.72 0.62 4.61 0.76 0.61    

7.78 0.64 0.63 6.29 0.71 0.64 5.27 0.73 0.62 

10.64 0.53 0.64 8.89 0.62 0.64 7.38 0.68 0.65 

R454C 5.98 0.77 0.65 5.04 0.83 0.67    

8.35 0.71 0.67 7.03 0.77 0.71 5.75 0.80 0.67 

11.65 0.67 0.74 9.73 0.69 0.70 8.06 0.77 0.72 

R455A 5.96 0.74 0.64 5.36 0.75 0.63    

8.39 0.68 0.65 7.02 0.71 0.66 6.68 0.74 0.65 

12.01 0.59 0.68 9.98 0.64 0.67 8.10 0.70 0.69 

 

 

Figure 4. Experimental results for the refrigerant mass flow rate 

 

The variation of condensation temperature, considering similar subcooling degree, affects the 

vapor quality at the evaporator inlet. In the same way, the variation of evaporation temperature, 

considering similar superheating degree, also affects the vapor quality at the evaporator inlet. 

Therefore, the slope of the saturated liquid and vapor lines justifies the greater influence of 

condensation temperature on the refrigerating effect than the mass flow rate, as reported in 
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Figure 5. Then, the specific heat of vaporization determines the difference between refrigerants. 

In this case, the average vapor quality of the alternative refrigerants is greater by 0.9 and 0.11 

(R454C and R455A, respectively) and the relative average refrigerating effect increase 

compared to R404A is 27% and 34% considering R454C and R455A. 

 

 

Figure 5. Experimental results for the refrigerating effect 

 

Considering the comparable cooling capacity results of R404A and the low GWP alternatives 

R454C and R404A, there is no need of compressor substitution to retrofit R404A using the new 

mixtures. In existing installations, the cooling requirements and hence, the compressor time-on 

parameters are not going to be affected by the replacement. 

 

5.2. Coefficient of performance 

 

The COP is the ratio between the heat removed from the ambient in the evaporator and the 

electrical power supplied to the motor-compressor (Equation 2) (the maximum uncertainty for 

the averaged data is ±0.8% [46]). Therefore, in addition to the previous cooling capacity 

analysis, this section also discusses section the power consumption results. 

 

     ̇  ̇⁄  (2) 

 

Figure 6 shows the power consumption results directly measured from the frequency inverter 

connected to the motor. The power consumption augments with the increase of evaporation and 

condensation temperatures. The power consumption of the alternative refrigerants, R454C and 

R455A, is 13% and 8% lower than that measured using R404A. The difference between R404A 
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and the alternatives is evident at higher condensation and evaporation temperatures because of 

the increase of the specific compression work parameter. 

 

 

Figure 6. Experimental results for the power consumption 

 

The specific work in the compressor (compressor enthalpy difference) is presented in Figure 7 

to complete the power consumption analysis. The higher compression ratio of the alternatives 

justifies the higher values for this parameter. Although the values of R454C and R455A are 15 

and 21% higher than that of R404A, the compressor power consumption does not reflect, in 

fact, this effect because of the lower mass flow rate values, presented in section 5.1., and the 

global compressor efficiency (Table 4). 
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Figure 7. Experimental results for the compressor specific work 

 

Finally, Figure 8 represents the experimental COP values. The COP follows the same trend as 

the cooling capacity parameter, so COP values are greater at lower condensation temperatures. 

Better performance values at higher ambient conditions agree with that observed by the two 

drop-in tests (at 21.1 and 32.2 °C ambient temperature) performed by Minor et al. [34] using 

R454C in a commercial freezer. 
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Figure 8. Experimental results for the COP 

 

For all the conditions tested, the energy performance of the alternatives is greater than that of 

R404A, with an increase about 13% in COP values for higher condensation temperatures. 

R454C show the best results for all the operating conditions tested. Therefore, the higher COP 

values of the alternatives can result in energetic, environmental and economic benefits in the 

case of drop-in replacement. 

 

5.3. Discharge temperature 

 

The discharge temperature must be considered in refrigeration vapor compression systems since 

a high value can degrade the oil lubricant used in the compressor and this component can fail. 

Figure 9 shows the compressor discharge temperature directly measured in the discharge line. 

 

 

Figure 9. Experimental results for the discharge temperature 

 

For all the refrigerants, the greatest discharge temperatures observed at higher compression 

ratios. The difference between the alternative refrigerants of R404A is also augmented with the 

increase of this parameter. R455A shows the highest discharge temperatures of all refrigerants 

tested because of the higher compression ratio, being 8.9 K the average difference with R404A. 

Besides, the average difference between R454C and R455A is 3.2 K. For none of the conditions 

analyzed the discharge temperatures are extreme, and therefore the alternatives can be used in 

R404A without lubricant oil degradation risk. However, additional cooling for the more extreme 

operation conditions would be recommended to ensure and enhance the compressor lifetime. 
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6. Internal heat exchanger 

 

The addition of an internal heat exchanger (liquid-to-suction heat exchanger) can enhance the 

cooling capacity and COP of a refrigeration system [47]. The final effect (positive or negative) 

and the benefit vary on the type of refrigerant and the operating conditions. As the size and 

design of the commercial fridges and freezers ease the installation of an IHX with low 

investment cost, this section includes a study of the appropriateness of its utilization on the 

vapor compression system using R404A and its alternatives. The results of the basic cycle with 

and without the IHX are analyzed and compared to conclude about the suitability of this 

additional component. 

 

The operating conditions proposed and, if possible, tested, are the intermediate and lower 

condensation temperatures and the higher and lower evaporation temperatures shown before. 

Table 5 shows the resulting effectiveness (ɛIHX) of the heat exchanger (calculated using 

Equation 3) and the measured pressure drops. Equation 3 is obtained considering that the 

minimum heat capacity corresponds to that of the vapor side. 

 

     
            

            
 (3) 

 

Table 5. Heat exchange efficiency and liquid and vapor pressure drops in the IHX 

Tk, °C 39.5 32 

Fluid To, °C ɛIHX DPL, 

kPa 

DPV, 

kPa 

To, °C ɛIHX DPL, 

kPa 

DPV, 

kPa 

R404A -12.8 20.2% 3.78 7.04 -18.5 21.8% 3.02 7.41 

-29.9 26.0% 2.23 6.57 -30.4 25.9% 2.42 8.86 

R454C -13.2 23.2% 4.41 16.42 -26.7 27.3% 2.69 6.53 

-29.9 28.4% 2.93 8.43 -29.8 28.0% 2.95 7.29 

R455A -14.8 22.8% 3.02 8.69 -26.5 27.2% 2.45 6.24 

-30.3 28.5% 2.49 6.80 -29.7 29.0% 2.82 7.60 

 

The ɛIHX depends on the operating conditions and the thermophysical properties of the fluid, 

considering the same IHX. The higher ɛIHX is obtained at the greatest compressor pressure ratio 

condition. Among the tested refrigerants, R404A presents the lowest ɛIHX, and the difference 

with its alternatives is within 2.1% and 5.5%. The ɛIHX of both alternatives is comparable, and 

the difference between them is equal or below 1%. The additional pressure drops could be 

detrimental to the energy performance of the system. 

 

Besides, as Figure 10 presents, the discharge temperature is significantly augmented, between 

7.1 and 11.8 K for R404A, 7.0 and 10.3 K for R454C and 7.0 and 9.9 K for R455A. Greater 

differences between discharge temperature with and without the IHX and higher discharge 

temperatures with IHX are observed at greater pressure ratios. The absolute temperatures 
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reached are close to the maximum recommended limit, and hence the usage of IHX at higher 

compression ratios must be specifically studied for each case. 

 

 

Figure 10. Experimental results for the discharge temperature without and with the IHX 

 

Then, the influence of the IHX on the energetic performance of the vapor compression system is 

assessed again through the cooling capacity (Figure 11), and COP (Figure 12) experimental 

analysis. The cooling capacity grows because of the additional subcooling that enhances the 

refrigerating effect, despite the lighter mass flow rate reduction, and the major increase is 

observed using R404A. The cooling capacity increase of the alternatives is between 1 and 5%. 

In the same way, the influence on COP is again higher for R404A than for the alternatives, 

being the COP increase up to 4% for R454C and R455A. Therefore, the performance of the 

R454C and R455A refrigeration systems is not benefited from the inclusion of the IHX. 

Besides, the evolution of COP demonstrates that the power consumption using the IHX is 

almost the same than without this component. 
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Figure 11. Experimental results for the cooling capacity without and with the IHX 

 

 

Figure 12. Experimental results for the COP without and with the IHX 

 

Given that for the alternatives R454C and R455A, the greatest increase of COP and cooling 

capacity is equal or below 4% and involves a strong discharge temperature augmentation, the 

utilization of IHX is not recommended in these systems. 
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7. Conclusions 

 

Due to the limitations imposed in the HFC phase-down calendar, this paper proposes and 

analyzes the drop-in replacement of R404A using the new mixtures R454C and R455A in vapor 

compression refrigeration systems for warm countries. Considering the lack of research for 

these refrigerants and their low GWP (below 150), this paper includes a study of the properties 

and a discussion of the experimental results using basic cycle and IHX configurations. 

 

R454C and R455A present comparable thermodynamic and transport properties to R404A, 

except for the vapor density and the latent heat of vaporization. Furthermore, both alternatives 

are lower flammability refrigerants and show remarkable temperature glide (around 7 and 13K, 

respectively). However, their critical temperatures are higher than that of R404A and make both 

alternatives promising in high ambient conditions. 

 

The experimental analysis has been carried out using a vapor compression refrigeration test 

bench at condensing temperatures of 32.0, 39.5 and 47.0 °C, and evaporation temperatures of –

30.0, – 21.5 and –13.0 °C. The conclusions reached from the experimental results favor the 

utilization of R454C and R455A. In comparison with R404A, the average cooling capacity of 

the alternatives is within the uncertainty of the parameter and the COP is 15% and 10% higher 

for R454C and R455A, respectively. Although the performance results using IHX are positive 

with R404A, the maximum COP increase is only 4% for the new mixtures, and their discharge 

temperatures are near the operating limit. 

 

The similar thermodynamic properties between R404A and the two alternative refrigerants, 

R454C and R455A, the considerable reduction of GWP, and better energetic performance 

results, makes these new mixtures appropriate alternatives to R404A in vapor compression 

refrigeration systems, especially for higher condensation conditions and without IHX. 
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